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Abstract

Improving genetic yield potential in major food grade crops such as soybean (Glycine max

L.) is the most sustainable way to address the growing global food demand and its security

concerns. Yield is a complex trait and reliant on various related variables called yield compo-

nents. In this study, the five most important yield component traits in soybean were mea-

sured using a panel of 250 genotypes grown in four environments. These traits were the

number of nodes per plant (NP), number of non-reproductive nodes per plant (NRNP), num-

ber of reproductive nodes per plant (RNP), number of pods per plant (PP), and the ratio of

number of pods to number of nodes per plant (P/N). These data were used for predicting the

total soybean seed yield using the Multilayer Perceptron (MLP), Radial Basis Function

(RBF), and Random Forest (RF), machine learning (ML) algorithms, individually and collec-

tively through an ensemble method based on bagging strategy (E-B). The RBF algorithm

with highest Coefficient of Determination (R2) value of 0.81 and the lowest Mean Absolute

Errors (MAE) and Root Mean Square Error (RMSE) values of 148.61 kg.ha-1, and 185.31

kg.ha-1, respectively, was the most accurate algorithm and, therefore, selected as the meta-

Classifier for the E-B algorithm. Using the E-B algorithm, we were able to increase the pre-

diction accuracy by improving the values of R2, MAE, and RMSE by 0.1, 0.24 kg.ha-1, and

0.96 kg.ha-1, respectively. Furthermore, for the first time in this study, we allied the E-B with

the genetic algorithm (GA) to model the optimum values of yield components in an ideotype

genotype in which the yield is maximized. The results revealed a better understanding of the

relationships between soybean yield and its components, which can be used for selecting

parental lines and designing promising crosses for developing cultivars with improved

genetic yield potential.

Introduction

Soybean (Glycine max L. Merrill) is the world’s most widely grown leguminous crop and an

important oil and protein source for food and feed [1]. Because of its nutritional and
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pharmaceutical properties, soybean is also considered as an important source of healthy plant-

based food products in the human diet. While the global demand for soybean is increasing sig-

nificantly [2], the current average annual genetic gain for yield seem not to be able to cope

with the growing demand [3]. One of the probable main reasons for this low genetic gain is the

inefficient selection criteria that are currently used in breeding programs for selecting geno-

types with desirable genetic yield potentials [4].

Despite the major advances in molecular technologies and their potential implications in

breeding programs, generating reliable phenotypic data and analyzing big datasets have been

remained the major bottlenecks [5]. Plant breeding programs, including soybeans, are contin-

uously relying on the evaluation of yield and important agronomic traits for making selections

and defining commercial products [6]. If a trait is under controlled by a few major genes, and

so with limited environmental effects, designing molecular marker tools would be sufficient

for selecting desirable genotypes in a given breeding population [7]. However, for complex

traits such as yield, which are highly influenced by the environment and controlled by numer-

ous genes with minor effects, the dissection of traits underlying the yield can be beneficial for

selecting genotypes with improved genetic potentials [8]. In general, soybean breeders have

made extensive use of the classical phenotypic selection approaches to evaluate and exploit

total seed yield as the main selection criterion in their cultivar development programs [8, 9].

However, genetic gains for yield have generally been low and inconsistent across different

environments [8]. The general low genetic gains for yield can be to a large extent because of

the nature of this trait, in which several secondary traits drive the final production directly or

indirectly [3]. Thus, one possible way to increase the yield genetic gains in new cultivars is to

improve their yield component traits [5, 7, 8].

Yield formation in plant species is mostly governed by yield component traits [10–12].

Traits such as the number of nodes per plant (NP), number of non-reproductive nodes per

plant (NRNP), number of reproductive nodes per plant (RNP), and number of pods per plant

(PP) are considered as the major yield components in soybean [13]. Therefore, the increase in

yield production can be regulated by selecting the soybeans with greater performance in their

yield components [13, 14]. Several studies have been conducted to describe yield improvement

in plants via improving yield components [15–18]. For example, positive correlations between

soybean yield and the number of pods [19] were reported to be the most significant contribu-

tor to yield gain in Northeast China [20]. By considering yield components, soybean breeders

can model and predict optimum conditions in which the highest yield production can achieve

[21]. However, developing reliable prediction models built upon several yield component traits

requires dealing with large datasets that are generated from the evaluation of large breeding

populations across multi-environments.

Due to the essential need for advanced skills in computational and mathematical analyses,

exploiting large datasets in many public breeding programs is still a bottleneck. Machine

Learning (ML) algorithms, as one of the reliable and efficient computational approaches, were

successfully implemented in different fields of study, such as traffic crash frequency modeling

[22, 23], environmental science [24], engineering [25], and medicine [26]. Previously, Zeng,

Huang (22) developed neural network, as one of the ML algorithms for exploring the non-lin-

ear relationship between risk factors and crash frequency. They reported the successfulness of

using neural network algorithms to eliminate the overfitting and deal with lack-box character-

istic [22]. Also, several studies reported the efficiency of ML algorithms in better detection of

genomic regions associated with a trait of interest [26–28].

One of the recent agriculture trends is the use of ML algorithms for analyzing big data [29,

30]. Emerging ML algorithms in agriculture have created new opportunities to quantify and

understand the intensive data process in agriculture [29, 31]. In a simple form, ML algorithms
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can be defined as machines with the ability to learn without explicitly programmed [29, 32].

Theoretically, each algorithm is involved in a specific learning process from training data to per-

form a task of clustering, predicting, and classifying new datasets using the knowledge attained

during the learning process [31]. Various ML algorithms have been developed and can be

implemented for complex interactions between features [8, 29, 32, 33]. Multilayer Perceptron

(MLP), for example, is known as the common neural network algorithm that is widely used in

different areas such as plant sciences [30], remote sensing [34], environmental sciences [35],

and engineering [36]. Like other neural network algorithms, MLP is built upon many neurons

in which each neuron has its own specific weight [37]. In any case that one neuron is insuffi-

cient to explain the algorithm, MLP will be useful by providing multi-neurons [38, 39]. Radial

Basis Function (RBF) is another ML algorithm commonly used in plant sciences [40–42]. RBF

is reported to be successful for predictions wherever relevant features are used [40]. However,

its performance for predicting soybean yield from its components is still unknown. Random

Forest (RF) is another algorithm that its performance was evaluated in this study. RF has drawn

many researchers’ attention because of adequate performances in various fields, including plant

science [30, 43], animal science [44, 45], human science [46], and remote sensing [47].

One of the major impediments of using individual ML algorithms is the high probability of

overfitting in single predictive algorithms [48]. To overcome this obstacle, the ensemble tech-

niques can be employed [49]. Ensemble techniques are known as the most influential develop-

ment in the application of ML algorithms [50], in which combined algorithms are exploited to

improve prediction accuracies by reducing overfitting rates [48–50]. Three commonly used

ensemble algorithms are stacking, boosting, and bagging methods that are used according to

the nature of the dataset and the individual ML algorithms that are used [50]. The success of

using ensemble techniques was reported in different areas such as plant science [30], engineer-

ing [51], and computer sciences [52].

In soybean cultivar development programs, an optimum selection among important yield

components can significantly improve the yield genetic gain. Therefore, the implementation

of optimization methods in this field is of particular interest. Optimization algorithms for

improving important traits are becoming more and more attractive in plant science [40, 53].

Genetic Algorithm (GA) is known as one of the most well-known single objective optimization

methods designed and developed by Holland [54], as a searching algorithm based on natural

selection. GA searching algorithm is based on Darwin’s notion that more stable organisms

across different environments survive better than the others [55].

Although the successful uses of ML ensemble methods have been reported in different agri-

culture-related fields [30, 48, 53, 56, 57], the potential use of these algorithms to predict soy-

bean yield using yield components remains unknown. Therefore, this study aimed to

investigate the potential use of soybean yield components for predicting the final seed yield

using individual ML algorithms as well as ensemble learning methods. In addition, linking the

best machine learning algorithm with GA for estimating the optimized values of the yield com-

ponents for maximizing the soybean yield was investigated. The outcomes of this study can

pave the way to understand the importance of soybean yield components in determining the

total seed yield and implement the proposed pipeline for making the genotypic selection more

accurate.

Material and methods

Plant material and experimental design

Two hundred and fifty soybean genotypes were grown under field conditions at two locations:

Palmyra (42˚25’50.1"N 81˚45’06.9"W, 195 m above sea level) and Ridgetown (42˚27’14.8"N
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81˚52’48.0"W, 200m above sea level), in Ontario, Canada in 2018–2019. The population used

in this study was selected from the core germplasms of soybean breeding programs at the Uni-

versity of Guelph, Ridgetown campus that have been created over 35 years and used for culti-

var development and genetic studies. The experiment was conducted using randomized

complete block designs (RCBD) with two replications in four environments (two

locations × two years), consisting of 2000 phenotypic plots in total. Each plot consisted of five

rows, each 4.2 m long and 40 cm spacing between each row. The seeding rates used in this

study were 50–57 seeds per m2.

Phenotypic evaluations

Seed yield (ton ha-1) of each plot was measured by harvesting three middle rows and adjusting

to a 13% moisture level. Soybean yield components, including NP, NRNP, RNP, and PP,

were hand-measured by randomly selected ten plants from each phenotypic plot for each

genotype. Also, the PP to NP ratio (P/N) for each genotype was calculated using the following

equation:

P=N ¼
PP
NP

ð1Þ

where PP indicates the number of pods per plant, and NP indicates the total number of nodes

per plant.

Data pre-processing, correlation coefficient, and statistical analyses

All the phenotypic plot-based data were adjusted for spatial variations within the fields using

nearest neighbor analysis (NNA) as one of the spatial error control methods to reduce and

minimize the possible error in the field data [58, 59]. The yield components were collected for

250 soybean genotypes from 2000 plots across four environments. The average value of each

yield component for each genotype was estimated through the best linear unbiased prediction

(BLUP) as a mixed model [60]. For BLUP analysis, the environment factor was selected as a

fixed effect, and the genotype factor was considered as a random effect. Afterward, all 250

data-points were used for constructing training and testing datasets. In this study, all the yield

component traits such as NP, NRNP, RNP, PP, and P/N were considered as input variables for

predicting the soybean yield as the output variable. In order to improve the prediction accu-

racy of input variables, data scaling and centering were applied for the pre-processing and pre-

treatment steps [61]. Before performing ML algorithms, the principal component (PC) analy-

sis was applied to identify outliers; however, no outlier was detected. The Pearson coefficient

of correlations between seed yield and yield components were estimated using the R software

version 3.6.1.

Data-driven modeling

MLP, RBF, and RF are the most commonly used ML algorithms with distinct functions and

abilities that are used for predicting yield in plant crop species [37, 48, 62]. The MLP, as one of

the most common feed-forward neural networks, consists of input, hidden, and output layers

of interconnected neurons [63]. RBF is another type of neural network that used approximate

multivariate functions [64]. RBF has the same functionality as that of MLP but in an effective

way for using in more than one dimension [65]. RF is also another commonly used ML algo-

rithm that generates combined trees representing n number of independent observations [66].

The final prediction in RF is determined based on the average predictions of all possible inde-

pendent trees [48]. In order to improve the prediction performance of individual ML
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algorithm, an ensemble method was proposed based on the bagging strategy (E-B). The steps

for the E-B analyses are as follows: (1) applying and training MLP, RBF, and RF, indepen-

dently; (2) selecting the best ML algorithm, based on the validation set, as the metaClassifier

for the E-B; and (3) combining the prediction results in order to improve the prediction accu-

racy of the soybean yield [67]. All the used parameters in each algorithm were optimized based

on the training dataset. The Weka software version 3.9.4 [68] was used to run all the tested ML

algorithms and the E-B method for analyzing training and validation sets.

Optimization process via GA

For obtimizing the values of NP, PP, RNP, NRNP, and P/N in a theoretical maximized yield

ideotype genotype, the best ML algorithm was linked to the genetic algorithm (GA). In order

to have the best implement of GA, some parameters such as mutation rate, crossover fraction,

and the number of chromosomes should be determined. For that, optimum values of the men-

tioned parameters are estimated by the trial and error methods. In brief, a chromosome is

known as a set of variables that define as a possible solution to the problem. In this study, all

the possible combinations of the yield component traits were considered as different chromo-

somes to form the maximum soybean yield production. All proposed chromosomes are con-

structed from the initial population, which is the first step in the GA optimization process

[53]. Crossover in GA is the process of creating a new generation of chromosomes by mixing

the existing chromosomes [69]. In this study, the possible crossover between two chromo-

somes, each containing a combination pattern of the yield components, was evaluated by

using a two-point crossover, which is known as one of the common crossover fractions. Muta-

tion is another parameter in GA, which is used to control the local minima in the population

[69]. By using a mutation rate, the possibility of having similar chromosomes will be decreased,

and therefore, the possible local minima are decreased [53]. In this study, the mutation and

crossover rates as well as the number of chromosomes were set to 0.1, 0.7, and 100, respectively

(Fig 1). Also, the Roulette wheel was used for selecting elite populations for crossover to obtain

the appropriate fitness. In order to achieve the generation number, the generational practice

was iteratively implemented. The lower and upper bounds of the dataset were considered as

the constraints in the optimization process (Fig 1).

Quantification of model performance and error estimations

The original dataset consists of 250 observations was randomly divided into training and vali-

dation sets based on the five k-fold cross-validation method [70] with ten repetitions (Fig 2).

To quantify the performance of the ML algorithms for predicting soybean seed yield from the

yield components, the following statistical measurements between independent reference val-

ues (Y) and estimated values (Y0) were applied: The Root Mean Square Error (RMSE, Eq 2)

and the Mean Absolute Errors (MAE, Eq 3) of the validation set.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðY0 � YÞ2

n

s

ð2Þ

MAE ¼
Pn

i¼1
jY0 i � YIj
n

ð3Þ

where Y0 stands for predicted value, Y is the field measured value, and n is the number of

observations for a given genotype.
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The analyses of the goodness of fit between observed and the predicted values were per-

formed using the coefficient of determination (R2, Eq 4). While we provide their definitions

below, more comprehensive descriptions and definitions can be found in [71–73]:

R2 ¼
SST � SSE

SST
ð4Þ

where SST stands for the sum of squares for total, and SSE stands for the sum of the squares for

error.

Visualizing and statistical analyzing

The results were visualized using the Microsoft Excel software (2019), ggvis [74], and ggplot2
[75] packages in the R software version 3.6.1. All statistical computational procedures were

also conducted using MASS [76] package in R software.

Fig 1. The schematic diagram of the genetic algorithm as the single objective evolutionary optimization algorithm.

https://doi.org/10.1371/journal.pone.0250665.g001
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Fig 2. The experimental workflow of algorithm selection and validation for predicting the soybean seed yield. The

Number of Nodes per plant (NP), the Number of Non-Reproductive Nodes per Plant (NRNP), the Number of

Reproductive Nodes per Plant (RNP), and the Number of Pods per Plant (PP), the ratio of number of Pods to number

of Nodes per plant (P/N), Genetic Algorithm (GA).

https://doi.org/10.1371/journal.pone.0250665.g002
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Results

Pearson correlation analyses and individual ML evaluations

Based on the field data analyses, the average yield of 250 soybean genotypes was estimated to

be between 2.58 to 5.71 ton ha-1 with a mean and standard deviation of 4.22 and 0.57 ton ha-1,

respectively.

The potential benefits of using each soybean yield component for predicting the soybean

seed yield was quantified using the Pearson coefficients of correlation among all the measured

traits. Based on the correlation coefficients, all the yield components, except NRNP, were posi-

tively correlated with soybean seed yield. The linear correlation between soybean seed yield

and PP (r = 0.71) was found to be the strongest followed by its correlation with NP (r = 0.68),

RNP (r = 0.67), and P/N (r = 0.64). The negative correlation between soybean seed yield and

NRNP was estimated as r = -0.29 (Fig 3).

Based on the results of correlation analyses, the top correlated variables were iteratively

added to the algorithms and updated the algorithm training performances until all variables

were included. The R2 values of each model were then calculated (Fig 4). Among all the tested

ML algorithms, the R2 reached its maximum value of 0.81 in RBF taking into account PP, NP,

and RNP. No changes in R2 value were detected after adding P/N and NRNP in the RBF algo-

rithm. The maximum R2 value of 0.80 was obtained for both RF and MLP when all the yield

components are added into the algorithms (Fig 4).

Model performance and evaluation

The full analysis of ML algorithms are presented in the S1 Table. Among the three tested ML

algorithms, RBF had the highest value for R2 (0.81) and the lowest values for MAE (148.61 kg.

ha-1) and RMSE (185.31 kg.ha-1) (Fig 5A–5C). The R2 values for MLP and RF were the same

Fig 3. Pearson correlation analysis of soybean yield component traits. The Number of Nodes per plant (NP), the

Number of Non-Reproductive Nodes per Plant (NRNP), the Number of Reproductive Nodes per Plant (RNP), and the

Number of Pods per Plant (PP), the ratio of number of Pods to number of Nodes per plant (P.N).

https://doi.org/10.1371/journal.pone.0250665.g003
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(0.80); however, they had different values for MAE and RMSE. In comparison with the MLP

algorithm, RF had the lower MAE and RMSE with 156.28 kg.ha-1 and 194.75 kg.ha-1, respec-

tively (Fig 5A–5C). MLP had the highest MAE (172.98 kg.ha-1), and RMSE (211.57 kg.ha-1)

among the ML algorithms. In addition to individual evaluations of the three ML algorithms,

an ensemble learning was also developed, which outperformed all the individual machine

learning algorithms, attaining an R2 value of 0.82. The E-B method had the acceptable RMSE

and MAE with a value of 184.35 kg.ha-1 and 148.37 kg.ha-1, respectively (Fig 5A–5C). In gen-

eral, the R2 value of E-B increased by 0.1, while the values of MAE and RMAS decreased by

0.24 kg.ha-1 and 0.96 kg.ha-1, respectively, in comparison with RBF as the most accurate indi-

vidual ML algorithm identified in this study.

Optimization of the soybean seed yield using E-B-GA

The aim of the current study, not only was to predict soybean seed yield using yield compo-

nents, but also to estimate the optimum values of these traits, i.e., NP, PP, RNP, NRNP, and P/

N, to maximize the final yield production in a given genotype. The results of the optimization

process using GA, as the single objective evolutionary optimization algorithm, are presented

in Table 1. Theoretically, the highest soybean seed yield production of 5.64 ton ha-1 can be

achieved in an ideotype soybean genotype in which the values of NP, NRNP, RNP, PP, and P/

N are 17.32, 3.07, 14.25, 48.98, and 2.83, respectively.

Discussion

One of the objectives of this study was to investigate the potential use of soybean yield compo-

nents such as NP, PP, RNP, NRNP, and P/N for predicting the final seed yield production.

Many studies reported the reliance of the final yield production on the performance of several

yield-related traits [15, 77–80]. In soybean, PP and NP are considered as major players in

Fig 4. Model training accuracy for Random Forest (RF), Multilayer Perceptron (MLP), and Radial Basis Function

(RBF) algorithms by adding variables based on the correlation results. The Number of Nodes per plant (NP), the

Number of Non-Reproductive Nodes per Plant (NRNP), the Number of Reproductive Nodes per Plant (RNP), and the

Number of Pods per Plant (PP), the ratio of number of Pods to number of Nodes per plant (P/N).

https://doi.org/10.1371/journal.pone.0250665.g004
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Fig 5. (A) coefficient of determination (R2), (B) the Root Mean Square Error (RMSE) and (C) the Mean Absolute Errors (MAE) performance of Random

Forest (RF), Multilayer Perceptron (MLP), and Radial Basis Function (RBF) algorithms, and the Ensemble-Bagging (E-B) strategy for soybean yield

prediction using yield component traits. The mean performance is indicated with an + sign in each Figure.

https://doi.org/10.1371/journal.pone.0250665.g005

Table 1. Optimizing the number of nodes per plant (NP), the number of non-reproductive nodes per plant (NRNP), the number of reproductive nodes per plant

(RNP), and the number of pods per plant (PP), the ratio of number of pods to number of nodes per plant (P/N) according to the E-B-GA for maximizing soybean

seed yield.

Input variables Predicted Yield (ton ha-1)

NP NRNP RNP PP P/N

17.32 3.07 14.25 48.98 2.83 5.64

https://doi.org/10.1371/journal.pone.0250665.t001
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determining the final seed yield [15, 81, 82]. In the current study, PP showed the highest linear

correlation with the total seed yield. The direct impact of the number of pods per plant on the

final soybean yield is also reported by Bastidas, Setiyono (83)]. Among all the tested yield com-

ponent traits in this study, NP showed the second-highest linear correlation with total seed

yield and showed a positive correlation with PP. Many studies reported that the variations in

the number of nodes per plant is usually accounted for the changes in the number of pods per

plant [81–84]. A negative correlation between the total soybean seed yield and NRNP was

found in this study. It is in agreement with previous studies claimed that increasing the num-

ber of non-reproductive nodes decreases the reproductive potential of soybean seed yield [81,

85]. The results of linear correlation analyses in this study illustrated the importance of indi-

vidual yield component traits in determining the total soybean seed yield.

Conventional statistical methods such as ANOVA and simple regression methods are typi-

cally recommended for small datasets with limited dimensions [86, 87]. However, soybean

yield is a complex trait under controlled by different continuous variables called yield compo-

nent traits. Therefore, more sophisticated methods are required for analyzing large data sets

with high dimensions [88]. The successful uses of ML algorithms for analyzing big data with

multi-collinearity among the variables have recently been reported in many plant species such

as soybean [30], alfalfa [48], chrysanthemum [89], wheat [90], and lime [91]. The prediction

performance of a given machine learning algorithm refers to the power of the model in pre-

dicting the values of a dependent variable when non-representative samples, or samples from a

different population, are used as the test population [92]. The prediction performance of an

ML algorithm is estimated using its R2, RMSE, and MAE values [92–94]. In this study, the

three common ML algorithms, RBF, MLP, and RF, were used to predict the soybean seed yield

using its components and their prediction performance were estimated. RBF was found to be

the most accurate ML algorithm for predicting the soybean seed yield from its component

traits. In general, yield components in soybean are traits with low heritability that are influ-

enced by environmental factors. The environmental factors can bring some levels of instabil-

ity/noise in the results of all the ML analyses [95]. However, the structure of RBF (Fig 6) gives

Fig 6. The schematic view of the Radial Basis Function (RBF) algorithm.

https://doi.org/10.1371/journal.pone.0250665.g006
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some level of robustness against the adversarial noises, compared to other tested ML algo-

rithms [96, 97]. The specific structure of RBF is the use of the transfer function of input vari-

ables to hidden layer name radial basis function [64, 98]. This function plays an important role

in reducing noises of input variables resulted in more accurate prediction performance [99].

Although RF and MLP had the same R2 values, the MAE and RMSE values were lower in

RF. MLP, as one of the neural network algorithms, is highly susceptible to possible instabili-

ties/noises caused by non-heritable factors. The MAE and RMSE values of this algorithm were

the highest among all the tested ML algorithms that may indicate the sensitivity of the algo-

rithm to noises. As a result, using this algorithm may not recommend for analyzing pheno-

typic data that are largely affected by environmental factors. RF with the R2, MAE, and RMSE

values of 0.80, 156.28 kg.ha-1, and 194.75 kg.ha-1, respectively, was selected as the second-best

ML algorithm for predicting soybean seed yield in this study. Although the difference between

RF and RBF in terms of R2 values was not statistically significant (data are not shown), they

were statistically different for their MAE and RMSE values. The performance of the RF algo-

rithm relies on processing large dimensional data based on generalized error estimation [100,

101]. Also, there is no assumption requirement for RF about the distribution of data [102], and

this algorithm can isolate outliers in a small region of the variable space resulted in acceptable

performance against nonlinear environmental effects [102, 103].

In addition to individual comparison of the three tested ML algorithms, we developed a

bagging ensemble model by combining the results of RBF, MLP, and RF in this study. Since

the RBF had the highest performance in predicting the soybean seed yield, this algorithm was

chosen as the metaClassifier for developing the E-B algorithm. Using the E-B model, a slight

improvement was obtained in predicting the total soybean seed yield from its component

traits. Diversity and sufficiency are two of the most important principles in selecting base

learners for an ensemble model [67]. It means that the dependency among the used ML algo-

rithms in the ensemble model should be minimized, while each based learner should have an

acceptable predicting capability as well [104, 105]. Therefore, we selected different ML algo-

rithms as the base learners for the E-B with different training data mechanisms. Also, the per-

formance of the E-B was optimized by implementing RBF as the metaClassifier for this model.

The effectiveness of using ensemble models was reported in different plant species such as

chrysanthemum [106], sorghum [107], wheat [108], alfalfa [67], and brassicas [109]. This

study demonstrates the benefit of using the RBF-based E-B approach to improve the soybean

yield prediction accuracy using yield components.

Selecting high-yielding lines has always been one of the major goals in plant breeding pro-

grams that can be performed using either direct or indirect selection approaches [110]. Select-

ing superior genotypes based on the yield component traits can be considered as an indirect

method. An analytical breeding strategy is an alternate breeding approach that is focused on

the improvement of components of complex traits such as plant growth and development

rates or yield components [111] rather than the traits per se. This strategy can improve genetic

yield potential in varieties by setting up selection criteria on yield components and making the

selection more efficient [112]. In order to move toward analytical breeding, it would be impor-

tant to have the optimized level of each yield component traits in target populations. Genetic

algorithm is commonly used in finding optimized solutions by searching problems through

biological parameters such as selection, crossover, and mutation [53, 113]. After selecting E-B

as the combined algorithm with the highest prediction ability in this study, GA was linked into

this algorithm to estimate the optimum values of the yield component traits (Table 1). The suc-

cessfulness of using the GA algorithm for estimating optimized solutions was reported previ-

ously in plant tissue culture [89], plant physiology [114], and remote sensing [115].
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Conclusion

Efficient breeding approaches for improving the genetic potential of complex traits such as

yield in soybean can be developed based upon secondary traits that govern the final perfor-

mance of the complex traits. Thus, in order to increase the genetic yield potential in soybean,

breeders can select soybean genotypes with improved yield component traits. However, mea-

suring yield components in a large soybean breeding program is time-consuming and labor-

intensive, which limit the implication of this approach in cultivar development programs. The

main objective of this study was to evaluate the potential use of yield component traits for esti-

mating final seed yield in soybean using different ML and E-B algorithms, which in turn can

be used by breeders for selecting parental lines and designing promising crosses for developing

cultivars with improved genetic yield potential. The results of the current study showed that

RBF is a reliable solo ML algorithm for predicting the soybean seed yield from its component

traits. However, an E-B algorithm that was built by combining the three ML and using RBF as

its metaClassifier outperformed all individual ML algorithms and, therefore, it is recom-

mended for predicting the soybean seed yield exploiting yield component traits. In the current

study for the first time, we coupled E-B algorithm with GA in order to estimate optimum val-

ues of yield component traits in a theoretical genotype in which the yield is maximized using

the real field data. The results seem to be promising but are recommended to be evaluated in

new and independent breeding populations before using in cultivar development programs

for selecting high-yielding potential genotypes. This information can be also used, in com-

bined with molecular marker technology, for developing genomic-based toolkits that can be

used for selecting genotypes with improved genetic yield potential at early generations.
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