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Purpose: Autophagy plays a vital role in cancer initiation, malignant progression, and

resistance to treatment; however, autophagy-related gene sets have rarely been analyzed in

glioblastoma. The purpose of this study was to evaluate the prognostic significance of

autophagy-related genes in patients with glioblastoma.

Patients and methods: Here, we collected whole transcriptome expression data from the

Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets to

explore the relationship between autophagy-related gene expression and glioblastoma prog-

nosis. R language was the primary analysis and drawing tool.

Results: We screened 531 autophagy-related genes and identified 14 associated with overall

survival in data from 986 patients with glioblastoma. Patients could be clustered into two

groups (high and low risk) using expression data from the 14 associated genes, based on

significant differences in clinicopathology and prognosis. Next, we constructed a signature

based on the 14 genes and found that most patients designated high risk using our gene

signature were IDH wild-type, MGMT promoter non-methylated, and likely to have more

malignant tumor subtypes (including classical and mesenchymal subtypes). Survival analysis

indicated that patients in the high-risk group had dramatically shorter overall survival com-

pared with their low-risk counterparts. Cox regression analysis further confirmed the indepen-

dent prognostic value of our 14 gene signature. Moreover, functional and ESTIMATE analyses

revealed enrichment of immune and inflammatory responses in the high-risk group.

Conclusion: In this study, we identified a novel autophagy-related signature for the predic-

tion of prognosis in patients with glioblastoma.

Keywords: Chinese Glioma Genome Atlas, transcriptome, survival analysis, autophagy,

glioblastoma

Introduction
Autophagy is an important selective recycling mechanism by which cell compo-

nents are degraded in lysosomes to provide basic materials and energy for cells.1

The autophagy process has a vital role in cancer initiation, malignant progression,

and resistance to treatment.2 Further, regulation of cancer stem cell homeostasis by

autophagy is an important mechanism of tumor resistance, recurrence, and

metastasis.3,4 The discovery of numerous of autophagy-related genes has facilitated

the discovery of the pathophysiological roles of autophagy.5 To illustrate the

importance of autophagy, there is increasing evidence that abnormalities in autop-

hagy-related genes play pathogenic roles in human disease, including cancer.1 For
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example, Takamura et al found that various liver tumors

developed in a mouse model with deletion of autophagy-

related gene 5 (Atg5), which exhibited accumulation of

p62, due to deficiency in autophagy, promoting tumor

progression.6

Various relationships between cancer and autophagy

have been described. FIP200 interacts with its autophagy

partner, ATG13, to regulate autophagy activity in cancer,

which is essential for tumor cell growth.7,8 Further, dele-

tion of the two autophagy regulators, PARKIN and BNIP3,

leads to tumor formation and accelerated malignant

progression.9,10 Hence, understanding the role of autop-

hagy and related genes in cancer is of great significance

for the development of new therapeutic strategies.

Glioblastoma multiforme (GBM) is the most common

malignant primary tumor of the central nervous system.11

The current standard treatment for glioblastoma is surgical

resection combined with chemoradiotherapy; however,

this approach only extends median survival to 14.6

months.11,12 According to the 2016 WHO guidelines for

classification of central nervous system tumors, glioblas-

toma classification combines molecular phenotype with

traditional pathology.13 Glioblastomas are divided into

two groups based on IDH mutation status: IDH-wildtype

and IDH-mutant GBM, with significant differences in

clinical features and prognosis between the two groups.

In this study, we comprehensively analyzed autophagy-

related genes in GBM. First, we collected autophagy-related

gene data and identified 14 genes related to patient prog-

nosis. These 14 genes could stratify patients into two groups

with significant molecular and prognostic differences, sug-

gesting a correlation with glioblastoma malignancy. Hence,

we constructed 14 gene autophagy-related signature with

good prognostic value and which can serve as an indepen-

dent prognostic indicator in GBM. Moreover, functional

analysis revealed the elevation of immune and inflammatory

responses in GBM samples classified as high-risk using our

14 gene signature, which was directly related to tumor

malignancy and poor prognosis. In conclusion, our study

confirms the correlation between autophagy status and glio-

blastoma malignancy and prognosis, providing new insights

relevant to individualized treatment.

Methods
Samples and Data Collected for This Study
Glioblastoma samples (n = 138) with mRNA sequencing

data and clinicopathological information were collected

from the Chinese Glioma Genome Atlas (CGGA) dataset

(http://www.cgga.org.cn). Sample pathology was diag-

nosed by two experienced neuropathologists, according

to the 2016 WHO Classification of CNS tumors. Overall

survival (OS) was defined as the interval from diagnosis to

death or last follow-up. In addition, mRNA expression and

survival data from 689 (152 sequencing and 537 micro-

array included) glioblastoma samples were downloaded

from The Cancer Genome Atlas (TCGA) dataset (https://

cancergenome.nih.gov/), along with data from 159 glio-

blastoma samples in the GSE16011 dataset.14 Thus,

mRNA expression and survival data from a total of 986

glioblastoma samples were included in this study. Our

CGGA dataset was approved by the Beijing Tiantan

Hospital Capital Medical University Institutional Review

Board (IRB) and was conducted according to the princi-

ples of the Helsinki Declaration. Written informed consent

was obtained from all patients. The specimens were col-

lected under IRB KY2013-017-01 and were frozen in

liquid nitrogen within 5 min of resection.

Human Autophagy-Related Gene Set
Genes (n = 232) involved directly or indirectly in autop-

hagy assembled in the Human Autophagy Database

(HADb, http://autophagy.lu/clustering/index.html), as pre-

viously described,15 were combined with 394 autophagy-

related genes acquired from the GO_AUTOPHAGY gene

set in the Molecular Signatures Database v6.2 (MSigDB,

http://software.broadinstitute.org/gsea/msigdb); by elimi-

nating overlapping genes in the two databases, an autop-

hagy-related gene set comprising 531 genes was finally

constructed.

Gene Screening and Gene Signature

Development
We performed univariate Cox regression with 531 autop-

hagy-related genes in two datasets (138 RNA-seq data

from CGGA and 152 RNA-seq data from TCGA).

Fourteen genes were significantly associated with overall

survival in two datasets (p value < 0.05). We checked

collinearity between the genes by calculating the variance

inflation factor (VIF) and tolerance statistic. All VIF

values were below the commonly suggested cut-off of 10

and all tolerance values were greater than 0.1. And the

regression coefficients for each gene calculated using the

CGGA dataset were used to build a gene signature, as

follows:
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Signature risk score ¼ exprgene1 � βgene1 þ exprgene2

� βgene2 þ . . .þ exprgene14 � βgene14

where “expr” indicates gene expression level and “β”

indicates the regression coefficient for each gene.

A risk score was developed by a linear combination of

the expression levels of the 14 genes, weighted by regres-

sion coefficients calculated, by univariate Cox regression

analysis for CGGA data.

Patients were assigned into high- or low-risk groups

using the median calculated risk score as a cut-off value.

Gene Ontology and Gene Set Enrichment

Analysis (GSEA)
Genes significantly correlated with risk score (Pearson |R|

> 0.4, p < 0.05) in the CGGA dataset were filtered by

Pearson correlation analysis. Then, risk score positively or

negatively associated genes were chosen to perform gene

ontology (GO) analysis in DAVID (https://david.ncifcrf.

gov/).16 Gene set enrichment analysis (GSEA) was con-

ducted to identify gene sets that differed significantly

between the high- and low-risk patient groups, using

Figure 1 Fourteen autophagy-related genes were identified. (A) COX univariate analysis screened out 14 genes and grouped CGGA glioblastoma patients into two groups.

(B) The prognosis of the two groups was significantly different (p = 0.0023). (C) The expression pattern of 14 genes in CGGA database. The top nine genes increased with

risk score, while next five genes were reversed. (D) The coefficients of 14 genes calculated in CGGA dataset.
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GSEA 3.0 software (http://www.broadinstitute.org/gsea/

index.jsp).17 Max gene set size was 500 and min size

was 15. Number of permutations was 1000. In the analysis

results, it was generally believed that the pathways were

significantly enriched when |NES| > 1, NOM p-value

< 0.05, and FDR q-value < 0.25.

Estimate
“Estimation of STromal and Immune cells in MAlignant

Tumours using Expression data” (ESTIMATE) is a method

to predict the ratio of stromal and immune cells in the bulk

tumor with gene expression signatures.18 Using the

ESTIMATE R package (https://sourceforge.net/projects/

estimateproject/), we calculated the immune score, stromal

score, ESTIMATE score as well as tumor purity of all

samples from CGGA and TCGA datasets.

Statistical Analysis
R language (version 3.5.1, https://www.r-project.org/) was

the main data analysis and mapping tool. The 14 genes

were clustered using the “cluster” function provided in the

R package pheatmap. The “Coxph” function in the survi-

val package was used for univariate and multivariate Cox

regression analysis. Other figures were drawn using

R packages, including ggpubr, pROC,19 gglpot2, Hmisc,

estimate18 and circlize. Kaplan-Meier estimates were used

for survival analysis, with a two-sided log-rank test.

Differences in pathological features between the two

patient groups were evaluated using the Chi-square test.

Values of p < 0.05 were considered significant.

Results
Gene Screening in GBM
We analyzed 531 autophagy-related genes, including 232

genes from the Human Autophagy Database (HADb) and

394 genes from the GO_AUTOPHAGY gene set from

MSigDB. To screen for genes associated with clinical prog-

nosis, univariate Cox regression analysis was performed in

two datasets (138 RNA-seq data from CGGA and 152 RNA-

seq data from TCGA, respectively). Finally, 14 genes were

identified as significantly associated with OS (p < 0.05).

Clustering of the 138 patients with GBM from the CGGA

dataset with expression profiles for the 14 genes identified

two robust groups (Figure 1A). Survival analysis indicated

a significant difference in OS between the two groups

(Figure 1B, p = 0.0023). Validation analysis using data

from 152 patients with GBM from TCGA dataset generated

similar results (Figure S1). These findings suggest that the

14 genes associated with autophagy have strong prognostic

value; therefore, these genes were chosen for inclusion in

a prognostic gene signature. Next, we generated a heatmap

demonstrating the relationship between gene signature risk

score and the 14 genes (Figure 1C and Figure S2). The trend

was striking: the expression of the top nine genes

(MTMR14, LENG9, P4HB, TCIRG1, HSPA5, DRAM1,

CTSD, S100A8 and CCL2) increased with signature risk

score and the bottom five genes (MSTN, UBQLN4,

PHYHIP, RRAGB and ZKSCAN3) was opposite. Hazard

ratio (HR) values for the 14 genes were calculated by uni-

variate Cox regression from the CGGA dataset (Table 1).

HR values for the top nine genes were >1, while those for

the other five genes were <1. These suggested that the

potential prognostic value of these 14 genes in GBM

remained to be further investigated.

Construction of a Signature Predicting

Prognosis in GBM Using the 14

Autophagy-Related Genes
Next, the 14 selected genes were used to construct

a signature. We calculated the coefficients of the 14 genes

using univariate Cox regression analysis of the CGGA data-

set (Figure 1D). The algorithm was as follows: signature risk

score = (MTMR14*1.61) + (LENG9*0.63) + (P4HB*0.44) +

(TCIRG1*0.39) + (HSPA5*0.37) + (DRAM1*0.30) +

(CTSD*0.24) + (S100A8*0.17) + (CCL2*0.17) + (MSTN*–

0.19) + (UBQLN4*–0.52) + (PHYHIP*–0.72) + (RRAGB*–

0.85) + (ZKSCAN3*–6.64). To evaluate the classification

efficacy of the signature, we divided CGGA patients into

Table 1 The HR and p values of 14 Genes

Gene HR P value

MTMR14 5.024 0.003

LENG9 1.880 0.012

P4HB 1.552 0.001

TCIRG1 1.483 0.016

HSPA5 1.447 0.001

DRAM1 1.345 0.028

CTSD 1.274 0.033

S100A8 1.180 0.002

CCL2 1.180 0.001

MSTN 0.827 0.016

UBQLN4 0.593 0.005

PHYHIP 0.488 0.042

RRAGB 0.429 0.045

ZKSCAN3 0.001 0.029

Note: HR and P values were generated from univariate Cox regression in CGGA

dataset.
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high- and low-risk groups, based on the median risk scores,

and observed significant clinical and molecular differences

between the two groups (Figure 2A and Table 2). In the high-

risk group, patients tended to be older than those in the

low-risk group (p < 0.001). Further, more classical and

mesenchymal tumor subtypes were found in the high-risk

(94%) than in the low-risk (46%) group (p < 0.001). In

addition, we found that IDH wild-type patients accounted

for a large proportion in the high-risk group (97%), while

IDH wild-type patients comprised only 55% in the low-risk

group (p < 0.001). Moreover, 58% and 29% of samples

carried MGMT promoter methylation in the low- and

Figure 2 Correlation between signature risk score and clinicopathology in CGGA dataset. (A) The clinicopathologic information of 138 glioblastoma patients in CGGA.

Patients were arranged by the increasing risk score and divided into two groups based on median risk score. (B) Distribution of the risk score in patients stratified by IDH1

status, MGMT promoter methylation, and TCGA subtypes. (C) ROC curve was utilized to evaluate the predictive efficacy of risk score for IDH1 mutation, MGMT promoter

methylation, and TCGA mesenchymal subtypes. **P < 0.01, ***P < 0.001, ****P < 0.0001.

Abbreviations: CGGA, Chinese Glioma Genome Atlas; IDH1, isocitrate dehydrogenase 1; MGMT, methylguanine methyltransferase; TCGA, The Cancer Genome Atlas.
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high-risk groups, respectively (p < 0.01), while 74% and

46% of low-risk and high-risk patients, respectively, had

received chemotherapy (p < 0.01).

Next, we divided patients into groups according to

their molecular characteristics and compared the risk

scores between the groups (Figure 2B). We observed sig-

nificantly higher risk scores in IDH wild-type patients and

our signature could accurately predict the IDH mutation

status (AUC = 0.894, specificity = 0.838, sensitivity =

0.909, Figure 2C). In MGMT promoter unmethylated

patients and mesenchymal subtype patients, we observed

the same situation.

Using coefficients derived from the CGGA dataset, we

formulated a risk signature score for each patient in TCGA

dataset as a validation cohort. Consistent with the above

results, there were significant differences between high-

and low-risk groups (Figure S3 and Table S1). In sum-

mary, patients classified as high risk using our 14-gene

signature had more malignant characteristics than those

classified as low risk.

Prognostic Value of Autophagy-Related

Signature in GBM
Given the close relationship between the 14 autophagy-

related gene signature and patient clinical characteristics,

we sought to assess the clinical prognostic efficacy of the

signature. We calculated risk scores for each patient using

the 14 gene expression signature and divided them into

high-risk and low-risk groups, based on the median risk

score cut-off value. OS was shorter in the high-risk than

the low-risk group (p = 0.00037, Figure 3A). According to

the WHO CNS tumor classification (2016), glioblastoma

(GBM, WHO IV) can be further divided into IDH-mutant

and IDH-wild-type. Due to clinical and prognostic differ-

ences between the two subgroups, we next verified the

prognostic value of our signature in the two subgroups.

We found patients in high-risk group lived shorter than

low-risk group both in IDH-wildtype GBM (p = 0.01) and

IDH-mutant GBM (p = 0.037).

In addition to CGGA as training cohort, TCGA

sequencing data, microarray data and GSE16011 micro-

array data were included as the verification cohort

(Figure 3B–D). Among IDH-wildtype patients, the prog-

nosis remained significantly different (p < 0.05). And

among IDH-mutant patients, the high-risk group had

a worse survival trend. Similar survival curves in three

verification cohorts further demonstrated the excellent

prognostic value of our signature, especially in IDH-

wildtype GBM.

The Autophagy-Related Signature Is an

Independent Prognostic Indicator in

Patients with GBM
To verify the independence of signature, we carried out

univariate and multivariate COX regression analysis. Our

result indicated that autophagy-related signature was sig-

nificantly associated with overall survival (HR=1.921,

95% CI=1.013–3.644, p value=0.045), independent of

clinical and pathological indicators, including age, gender,

KPS, IDH1 status, MGMT promoter methylation, che-

motherapy and radiotherapy (Table 3). Consistently, autop-

hagy-related signature was verified as independent

indicator in TCGA verification cohort (HR=1.718, 95%

CI=1.122–2.629, p value=0.013).

Table 2 Clinicopathological Factors of Glioblastoma Patients in

CGGA Cohorts

Features Low-Risk

Score

High-Risk

Score

P-value

(n=69) (n=69)

Age

Mean (range) 42(19–66) 54(8–81) <0.001

Gender

Female 26 22 0.592

Male 43 47

TCGA subtype

Pro 29 1 <0.001

Neural 8 3

Classical 28 19

Mes 4 46

IDH1 status

WT 38 67 <0.001

Mut 31 2

MGMT promoter

status

Unmethyl 29 49 <0.01

Methyl 40 20

Radiotherapy

Yes 39 41 0.863

No 30 28

Chemotherapy

Yes 51 32 <0.01

No 18 37
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Figure 3 Prognostic significance of the autophagy-related gene signature in GBM. Patients were from CGGA (A), TCGA with RNA-seq data (B), TCGA with microarray

data (C) and GSE16011 (D). Kaplan–Meier survival analysis showed that high-risk group conferred a significantly worse prognosis in GBM, especially in GBM with IDH wild-

type. P-value shown in survival was determined by a log-rank test between the two groups.
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Functional Characteristics of the GBM

Autophagy-Related Signature
To study alterations in signature-related functions, gene

ontology (GO) analysis of signature-related genes was con-

ducted using the CGGA dataset. Pearson correlation analysis

was conducted to filter 3504 signature-related genes, includ-

ing 1669 positively (Pearson R > 0.4, p < 0.05) and 1835

negatively (Pearson R < −0.4, p < 0.05) correlated genes.

Positively correlated genes were mainly involved in the

tumor immune environment, including “inflammatory

response”, “immune response”, “extracellular matrix organi-

zation”, “chemotaxis”, and “leukocyte migration”, among

others (Figure 4A, Table S2); however, negatively correlated

genes were involved in normal physiological processes, such

as “transcription, DNA-templated”, “nervous system devel-

opment”, “neurotransmitter secretion”, and “regulation of

exocytosis” (Figure 4B, Table S3).

Further, we performed GSEA in high-risk and low-risk

patients (Table S4, enrichment in high-risk group; Table S5,

enrichment in low-risk group). Consistently, we found GO

terms related to immunity were enriched in high-risk group,

covering “leukocyte chemotaxis” (NES=2.161, FDR

q-value=0.131), “inflammatory response” (NES=2.142, FDR

q-value=0.053) and “positive regulation of cytokine produc-

tion” (NES=2.109, FDR q-value=0.047, Figure 4C). Whereas

Go terms including “regulation of synapse assembly” (NES=

−2.049, FDR q-value=0.238), “regulation of synapse organi-

zation” (NES= −2.044, FDR q-value=0.168) and “metence-

phalon development” (NES= −1.980, FDR q-value=0.233)

were enriched in low-risk group, implying normal neurode-

velopment (Figure 4D).

To investigate the immune status in high-risk tumors, we

carried out ESTIMATE analysis (Table S6, CGGA; Table S7,

TCGA). In both datasets, we found that immune, stromal,

and ESTIMATE scores were significantly elevated in the

high-risk groups, while tumor purity clearly decreased

(Figure 5A and B, p value < 0.001). Next, we selected

immune checkpoints (PD1, PD-L1, TIM-3, B7-H3, B7-H4,

LAG3)20 and inflammatory genes (INF-α, INF-β, TNF-α, IL-

6, IL-17, CCL2, CXCL2 and HLA-A)21 for Pearson correla-

tion analysis with risk score (RS, Figure 5C and D). We

found immune checkpoints were positively related to risk

score (RS), indicating immune suppression in high-risk

tumors. Among inflammatory genes, the expression of IL-

6, CCL2, CCXCL2 and HLA-A were obviously correlated

with risk score, implying enrichment of T cells and macro-

phage-associated immunity in the high-risk group.

Discussion
Numerous studies demonstrate that disorders of autophagy

are closely related to the occurrence of various cancers.

Table 3 Variables Related to OS in Glioblastomas: Univariate and Multivariate Analysis

CGGA Dataset Univariate Cox Regression Multivariate Cox Regression

HR 95% CI p value HR 95% CI p value

Gender (male vs female) 1.226 0.795–1.892 0.357

Age (≥60 vs <60) 1.724 1.042–2.852 0.034* 1.543 0.713–3.336 0.271

KPS (increasing score) 0.970 0.955–0.986 2.33×10−4* 0.964 0.945–0.984 4.72×10−4*

IDH1 (mutation vs wild type) 0.637 0.379–1.069 0.088

MGMT promoter (methylated vs unmethylated) 0.562 0.363–0.870 0.001* 0.921 0.498–1.703 0.793

Chemotherapy (Yes vs no) 0.336 0.214–0.527 2.07×10−6* 0.510 0.288–0.901 0.020*

Radiotherapy (yes vs no) 0.413 0.259–0.659 2.04×10−4* 0.425 0.233–0.774 0.005*

Risk score (high vs low) 2.165 1.401–3.343 4.98×10−4* 1.921 1.013–3.644 0.045*

TCGA Dataset Univariate Cox Regression Multivariate Cox Regression

HR 95% CI p Value HR 95% CI p Value

Gender (male vs female) 0.750 0.500–1.128 0.167

Age (≥60 vs <60) 1.699 1.121–2.574 0.012* 1.587 1.026–2.455 0.038*

KPS (increasing score) 0.983 0.966–1.001 0.065

IDH1 (mutation vs wild type) 0.110 0.027–0.456 0.002* 0.175 0.041–0.749 0.019*

MGMT promoter (Methylated vs unmethylated) 0.631 0.387–1.030 0.065

Risk score (high vs low) 1.983 1.319–2.981 0.001* 1.718 1.122–2.629 0.013*

Note: *Significant.
Abbreviations: HR, hazard ratio; CI, confidence interval; KPS, Karnofsky Performance Score.
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Autophagy deficiency induced by allele deletion of Beclin1

increases tumor cell apoptosis and delays the progression of

breast cancer in the presence of P53.22 Common human

cancer cell lines with RAS activating mutations generally

exhibit higher autophagy activity, and the downregulation of

important autophagy-related proteins significantly inhibits

the growth of these cells.23 In lung cancer, knockout of the

autophagy gene, Atg7, led to tumor progression to oncocyto-

mas, rather than adenomas and carcinomas, and tumor pro-

liferation was markedly inhibited.24 Numerous malignancies

are associated with autophagy activation, with proteins

related to autophagosome formation and maturation

detected;25,26 however, due to its clear heterogeneity, autop-

hagy-related gene expression in glioblastoma remains

controversial. Previous studies demonstrated that downregu-

lation of LC3B-II and Beclin leads to decreased autophagy,

inducing glioblastoma progression.27 In contrast, more recent

studies show that high levels of LC3/beclin expression are

associated with poor prognosis in patients with GBM.28 In

some cell stress situations, such as during activation of

Figure 4 Functional characteristics of autophagy-related signature in GBM. Gene Ontology (GO) analysis of biological processes was performed to analyze signature positively

related genes (A) and negatively related genes (B). Gene set enrichment analysis (GSEA) revealed Go terms enriched in high-risk group (C) and low-risk group (D).
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Figure 5 Comparison of difference in immune status between high-risk and low-risk groups. With ESTIMATE tumor purity algorithm, we calculated immune score, stromal

score and ESTIMATE score of two group patients in CGGA (A) and TCGA (B) dataset. Circos plots showed correlation analysis between risk score (RS) and immune

checkpoints/inflammatory genes in CGGA (C) and TCGA (D) dataset. In circos plots, red/green scale bar represented Pearson’s correlation coefficient, which had a value

between +1 and −1, where 1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative linear correlation.
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malignant phenotypes, changes in the expression of a subset

of genes may regulate autophagy. Therefore, study of the

expression of autophagy-related gene sets has clinical

implications.

In the present study, we screened 14 autophagy-related

genes that could be used to cluster patients with glioblastoma

into two groups, with significant differences in clinicopathol-

ogy and prognosis. Next, we constructed a signature based on

14 genes, reflecting autophagy status in glioblastoma. We

found that most high-risk patients were IDH wild-type,

MGMT promoter non-methylated, and had more malignant

tumor subtypes (including classical and mesenchymal), pre-

dicting poor prognosis. Cox regression analysis further con-

firmed the independent prognostic value of our signature.

Both functional analysis usingDAVID andGSEA revealed

an increase in immune and inflammatory responses in the high-

risk group, indicating an interaction between autophagy and

the immune microenvironment. A remarkable recent study

suggested that autophagy regulates tumor immunity and

thereby modulates malignancy.29 In breast cancer with up-

regulated autophagy, CD8+ cytotoxic T lymphocytes were

enriched and immunosuppressive FOXP3+ regulatory T cells

were reduced.30 By targeting BECN1 to inhibit autophagy,

Baginska et al restored granzyme B levels in hypoxic cells

in vitro, and induced NK-mediated tumor cell killing in vivo.31

The expression of the immune checkpoint regulator, PD-L1, in

lung cancer cells was down-regulated by activation of autop-

hagy using an mTOR inhibitor.32 To further investigate the

relationship between our autophagy-related signature and

immunity in glioblastoma,we conductedESTIMATEanalysis,

and found an increase in immune/stromal components, and

a decrease in tumor purity, in high-risk patients. We also

conducted further analysis of immune checkpoint and inflam-

matory genes and found that an immunosuppressive state and

T cell- and macrophage-related immune factors were enriched

in the high-risk group.

Much preclinical evidence suggests that inhibition of

autophagy improves clinical outcomes in patients with

cancer.33,34Meanwhile, it has beenwidely reported that inhibi-

tion of autophagy increases the sensitivity of cancer to anti-

cancer drugs.35,36 Further, concurrent regulation of autophagy

can significantly improve the therapeutic effects of cancer

immunotherapy37 For example, alpha-TEA can stimulate

autophagy to enhance antigen presentation to CD8 T cells as

a strategy for improving tumor immunotherapy.38 Spleen tyr-

osine kinase (Syk)-mediated autophagy stimulates cell surface

major histocompatibility protein expression and CD4 T cell

activation to enhance anti-tumor immunotherapy.39 In the

future, the relationship between autophagy and immunity

needs to be further studied, and alterations in glioma cells

autophagy may play an important role in immune regulation.

Conclusions
In summary, here we identify 14 autophagy-related genes

that can be used to stratify patients with glioblastoma by

clinical and pathological features. Further, we built a 14-

autophagy-related gene expression-based signature, which

could accurately predict important molecular markers and

survival in patients with glioblastoma. Our study provided

a new understanding of autophagy status in glioblastoma.
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