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Abstract: In 2013, the National Ecological Observatory Network (NEON) started collecting 30-year
multi-faceted ecological data at various spatial and temporal scales across the US including ticks.
Understanding the abundance and dynamics of disease vectors under changing environmental
conditions in the long-term is important to societies, but sustained long-term collection efforts are
sparse. Using hard-bodied tick data collected by NEON, the vegetation and atmospheric data and a
statistical state-space model, which included a detection probability component, this study estimated
the abundance of tick nymphs and adult ticks across a Florida NEON location. It took into account the
spatial and temporal variation, and factors affecting detection. Its purpose was to test the applicability
of data collected thus far and evaluate tick abundance. The study found an increase in tick abundance
at this Florida location, and was able to explain spatial and temporal variability in abundance and
detection. This approach shows the potential of NEON data. The NEON data collection is unique in
scale, and promises to be of great value to understand tick and disease dynamics across the US. From
a public health perspective, the detection probability of vectors can be interpreted as the probability
of encountering that vector, making these types of analyses useful for estimating disease risk.
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1. Introduction

Ecological monitoring and surveillance systems, by definition, require repeated sampling over
time to determine if there has been a change in the system. For disease systems, a change can be defined
as an introduction of a new pathogen, vector or host species; the loss of species in an epidemiological
disease system; or the change in abundance of a key species in the system. Repeated sampling,
however, requires institutional commitment of resources, a sense of urgency to answer questions and
to take action on a disease system, as well as the political and social will to maintain that surveillance.
These types of monitoring and surveillance systems are rare in ecological or epidemiological systems,
particularly on large spatial scales. One example of a national human epidemiological surveillance
system is BioSense developed by the Centers for Disease Control and Prevention for the detection and
control of bioterrorism and other outbreaks of national concern [1].

For the surveillance of environmental phenomena, the National Ecological Observation Network
(NEON) is a continental scale monitoring platform funded by the United States National Science
Foundation which aims to collect long-term data at large spatial scales over 30 years with the intent to
measure, model and predict ecological change across the United States. The data are collected on more
than 600 biogeophysical characteristics at each of the 81 field sites across 20 ecoregions, and started in
some locations in 2013 and in most locations by 2018. Of special interest to public health specialists
and disease ecologists, the population level data are collected on 3 disease vectors: mosquitos, ticks
and small mammals.
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Tick-borne diseases are an increasingly large component of the public health burden [2]. The lone
star tick, Amblyomma americanum, is rapidly expanding westward through the Great Plains of North
America, while the deer tick, Ixodes scapularis, the American dog tick, Dermacentor variabilis, and the
Gulf Coast tick, Amblyomma maculatum are expanding northward [3]. The deer tick populations have
increased in density throughout the northeast and upper Midwestern United States with a concomitant
increase in human cases of tick-borne disease [4]. The patterns and processes driving the dramatic
change in tick populations throughout the US is slowly being elucidated, but efforts are regional and
often uncoordinated on a national level. The CDC, recognizing the public health hazard, has called for
an increase in nation-wide surveillance to detect new and emerging tick-borne pathogens and monitor
trends in established pathogens and their vectors [5].

Standardized, repeated monitoring over time provides a powerful dataset to understand the
changes in an ecosystem and to understand the potential drivers of that change. While the CDC calls
for county level sampling to understand the occurrence and prevalence of ticks and their pathogens [6],
the NEON dataset was designed to understand population and prevalence trends over a long time
series at the ecosystem level [7]. These data have the potential to provide a macroecological perspective
on the processes that drive vector population and pathogen epidemiological dynamics. Specifically, the
NEON sampling design aims to evaluate interannual changes in the mean or maximum tick abundance,
and assess the timing and onset of seasonal cycles of sampled populations within a year (Springer et
al., 2016).

Recent developments in state-space modeling to simulate population dynamics have generated
occupancy and abundance models that are well-suited to address the objectives of many types of
surveillance studies, and the NEON data conform to the input requirements. These models address the
issue of imperfect detection explicitly, allowing for more precise and accurate estimates of populations
and for the identification of factors that affect detectability. These models have options to include the
variables associated with sites, which adds a spatial dimension to the analysis. The latest iteration of
these models also includes a temporal component, thus addressing full temporal-spatial dynamics of
populations. NEON sampling, in turn, provides data that is suitable for these models: zero counts are
recorded alongside positive counts, and sampling is done at the exact same sites throughout the years.
In addition, the site variables are recorded with the tick sampling (elevation, land cover class) or are
available from other surveys (vegetation structure, cover, diversity, etc.). The variables that could affect
detection, such as the temperature, relative humidity and temperature, are also available. The richness
of these data sets allows the development of models that provide insight into the temporal and spatial
variability of tick populations, and the factors affecting this variability.

The objective of this study was to use the first five years of the data collected by NEON at its Gulf
Coast Forest Ecosystem site in the southeastern domain of the network, Ordway Swisher Biological
Station (OSBS), to assess the utility of the dataset to address the aims NEON set out to achieve.
The OSBS was one of the first observatories in the system to be completed and as such, has one of the
longest temporal datasets. Tick-borne diseases have been understudied in the southeastern United
States and the dynamics of tick populations are quite different from the dynamics in the northeastern
and midwestern United States [8]. Thus, understanding the changes in tick density over time will
provide some insights into the epidemiology of tick-borne diseases in this region.

2. Methods

The general strategy that was used to model the tick dynamics at OSBS was to construct an
abundance model using a state-space framework. The tick count data was used as the response
variable and multiple environmental variables as explanatory covariates. All data were derived from
the publicly available NEON database (https://www.nsf.gov/news/special_reports/neon/).

https://www.nsf.gov/news/special_reports/neon/
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2.1. NEON Data

As part of NEON’s implementation strategy, the U.S. was divided in 20 ecoregions [9,10], with
Florida largely falling into the Southeast domain. Each of these domains collects standardized data
across multiple sites within the domain. The Ordway-Swisher Biological Station (OSBS) is located
in North-Central Florida, just outside the town of Melrose in Putnam County. The OSBS covers
a little over 38 km2, and the sampling in this location started in 2013. The location contains a
tower site and distributed sites for the collection of a variety of data. The tower site contains a
flux tower that measures physical and chemical properties on a continuous basis, and also collects
atmospheric data, e.g., precipitation, temperature, etc. The distributed site measurements include such
variables as vegetation structure, mammal or arthropod occurrences per unit effort, and biogeochemical
characteristics. There are a number of distributed sites within the tower site and a number of distributed
sites throughout the OSBS. This study only used data from the distributed sites outside the tower site.
The data downloaded is reflected in Table 1 [11].

Table 1. Data products downloaded using the NEON Data Application Programming Interface (API),
on 8 March 2019. Note that not all data was actually available for the whole date range requested.

Data Product ID Product Name Site ID Date Range

DP1.10093.001 Tick sampling OSBS 1 January 2013–31 December 2018
DP1.10098.001 Woody plant vegetation structure OSBS 1 January 2013–31 December 2018
DP1.10058.001 Plant presence and percent cover OSBS 1 January 2013–31 December 2018
DP1.10072.001 Small mammal box trapping OSBS 1 January 2013–31 December 2018
DP1.10023.001 Herbaceous clip harvest OSBS 1 January 2013–31 December 2018
DP1.00006.001 Precipitation (tower) OSBS 1 January 2013–31 December 2018
DP1.00098.001 Relative humidity (tower) OSBS 1 January 2013–31 December 2018
DP1.00002.001 Single aspirated air temperature (tower) OSBS 1 January 2013–31 December 2018

There were less tick sampling sites at OSBS than sites for vegetation measurements. For this study,
only data from distributed sites closest to the tick sites were used (Figure 1). The distance between
these sites ranged from 95 m to 123 m. The tick sites and distributed sites were selected in the Ordway
Swisher Biological Station area as random stratified samples in such a way that the dominant landcover
types (≥ 5%) were represented: evergreen forest woody wetlands and emergent herbaceous wetlands.
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Figure 1. Ordway Swisher Biological Station boundaries with tick sites (red) and distributed sites for
vegetation measurements (black).



Insects 2019, 10, 321 4 of 20

The sampling protocol in this methods section will be described succinctly. More detailed
information is available from NEON’s sampling protocols and are cited.

2.2. Tick Counts

The tick data were collected at 6 sites, which started in 2014 and is ongoing [12]. The tick data
from 2014 to 2018 was used for this study. The sampling took place roughly every 3 weeks from
approximately March through September/October. Due to the weather conditions and staff availability,
data availability was variable between the sites. Site 3 and 22 were flooded after hurricane Irma in
September 2017 and have not been accessible since. Each tick site was 40 m by 40 m. The perimeter
of the site was sampled with a drag cloth sized 1 × 1 m. If there were shrubs or short trees in the
sampling path, these were sampled by flagging. The number of larvae, nymphs and adults was
recorded (Figure 2). As the identification of the ticks to species level was not available (analyses are
still ongoing), the available counts for hard-bodied ticks as a whole were used. Besides the count data,
the sampling method, the sampled area (m2), the date of the survey, the time of the survey, the elevation
of the sites, the landcover class and the coordinates were recorded, see Supplementary Table S1.
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Figure 2. Hard-bodied tick counts at Ordway Swisher Biological Station (Florida) from 2014 to 2018 at
each of six sampling sites, separated in (a) larvae, (b) nymphs and (c) adults.
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2.3. Precipitation

The precipitation data were collected at the NEON tower at 5 min intervals and summed to
30-min data. The daily precipitation values were calculated, but these data were only available for
2017–2018 and contained gaps. The time series were augmented and gap-filled with information from
the online National Oceanic and Atmospheric Administration (NOAA) Local Climatological Data
tool (https://www.ncdc.noaa.gov/cdo-web/datatools/lcd). The data from the station at Gainesville
airport (1645713) were used, which is approximately 29 km from the OSBS. This station provided daily
precipitation. A reasonable linear relationship of POSBS = 1.550 + 0.599PGNVairport with an R2 of 0.732
was found (Supplementary Figure S1). From the augmented precipitation time series (spanning 2013 to
2018), this study calculated precipitation on the previous day (of sampling), cumulative precipitation in
the previous 7 days and cumulative precipitation in the previous 30 days (Supplementary Figure S4).

2.4. Relative Humidity

The relative humidity was measured at 1-min intervals at the NEON tower and made available
as averaged 30-minute data. From these data, the average daily relative humidity was calculated.
The relative humidity data were available from 2016 to 2018 and also contained gaps. The daily
average humidity data were used from the same NOAA station that also provided the precipitation
data to augment and gap-fill the time series. The relationship between the two stations was RHOSBS =

1.036RHGNVairport with an R2 of 0.997 (Supplementary Figure S2). The augmented time series covered
2013 to 2018 (Supplementary Figure S4).

2.5. Temperature

Similar to relative humidity, the temperature was recorded at 1-min intervals and provided as
averaged 30-min data. These data were collected at 5 vertical intervals and the data from the lowest
level was used. The daily average temperature was calculated and the minimum and maximum
temperature for each day was extracted. As with precipitation and relative humidity, the data were
limited (2016–2018) and contained gaps. The relationships with data from NOAA (same station) were
as follows (Supplementary Figure S3):

TmeanOSBS = 1.542 + 0.905TmeanGNVairport
(
R2 = 0.942

)
TminOSBS = 2.187 + 0.906TminGNVairport

(
R2 = 0.923

)
TmaxOSBS = 0.979 + 0.975TmaxGNVairport

(
R2 = 0.935

)
The augmented daily time series for these 3 variables covered 2013 to 2019 (Supplementary

Figure S4).

2.6. Woody Plant Vegetation Structure

The information on the woody plant vegetation structure contained data from the measurements
of live and standing dead woody individuals and shrub groups. A detailed description of the sampling
protocol and procedures can be found in various NEON documents [13–15]. The distributed sites
where the woody plant vegetation structure was measured was 20 m by 20 m. The dataset containing
information on apparent individuals was used, which were measurements for each individual with
DBH > 10 cm.

Since not all distributed sites needed for this study were consistently sampled on an annual
basis, the average height and stem diameter over all observations for each subplot were calculated as
indicators of the woody vegetation structure in the sites (Supplementary Table S2).

https://www.ncdc.noaa.gov/cdo-web/datatools/lcd
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2.7. Herbaceous Vegetation

Herbaceous clip harvest sampling was conducted on non-woody plants (i.e., grasses, sedges,
forbs, bryophytes, non-woody vines), and woody-stemmed plants if their diameter at 10 cm height
was < 1 cm. The 20 × 20 m distributed sites contained a randomly located clip-harvest strip of 0.1 m ×
2 m, and the aboveground herbaceous biomass was clip-harvested and sorted per functional group.
The dry mass (gram) was determined in the laboratory. The dry mass of all functional groups was
summed at each site as an indicator of herbaceous vegetation. At the time of our analysis, sampling
at the distributed sites that were needed for this study had been conducted once at the OSBS (2013),
so these data were not available as a time series (Supplementary Table S2).

2.8. Biodiversity and Non-Vegetative Cover

The sites where the plant presence and cover were measured were 20 × 20 m and contained nested
subplots of 1 m2 and 10 m2, (Supplementary Figure S5). At each level, the presence of vascular plants
was recorded, their height, and at the 1 m2 subplot, the area covered by a particular plant species.
For species < 300 cm, the cover included the combined cover of woody and foliar components of
the plant, or the herbaceous cover. In the case of plants > 300 cm, the combined cover for the basal
diameter, branches and foliage < 300 cm was recorded. Other variables for which cover was estimated
were the soil, woody organic material (>5 mm), litter (<5 mm), standing dead material, moss, lichen,
feces from wildlife, overstory (until 2015), other non-vascular species (algae, fungus, macrofungi) and
other cover (trash, shells). It was possible for the cover types to overlap, so the cumulative cover
percentages could add up to more than 100. These data were available on an annual basis for each
site. For this analysis, the information on the soil, woody organic material, litter and standing dead
material were used as non-vegetative cover data. The overstory was only recorded until 2015, and the
other types of cover generally represented < 1% of cover at all sites.

For our calculations, all plants that were identified were used, even if identification was not down
to the species level. The species richness (species count) was calculated as well as a biodiversity index
(Shannon) at the 1 m2 subplot scale. To calculate the Shannon index, the recorded cover percentage
was relied on instead of the number of individuals, which was not recorded. The Shannon index
calculations based on the percentage cover have been implemented before successfully [16]. To get
variables at the site level, the average of the species richness and the Shannon index over the eight
1 m2 subplots were calculated. As this sampling was performed annually, these data were compiled
for each year for each site. The average non-vegetative cover was calculated across all 1 m2 subplots
for each site. These data were compiled annually for each site (Supplementary Table S3).

2.9. Abundance Modeling: N-Mixture Models

The challenge in determining the abundance or population density of a species, is that during
surveys, individuals may go undetected. Analyzing the count data without regard of the probability
of detection has been shown to lead to biased results [17,18]. The essence of occupancy and abundance
modeling is that it specifically accounts for the imperfect detection by including the detection probability.
This is similar to classical state-space models that simulate population dynamics. The classical approach
models abundance (the true state) as an unmeasured, latent process, and uses observed data conditional
on the latent process and an observation error. However, the problems with these classical models are
that they make Gaussian assumptions, they assume false positive and false negative observation errors
as equally likely, they ignore spatial variation and they assume an equilibrium or no observation error
in the first year [19].

The models that were implemented follow the N-mixture modeling approach of Hostetler and
Chandler (2015). These models are a form of state-space models as they take process variation and
observation error into account, but they resolve the problems of the classical models [19]. The methods
build on earlier abundance models and approaches [20–22], most notably those by Royle (2004),
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Kéry et al. (2009) and Dail and Madsen (2011). The model by Royle (2004) first addressed the majority
of the issues of the classical models by modeling abundance as an independent random variable
according to some distribution (the state of the system), and including the detection probability as a
random variable with a binomial distribution (the observation process). Kéry et al. (2009) took this
further by addressing the temporal and spatial components. However, this model did not include
a component to deal with serial dependence, which is an important feature of state-space models.
The model by Dail and Madsen (2011) incorporated a first-order Markov process, and Hostetler and
Chandler (2015) extended this model to include the classical population growth formulas and options to
deal with zero-inflated data sets. It is important to note that these methods require spatially replicated
count data. While the unique identification of individuals is not necessary, the data has to be available
from repeat surveys of the same sites as these are required for the estimation of distributions.

The model this study implemented contained three conditionally related processes: (1) initial
abundance, (2) abundance at subsequent time periods, which is dependent on the previous time period,
and (3) the detection process. The required data are the count data of a species, collected at R sites
across an area, surveyed during T primary sampling periods. Then Xi,t is the count data at site i
(i = 1, 2, . . . , R) at time period t (t = 1, 2, . . . , T). The surveys and the detection histories are assumed
to be independent of one another. The detection probability (p) is estimated as part of the model
to relate the true abundance (Ni,t) and the count data, if detection probability is perfect, Ni,t ≡ Xi,t.
This structure implies that abundance can vary between sites and between primary sampling periods.
However, within a primary sampling period, abundance is assumed constant at a site. For each primary
sampling period, the model takes all count data for the period at a site and estimates the annual
probability distributions for the data. The type of distribution is the same across all sites in an area.
The available options are Poisson, zero-inflated Poisson or negative binomial distributions. It starts
with the initial year as the first estimate, and the subsequent years take into account the estimate of the
previous year, following a first-order Markov process (see Supplementary Methods for details).

This study tested a number of processes to simulate change, as outlined in Chandler and Hostetler
(2015). Abundance can be related to the previous year’s abundance through an exponential function,
or by implementing the density-dependent functions, such a Ricker model [23] or a Gompertz-logistic
function [24]. Another option is to include a more mechanistic approach, where the abundance is
the sum of a survival function and a recruitment function. For the survival function, a survival
probability needs to be estimated, for recruitment a recruitment rate, which are both applied to the
abundance of the previous year to get abundance for a given year. When taking this approach, there
are three options: estimating both these parameters separately to get an autoregressive growth model,
making recruitment independent of the previous year’s abundance to get a constant growth model,
or setting the recruitment rate as 1 minus the survival rate so the population is in equilibrium (no
trend). Thus, in total there were 18 unique combinations (3 distributions types and 6 change functions)
available for modeling. The site-level variables can be included in this part of the model, to explain
variability between sites. The model simulates the relationships between the initial abundance and
site-level variables, and/or the relationships between the parameters in the change functions and
site-level variables.

Iteratively, the detection probability was also estimated. While abundance is estimated separately
for each site, detection probability is estimated across the whole area (all sites). The detection probability
can be dependent on observation-level variables, but these relationships are defined the same across
all sites. For instance, if increased humidity decreases the detection probability, the function the model
estimates for this relationship is the same across all sites.

The maximum-likelihood estimation (MLE) method was used to estimate the parameters in the
model [19,22,25], and the Akaike information criterion (AIC) was calculated to compare candidate
models [26,27]. The AIC uses the log-likelihood of the model, but also takes the number estimable
parameters of a model into account (Supplementary Methods). It aims to find the most parsimonious
model as it tries to balance a good fit and the number of parameters, by essentially penalizing for
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including too many parameters. The model with the lowest AIC out of a number of candidate models
is regarded the best model.

The best model was found for the study area by taking a forward selection approach. This study
started by simulating the models with all 18 distribution–change combinations. The distribution and
change function of the model with the lowest AIC (the null model) were selected for further modeling.
Then, models were developed with variables added one at a time (single variable models), and those
where the model AIC was higher than the AIC of the null model were discarded. Of the remaining
variables, the models with the observation-level variables only (included in the detection process) and
with the site-level variables only (included in the initial abundance determination or change function)
were developed. The models were developed with increasingly more variables, the order of which
was determined by the AIC of the single variable models. Again, the models with the lowest AIC were
deemed the best models. These 2 best models, one for the observation-level variables and one for the
site-level variables, were combined into a final model (the full model).

A primary period was defined as a year for our models and included the 6 aforementioned
sites. One of the outputs produced by the model was site-specific abundance for each year, which
was calculated from the estimated parameters and the actual data with Bayesian inference methods
(Supplementary Methods). The model also provided the relationship between the observation-level
variables and the detection probability, expressed as linear models with a logit link. The relationships
between the site-level variables and initial abundance and/or change were modeled with log-linear
models. The abundance of tick nymphs was modeled first and the annual abundance results were used
as the site-level variables in the adult model. The efforts to also build a larvae model were unsuccessful
due to resource constraints.

For a more extensive overview of the calculations and formulas, see Supplementary Methods,
and the original studies that developed these methods [19,22,28].

2.10. Software Used, Data and Code Availability

For all data cleaning, analysis and visualization, the R programming language, Version 3.5.3 Great
Truth [29] was used. The data were obtained as comma-delimited files from NEON. The package
neonUtilities was used for downloading and organizing data. For data cleaning, preparation and
visualization, the packages tidyverse, lubridate, lwgeom, psych, vegan, fmsb and cowplot were used.
For maps the packages rgdal, sf, ggmap and ggspatial were used. For analyses we used the package
unmarked [30,31].

All the data and codes are available from an Open Science Framework repository at https:
//doi.org/10.17605/OSF.IO/82WN3.

3. Results

Before building the models, a variance inflation factor (VIF) analysis was conducted to eliminate
collinear variables (Supplementary Methods). The observation-level variables that remained in the
dataset and that were included in the models were the sampling method (drag or drag and flag),
the sampled area (m2), the average relative humidity, the precipitation of the previous day, the
cumulative precipitation of the previous 7 days and previous 30 days, the maximum temperature and
the month of the observation and hour of the observation. The latter was rounded to the nearest hour
if the observation was not made on the whole hour. The sampling method, month and hour were used
in the model as categorical variables. The other observation-level variables were standardized. The
once-off site-level variables that remained in the dataset after VIF were the elevation, herbaceous mass
and the average height of the woody vegetation. The yearly site-level variables included were species
richness, diversity (Shannon index) and the cover of litter, woody organic material, standing dead
material and soil. The models for the adult ticks also included the annual nymph abundance estimated
with the nymph model.

https://doi.org/10.17605/OSF.IO/82WN3
https://doi.org/10.17605/OSF.IO/82WN3
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3.1. Distributions, Change Dynamics and Explanatory Variables

A total of 18 combinations of probability distributions and change dynamics were evaluated on
their AIC for both nymph and adult models, Table 2. Using negative binomial distributions led to
lower AICs for both, but based on a recent study that highlighted the problems with these distributions
in abundance models [32] (and see Supplementary Table S4 that shows instability in our case as well),
the authors decided to proceed with the next best models. For nymph models, this was a Poisson
distribution, for adult models a zero inflated Poisson (ZIP) distribution (shaded in Table 2). For both
models, the change dynamics were best modeled with a trend function. i.e. exponential growth
or decay. For further modeling, the settings of these null models were used and have been shaded
in Table 2.

Table 2. Null models for nymph and adult tick abundance (no variables included) to find the best
distribution and growth dynamics combination. Distribution and dynamics used in further modeling
are shaded. AIC = Akaike Information Criterion, NB = negative binomial, P = Poisson, ZIP = Zero
Inflated Poisson.

Nymphs Adults

Distribution Dynamics AIC Distribution Dynamics AIC

NB Trend 2832 NB Trend 909
NB Autoregressive 2834 NB Gompertz 910
NB Gompertz 2870 NB Autoregressive 911
NB Equilibrium 2956 ZIP Trend 928
NB Constant growth 2958 ZIP Autoregressive 930
P Trend 2968 ZIP Gompertz 930
ZIP Trend 2970 P Trend 971
P Autoregressive 2970 P Autoregressive 973
ZIP Ricker 2972 P Gompertz 973
ZIP Autoregressive 2972 NB Constant growth 974
ZIP Gompertz 2972 NB Equilibrium 975
P Gompertz 3015 ZIP Constant growth 1053
P Constant growth 3302 ZIP Equilibrium 1056
ZIP Constant growth 3304 P Constant growth 1108
P Equilibrium 3320 P Equilibrium 1130
ZIP Equilibrium 3322 NB Ricker 1218
NB Ricker 3390 ZIP Ricker 1223
P Ricker 3466 P Ricker 1242

The results of subsequent models, with the temporal, climatic and environmental variables added
to the model one at a time, are reflected in Table 3. The observation-level variables were included in
the detection probability component of the model, the once-off site-level variables were used in the
initial abundance estimate and the yearly site-level variables in the exponential change function (see
Supplementary Methods for details on calculations and equations).

The variables in italics produced the models with higher AICs than the null model and were
excluded from further modeling. After adding the variables cumulatively (the order based on the AIC
values in Table 3), these models were evaluated again on AIC and the best models with observation-level
variables and the best models with site-level variables were selected. These were combined to produce
full models (see Supplementary Tables S5 and S6 for an overview and comparison of these models).



Insects 2019, 10, 321 10 of 20

Table 3. Performance of abundance models with variables added one at a time. Variables listed in
italics yielded an Akaike Information Criterion (AIC) higher than the null model when included in the
modeling. These were not included in further modeling efforts.

Nymphs Adult

Observation-Level Variable AIC Observation-Level Variable AIC

Month 2611 Month 748
Hour 2850 Maximum temperature 875

Relative humidity 2929 Hour 908
Total sampled area 2937 Precipitation–30 days 911
Sampling method 2949 Precipitation–7 days 922

Precipitation previous day 2959 Relative humidity 928
Precipitation–30 days 2963 Sampling method 928
Precipitation–7 days 2967 Total sampled area 930
Maximum temperature 2969 Precipitation previous day 930

Site-Level Variable AIC Site-Level Variable AIC

Average height woody vegetation * 2853 Nymphs # 865
Litter cover # 2903 Litter cover # 914

Species richness (vegetation) # 2904 Elevation * 914
Diversity (vegetation, Shannon index) # 2919 Average height woody vegetation * 915

Herbaceous mass * 2920 Herbaceous mass * 923
Soil cover 2952 Woody organic material cover # 926

Standing dead material cover # 2955 Diversity (vegetation, Shannon index) # 928
Woody organic material cover # 2960 Species richness (vegetation) # 929

Elevation * 2968 Soil cover # 929
Standing dead material cover # 930

# Yearly site variables used in the change function. * Once-off site variables used in the initial abundance estimate.

3.2. Final Models: Abundance Estimates

Based on the model selection procedures, the initial abundance estimates for nymphs were
modeled with the average height of woody vegetation and herbaceous mass, and for adults the
abundance estimates were modeled with elevation, the average height of woody vegetation and
herbaceous mass. The annual growth of nymph abundance was affected by litter cover, species
richness, diversity, soil cover, standing dead material cover and woody organic material cover, whereas
the annual growth of adult abundance was only affected by the mean nymph abundance and litter
cover. Since the site-level variables were not standardized before model development, it was not
straightforward to interpret numeric outputs (coefficients) from the models. Instead, Figures 3–5
illustrate the relationships between the variables and the initial abundance or growth, modeled with
log-link functions. These results show the relationship with each variable separately, while all other
variables are held at their average value. The detailed statistical outputs of the models can be found in
the Supplementary Tables S7–S10.

The annual abundance estimates after applying the Bayesian inference methods are plotted in
Figure 6. The estimates for OSBS_005 were only for 2014, 2015 and 2016. The selected model simulated
very large growth rates for 2017 and 2018, causing large population numbers that did not produce
estimates with the Bayesian inference methods.
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Figure 3. Relationships between initial abundance and site-level variables for nymphs (left column)
and adult ticks (right column), modeled with a log-link function. Dotted lines are the 95% confidence
interval. Models for adult ticks have no confidence intervals since the model implementation (package
“unmarked” in R) currently does not have a method included to calculate standard errors for ZIP models.
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Figure 4. Relationships between yearly site-level variables and population growth rate for nymphs,
modeled with a log-link function. Value on the y-axis is what the population from the previous year is
multiplied with to get an updated population value. Growth is positive if the value on the y-axis is >1,
there is decline if the value is <1. Dotted lines are the 95% confidence interval.
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Figure 5. Relationships between yearly site-level variables and population growth rate for adult ticks,
modeled with a log-link function. Value on the y-axis is what the population from the previous year is
multiplied with to get an updated population value. Growth is positive if the value on the y-axis is >1,
there is decline if the value is <1. Dotted lines are the 95% confidence interval.
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Figure 6. Estimated abundance of (a) nymphs and (b) adult ticks per site (approx. 160 m2). The shaded
area is the 95% confidence interval. Site OSBS_005 has no estimates for nymphs for 2017 and 2018
as the model simulated unrealistic exponential growth for these years. Shaded areas are the 95%
confidence interval.
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The observation-level variables were standardized before the model development and the
coefficients thus indicated the relative importance of the variables (Supplementary Tables S8 and S10).
The relationships between the detection probability and the observation-level variables, modeled
with a logit link, are visualized in Figure 7. Similar to the site-level variables, these relationships are
calculated for each variable separately while all others are kept at their average value.

The model for adults implemented a zero inflated Poisson distribution, and the probability
of a Poisson distribution with mean 0 was estimated at 0.33 and thus the probability of a Poisson
distribution with a mean other than zero was estimated at 0.67. Both the nymph and the adult tick
model included an immigration component (to prevent populations from crashing to zero without
recovery), but the estimates were negligible: 0.70 (SE = 1.87) for nymphs and 9.78 (SE = 1.26) for adult
ticks (Supplementary Tables S7 and S9).
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Figure 7. Relationships between observation-level variables and detection probability for nymphs (N)
and adult ticks (A), modeled with a logit link. Dotted lines and whiskers are the 95% confidence interval.

4. Discussion

The models developed in this study estimated abundance on an annual basis, incorporating the
detection probability to explain the variability of count data between surveys. The models created
probability distributions of abundance for each year at each site, taking the mean as a reflection of
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abundance for that year. Averaged across all 6 sites over time, our model detected an increase in
hard-bodied ticks at the Ordway Swisher Biological Station from 2014–2018.

4.1. Spatial Variation in Abundance

This study included site-level variables to evaluate spatial variability across sites at OSBS.
The spatial variability within OSBS was substantial: there were 3 sites with very low abundances
for both nymph and adult tick populations. Two sites were classified as evergreen forest, and the
other was classified as emergent herbaceous wetlands (OSBS_022). Another site with evergreen forest
(OSBS_003) however, did have tick populations. For this reason, more detailed vegetation variables
were included in our models than just land cover type to explain this variability. Elevation was
also a significant predictor of abundance in our model which was likely correlated with site scale
environmental characteristics like soil type or habitat type.

The main differences between the evergeen forest sites with low tick abundance (OSBS_002 and
OSBS_004) and the evergreen forest site with ticks (OSBS_003) were lower average vegetation height
and lower herbaceous mass at OSBS_003, as well as lower species richness and higher litter cover
(Supplementary Table S3). These characteristics highlight the complexity of tick habitats. While lower
herbaceous mass is associated with lower initial abundance (Figure 3), it appears that for OSBS_003,
the other variables play a strong enough role in supporting tick populations. It was found that
instead of land cover classification, finer scale vegetation characteristics are more appropriate for
abundance modeling.

Both woody wetland sites (OSBS_001 and OSBS_005) had high tick abundance, but showed
different trends. OSBS_001 appeared to have a stable adult tick population, and a variable nymph
population, but OSBS_005 showed large increases for both. The nymph populations in the emergent
herbaceous wetland (OSBS_022) increased initially but declined after 2016. The evergreen forest site
with ticks (OSBS_003) initially increased then decreased in nymph population size, while the adult tick
population had an upward trend for the whole period. This could either indicate better than usual
survival of nymphs molting into ticks in 2018, or a lag effect that remains unclear for now, since it
occurred at the end of the study period.

To assess what factors played a role in the spatial variability of tick abundance, this study examined
the once-off and yearly site-level variables in the models. When the relationships between vegetation
structure and nymph and adult abundance were examined, similarities (Figure 3) were found. For both,
more herbaceous mass increased initial abundance, and the higher average plant height decreased
abundance. The prescribed fire is a regularly applied management tool across the OSBS, and this
result affirms that prescribed burning conducted at regular intervals, which reduces herbaceous and
understory biomass, is a useful management tool to control tick populations in the Gulf Coast Forest
ecosystem, as suggested in other studies [33]. The relationships described by our models are in line
with studies that found higher tick densities in areas with a high scrub density (lower average plant
height) and an increased density of herbaceous foliage [34].

These results are an indication that the model can identify the established relationships reliably,
and thus a sign of satisfactory model development. However, the variables associated with variability
in initial abundance were limited and lacked complexity, because they were based on a once-off

measurement survey at the beginning of the study period. More measurements would have likely
provided a better and more nuanced estimate of the relationship between average vegetation height
and herbaceous mass and tick abundance. It would have also been desirable to have other site
indicators included, such as litter biomass or soil temperature and water content. These variables are
only measured in the distributed sites within in the tower site.

The adult abundance was modeled with a zero inflated Poisson distribution, and the probability
of no initial abundance of adult ticks was 0.33. This seems reasonable as 2 out of the 6 sites had low
tick counts. Since a regular Poisson distribution was used for nymph abundance, it can be concluded
that nymphs were more widespread in OSBS, but that not all sites were favorable for adult ticks.
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This is most likely associated with site characteristics and host abundance. The hard-bodied ticks
likely encountered at OSBS (Amblyomma americanum, Ixodes scapularis, A. maculatum and Dermacentor
variabilis) have a 3-host life cycle, with nymphs obtaining blood meals from smaller mammals and
adults from larger mammals. Large mammals are not part of NEON’s data collection efforts. It is
reasonable to suggest that adult ticks would be more abundant in areas where frequent encounters
with common large mammals like white-tailed deer (Odocoileus virginianus) and wild pigs (Sus scrofa)
occur. The count data on small mammals are collected by NEON [35,36], but currently not every tick
site has a corresponding small mammal trapping site. The missing data eliminates the observations
or sites from the model, and this would remove 3 of the 6 sites. While both tick and small mammal
trapping sites represent all landcover types and could theoretically be associated with each other based
on this information, this proved not to be a good solution. The current tick models and an inspection
of the small mammal data showed that there was substantial variation of tick abundance and small
mammal counts within the same landcover type. In future analyses, it would be worthwhile to develop
abundance models for small mammals and use explanatory variables to make rough estimates of
mammal abundance in the tick plots. These results could be used as explanatory variables in tick
abundance models. This would require an assessment of available NEON data to decide which
variables to include in a small mammal model, as the variables included in these tick models might
not be relevant in explaining small mammal abundance. In addition, considering NEON monitors a
number of species of small mammals, this could be a multi-species model [37,38].

4.2. Temporal Variation in Abundance

The annual abundance estimates for nymphs showed more variation over the study period, which
is potentially related to a higher sensitivity to yearly site variables. The nymph model contained
6 yearly site variables, while the adult tick model contained only 2 site variables. The adult tick
population growth was driven by the number of nymphs and litter cover, implying that other site
(habitat) variables were less important. The population growth of nymphs on the other hand showed
the relationships with habitat variables, such as litter cover and cover of woody organic material and
standing dead material. Note that in the results, the values of >1 indicate population growth, as this is
the factor with which the previous year’s population is multiplied. The values of <1 indicated decline
(Supplementary Methods). The soil cover and the cover of woody organic material caused a decline in
the ticks for our study sites (values < 1 in Figure 4). The litter cover > 70% caused increases in adult tick
populations, and > 92% was linked to increases in nymph populations. The standing dead material >

14% was related to increased nymph populations. The standing dead material also included desiccated
herbaceous organic material (from the previous year) [39] which could be driving this relationship.
The NEON data do not specify whether the material was woody or herbaceous.

The overall vegetative diversity also influenced the annual abundance estimates of tick populations.
A Shannon index < 0.75 and > 8 species per m2 implied increased the nymph populations. The low
values for the Shannon index indicate a few species, or if there are a reasonable number of species,
that they are unevenly distributed (e.g., one species covering most of the area at the expense of other
species). The result from our model suggests that more species, but unevenly proportioned, are
beneficial for nymph population growth. After examining our data, only a few subplots were found
at our sites met these criteria. Higher Shannon indices are more common in the study area. Species
richness was low in general (hence the large confidence interval at high species richness), so it was
concluded that in most subplots and sites with a few species that were evenly proportioned, the nymph
population growth was kept in check. Habitat alterations such as understory removal or burning
would thus be a way to reduce the population growth of nymphs, which would subsequently affect
the population growth of adult ticks.
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4.3. Detection Probability and the Risk of Human Exposure

Methodologically, the observation-level variables addressed the unexplained temporal variance,
and site-level variables addressed the unexplained spatial variance. In terms of interpretation, this
means that the observation-level variables do not address habitat suitability for ticks as interpreted by
other studies [40–42] but rather the conditions that make ticks more observable. The sampling method
used by NEON (dragging and flagging with a cloth) generally targets questing ticks, which roughly
resembles the risk for human exposure to medically important ticks found in Florida [7,12,43,44].
With the method implemented in this study, the authors were able to estimate population abundance
and the detection probability which is the specific component of the model that represents the human
risk of encountering a tick. Including the variables that affect the detection probability then gives
an indication of which circumstances increase or decrease the chances of getting bitten. This study
included the time of the year (month) as a variable in this process, which highlighted the intra-annual
dynamics of this behavior. From a public health perspective, the seasonal data are more relevant than
the population dynamics within a year. The results indicate that NEON data and abundance models
can be successfully employed to gain insight into inter- and intra-annual dynamics of tick abundance,
specifically related to the different life stages and risk of human exposure.

The variation in detection probability was most strongly associated with the time of the year. If all
other variables were at their average, the probability of the detection of nymphs was almost 0.1 in May
and almost 0.2 for adults in July. Hence, the probability of humans encountering ticks was highest
in May (nymphs) and July (adults), and lowest earlier and later in the year. If nymphs need a blood
meal in spring time before molting into adults over summer and fall, they are more actively questing
and more detectable during that time of the year. Similarly, adults need a blood meal in summer or
fall before laying eggs. The type of modeling conducted is useful to indicate exactly when humans
are more at risk of encountering ticks and potentially contracting tick-borne diseases. Since NEON
is collecting these data across the United States, this holds great potential to map out the risk of tick
encounters for public health purposes nationwide.

The time of the day affected the detection of nymphs somewhat more than adults, with early
mornings and the end of the day being higher risk times. This finding was attributed to the nymphs’
sensitivity to desiccation, avoiding warm and sunny times during the day [45,46]. The sampling
method played a relatively minor role in detecting adult ticks, though for both nymph and adult ticks,
dragging on its own appeared more effective than dragging and flagging. It is suspected that this
result was more related to site characteristics than the sampling method. Flagging is usually necessary
in areas with shrubs and trees, rather than herbaceous vegetation. This vegetation offers better hiding
opportunities (or alternatively more difficult questing options for ticks) than grass-like vegetation [47].

Long-term precipitation positively influenced the detection probability, more so for nymphs than
adults. For nymphs, the precipitation of the previous day also increased the detection probability.
This was again ascribed to the risk of desiccation for nymphs. Interestingly, the relationship with
relative humidity adds some nuance to this narrative. A higher relative humidity actually decreased
the detection probability, but was likely associated with higher daytime temperatures and greater
evapo-transpiration. Modeling this variable with a quadratic relationship in the future might clarify
this relationship. Higher temperatures also decreased the adult tick detection probabilities, with ticks
probably retreating into leaf litter and other hiding places to hydrate [46].

The observation-level variables provided some insight into the factors that are important in
detectability, but care must be taken in interpreting the results associated with the temperature, relative
humidity and precipitation. These were the (mean) daily data from the tower site or NOAA location
and did not reflect the actual temperature, relative humidity and precipitation at each tick sampling
site at the actual time of sampling–especially in tick habitats such as litter or grass. However, these
data indicate general patterns throughout the year and can be interpreted as average conditions across
OSBS, the conditions that people can obtain information on when evaluating the exposure risk.
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5. Conclusions

While NEON’s stated objective is to assess observatory locations, such as the OSBS, as a whole [7],
the methods in this study shed light on the variability between sites within the OSBS and the factors
that might explain this variability. Using the NEON data to gain insight into the spatial and temporal
dynamics of mosquitos, ticks and small mammals looks promising. The main challenge encountered
was matching the tick surveillance data and observation-level and site-level data, since missing data
disqualified a survey or site from inclusion in the analysis. While the collection of vegetation structure
and plant presence data primarily focused on linkages with data from NEON’s Airborne Observation
Platform (which produces such products as LiDAR data) [7], this study has shown they also serve a
purpose as explanatory variables in abundance models and the authors strongly support continuing or
even increasing these data collection efforts. The authors foresee that in the future, remote sensing
data of vegetation may be able to be used in lieu of field measurements, once reliable relationships
between the vegetation structure and remote sensing data have been established. This would create
the opportunity to evaluate larger areas for tick abundance than just small sites, and would be a major
achievement by NSF and NEON. The fact that NEON also records whether vegetation is native or
non-native would add another important dimension to these analyses. It would allow for an assessment
of the influence of invasive species on abundance of disease vectors, and potentially diseases and
parasites (the current OSBS dataset did not have enough instances of non-native species recorded to
add this dimension to this analysis).

The relationship between ticks, their environment and habitat is complex [42,46], and the absence
of host abundance and dynamics in these current models is a limitation. For future analyses, it would
be interesting to develop abundance models for small mammals and examine the relationship with
tick abundance. In order for this to be most effective, it would be imperative that all tick sites have a
corresponding small mammal trapping site. This way, small mammal abundance could be included as
a yearly site variable in tick abundance models. This would be a fruitful endeavor that could shed
further light on quantifying the importance and effect of hosts on tick abundance dynamics.

From a public health perspective, conducting these analyses at other NEON sites can provide
valuable insights into spatial and temporal tick abundance dynamics nationwide. It would also reveal
the differences and similarities where site characteristics are relevant for tick abundance, and which
environmental or temporal variables increase the chances of tick encounters across the United States.
Aside from ticks, these analyses could and should also be conducted for mosquitos and small mammals,
being important disease vectors. These are likely to be time- and resource-intensive undertakings, but
the insight that can be gained from these models and the NEON data will be invaluable, at a scale not
yet seen before.
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