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Abstract: Background: Seasonal pollen is a common cause of allergic respiratory disease. In the
United States, pollen monitoring occurs via manual counting, a method which is both labor-intensive
and has a considerable time delay. In this paper, we report the field-testing results of a new, au-
tomated, real-time pollen imaging sensor in Atlanta, GA. Methods: We first compared the pollen
concentrations measured by an automated real-time pollen sensor (APS-300, Pollen Sense LLC)
collocated with a Rotorod M40 sampler in 2020 at an allergy clinic in northwest Atlanta. An internal
consistency assessment was then conducted with two collocated APS-300 sensors in downtown
Atlanta during the 2021 pollen season. We also investigated the spatial heterogeneity of pollen
concentrations using the APS-300 measurements. Results: Overall, the daily pollen concentrations
reported by the APS-300 and the Rotorod M40 sampler with manual counting were strongly corre-
lated (r = 0.85) during the peak pollen season. The APS-300 reported fewer tree pollen taxa, resulting
in a slight underestimation of total pollen counts. Both the APS-300 and Rotorod M40 reported
Quercus (Oak) and Pinus (Pine) as dominant pollen taxa during the peak tree pollen season. Pollen
concentrations reported by APS-300 in the summer and fall were less accurate. The daily total and
speciated pollen concentrations reported by two collocated APS-300 sensors were highly correlated
(r = 0.93–0.99). Pollen concentrations showed substantial spatial and temporal heterogeneity in terms
of peak levels at three locations in Atlanta. Conclusions: The APS-300 sensor was able to provide
internally consistent, real-time pollen concentrations that are strongly correlated with the current
gold-standard measurements during the peak pollen season. When compared with manual count-
ing approaches, the fully automated sensor has the significant advantage of being mobile with the
ability to provide real-time pollen data. However, the sensor’s weed and grass pollen identification
algorithms require further improvement.

Keywords: sensors; pollen monitoring; automation; data analysis; real-time monitoring

1. Introduction

Exposure to pollen can trigger respiratory illnesses including allergic rhinitis, hay fever,
and asthma [1–5]. In the United States, pollen is one of the most common causes of seasonal
allergies. Previous studies have found that short-term pollen exposure can significantly
increase the risk of allergic rhinitis and asthma, affecting Americans’ health and quality of
life [6,7]. Kitinoja et al., reports that an increase of 10 grains per m3 of short-term pollen
exposure could result in a 2% increase in the risk of allergic or asthmatic symptoms and a
7% increase in the risk of upper respiratory infection symptoms [8]. The direct medical cost
related to allergic rhinitis caused by pollen exposure in the U.S. was estimated to be around
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USD 3.4 billion, with the dominant component being the prescription medications [9].
In addition, some literature suggest that the health risk of pollen exposure may vary
with socioeconomic status and race/ethnicity. For example, Blackwell et al., found that
non-Hispanic black adults had 1.13 times higher asthma rates than Hispanic adults [3].
Moreover, allergic response to pollen could be higher among African American children
with lower socioeconomic status [10,11].

Pollen-producing plants can be grouped into three categories: trees (e.g., oak, pine,
and birch), grasses (e.g., ryegrass and timothy), and weeds (e.g., ragweed, nettle, mug-
wort, goosefoot, and sorrel). The spatiotemporal patterns of pollen, including start and
peak dates, season length, and spatial distribution, are affected by the mixture of pollen
taxa and local meteorology [12,13]. Although pollen allergies are common in the clinical
setting, the scarcity of pollen data in the U.S. presents a major challenge in advancing our
understanding of the temporal and spatial patterns of pollen and the risks of seasonal
allergies at the local level. To date, there are only 74 pollen counting stations certified
by the National Allergy Bureau (NAB) in the U.S. (https://www.aaaai.org/ accessed on
22 March 2022). These stations have employed a manual counting technique, considered
the gold standard for decades. A certified technician is required to identify and count
pollen granules collected in the previous 24 h under a microscope. This technique and its
associated high labor costs severely limit the spatial coverage and timeliness of pollen data
in the U.S. [13].

Automated real-time pollen monitoring offers a promising alternative to manual
counting and can improve the spatiotemporal coverage of pollen data. Several methods
have been discussed for automated pollen counting, including imaging recognition [14],
fluorescence measurements [15,16], biomolecular analysis [17], and laser optics [18]. These
methods have various potential strengths and limitations. Fluorescence measurements
could be used to discriminate pollen and fungal spores according to their emission spectra.
However, fluorescence measurements can only distinguish fungal spores, tree pollen, and
grass pollen. Biomolecular analysis method can identify tree pollen and grass pollen by
sequencing the chloroplast DNA [17]. This method only requires generic laboratory and
bioinformatics techniques instead of trained personnel. However, only three airborne
pollen samples were analyzed, and the quantity and accuracy require further investigation.
Neither fluorescence nor biomolecular methods have been validated against gold-standard
pollen counting methods. Oteros et al. used automatic online pollen monitors with imaging
recognition technology to identify most tree pollen taxa with ~85% of data availability [19].
However, their pollen system could only identify 11 tree pollen taxa, and misidentified
Betula, Alnus, and Fraxinus that can trigger many allergy symptoms. Additionally, the daily
pollen concentration reported by their pollen machine did not show a strong correlation
(r = 0.53–0.55) with the gold standard [14].

In this study, we evaluated the field performance of a new commercially available
automated pollen sensor, APS-300, developed by Pollen Sense LLC in Atlanta, GA. We
compared total and speciated daily pollen concentrations reported by the APS-300 in
2020 with a collocated certified pollen monitor (Rotorod) with manual counting. We also
evaluated the internal consistency of APS-300 measurements from two collocated sensors
during the peak pollen season in 2021. We further investigated the spatial heterogeneity of
pollen concentrations and dominant taxa from three APS-300 sensors deployed in areas
with different degrees of urbanization. Finally, we explored the diurnal variability of
pollen levels in Atlanta by taking advantage of the real-time pollen counting capabilities of
the APS-300.

2. Study Design and Statistical Methods
2.1. APS-300 Pollen Sense Sampler

Developed by Pollen Sense LLC, the APS-300 is a fully automated pollen imaging
sensor that collects and images pollen and airborne particles down to less than 5 µm, in
real-time (data reporting delay in <1 min). The APS-300 collects ambient air by an airflow
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system at a constant flow rate. The particles in the collected air adhered to the rotating
tape medium, where a proprietary form of optical surface microscopy is performed. The
collection service performs complex proprietary algorithms involving advancing, focusing,
and lighting in order to obtain maximal information about each particle. The processing
service uses proprietary algorithms to compose these particle images into a single frame.
The imaged particles are classified into pollen taxa by neural network algorithms, and
the resulting pollen count of each pollen taxon is converted into a daily concentration of
pollen granules. The resulting detection and identification data, as well as the composed
frame image are then uploaded to the cloud by an uploader service via Wi-Fi or Ethernet.
In the event of internet disruption, data is cached until the connection is restored. Given
the portable size (slightly bigger than a shoe box) and weight (~5 kg) as well as a simple
installation and setup process, the APS-300 can be relocated easily. It also offers the potential
for spatially resolved pollen monitoring at the local level. There are currently 25 pollen
taxa in the Pollen Sense image library. Currently, it cannot identify the families of Poaceae
and Cupressaceae, nor can it distinguish between the genera in these families.

2.2. Study Period and Sites

Our field evaluation included two phases. Phase 1 spanned from 1 March to 8 Decem-
ber 2020. During this period, we assessed the accuracy of the APS-300 measurements and
the spatial contrast of pollen levels in Atlanta. Three APS-300 sensors were deployed in
three sites: (1) Marietta, Georgia, (2) Emory University Rollins School of Public Health, and
(3) the Southface Institute, representing various degrees of urbanization in Metro Atlanta
(Figure 1). The Marietta site is in the parking lot of a medical complex in a suburban area
approximately ~30 km northwest of downtown Atlanta where the Atlanta Allergy and
Asthma Clinic (AAAC) is located. Here, an APS-300 and a Rotorod sampler are installed
on the same platform ~5 m above the ground. The Rotorod sampler is a rotating arm
impactor that collects airborne particles on a rapidly spinning polystyrene rod. The leading
surface of the rod is coated with an adhesive to retain any impacted particles. After the
collection period, the rod is removed and examined in the lab under light microscopy.
The volume of sampled air is then calculated, allowing results to be expressed as particles
per cubic meter [20,21]. The pollens collected by the Rotorod sampler at the Marietta site
are identified and counted under a microscope by technicians certified by the NAB (last
certification exam in 2021). Continuous reviews ensure accuracy and minimize variation
between technicians. The Rotorod measurements were used as the gold standard to assess
the accuracy of the APS-300.

The Emory site is on a partially covered balcony of the 8th floor of the Claudia
Nance Rollins Building on Emory University’s main campus. It is in a moderately built
urban area ~10 km northeast of downtown Atlanta. The APS-300 was mounted on a tripod
approximately 1 m above the floor (~30 m above the ground) to sample well-mixed ambient
air and avoid contamination from resuspended floor dust.

The Southface site is on the roof of the 4-story office building of the Southface Institute
located in densely built downtown Atlanta. Like the Emory site, the APS-300 was mounted
on a tripod approximately 1 m above the floor (~12 m above the ground). Phase 2 of
our field evaluation spanned from 5 March to 31 May 2021. We conducted an internal
consistency test with two collocated APS-300 sensors at the Southface site (Figure A1).
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Figure 1. Study domain and sites. More descriptions on map. Device A is the APS-300 while device B
is the Rotorod.

2.3. Statistical Methods

Three sets of analyses were conducted. First, we compared the pollen measurements
of the APS-300 to that of the Rotorod sampler with manual counting. The Rotorod sampler
operated by the AAAC in Marietta collects pollen samples for 15 min of each hour for a
24 h period starting in the morning of every weekday. Pollen samples are processed by
a certified technician, and the average pollen concentration of the previous 24 h is then
reported (i.e., the value reported on Monday morning reflects the average level from Sunday
morning to Monday morning). As the Rotorod sampler reports daily pollen levels, the
real-time APS-300 measurements were aggregated to 24 h averages to match the collection
periods of the Rotorod sampler. Next, we evaluated the internal consistency of the APS-300
measurements from two collocated sensors at the Southface site during the peak pollen
season in 2021. Finally, we analyzed total and speciated pollen concentrations measured
by APS-300 at all three sites in 2020 to examine the spatiotemporal variability of pollen
levels in Atlanta. For these three sets of analyses, total and speciated pollen data were
analyzed using the Pearson correlation, time series plots, and bar charts. The tree pollen
peak season in Atlanta is usually from late March to early April. However, pollen could
reach detectable levels as early as January, and subside by late May. The AAAC reports
four levels of tree pollen concentrations to the public, i.e., Low = 0–14, Moderate = 15–80,
High = 90–1499, and Extremely High = 1500+. We define the peak season in Atlanta as
when pollen concentration reaches High (in fall) and Extremely High (in spring) levels. The
spring peak pollen season is from 1 March to 15 April, and the fall peak pollen season is
from 1 August to 31 October in 2020.

3. Results
3.1. Comparison of APS-300 with Rotorod

During Phase 1 of our study, the APS-300 at Marietta obtained valid measurements
for 259 days, as compared to 224 days of the Rotorod sampler. The identification level
of both APS-300 and Rotorod were genus and family. The APS-300 was able to identify
23 pollen taxa while the Rotorod sampler with manual counting identified 29. The fewer
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pollen taxa of APS-300 could be due to misclassified or unidentified pollen taxa by its image
identification algorithms. The mean (max) total pollen concentration during Phase 1 was
313 (8767) grains/m3 estimated by APS-300 as compared to 317 (8863) grains/m3 estimated
by the Rotorod with manual counting. Figure 2 shows both time series of total pollen
concentrations in 2020. Both methods recorded an intensive spring pollen season starting
from early March to late April, dominated by tree pollen, and a minor fall pollen season
from September to mid-October, dominated by grass and weed pollen. While the manual
counting measurements are slightly higher in the peak season, the APS-300 measurements
are routinely and significantly higher than the Rotorod during the rest of the year. Due
to the observed difference in performance, we analyzed the correlation between APS-300
and manual counting results in the peak season and the rest of the year separately. Total
daily concentrations obtained by APS-300 and Rotorod with manual counting showed a
strong positive Pearson correlation coefficient of 0.85 (p < 0.001; Figure 2A) in the spring
tree pollen season. The two sets of measurements are still significantly correlated but
with a much weaker Pearson correlation coefficient of 0.47 (p < 0.0001, Figure 2B). Table 1
shows the Pearson correlation coefficients for specific taxa. All tree pollen taxa (11 in total)
identified by APS-300 except Ulmus (Elm) are significantly correlated with Rotorod sampler
with manual counting. Conversely, among all identified weed pollen taxa (6 in total),
only Ragweed showed a significant correlation (r = 0.72, p < 0.001). APS-300 also reported
some pollen taxa that the Rotorod sampler with manual counting did not, such as Poaceae
and Chenopodium.

Table 1. Pearson Correlation of Matched Pollen Taxa Concentration measurements (Rotorod vs.
APS-300).

Category Pollen Taxa Mean
(Rotorod)

Mean
(APS-300)

Max
(Rotorod)

Max
(APS-300) r (p-Value)

Tree Quercus 531.5 366.6 4752.7 3390.2 0.85 ***
Pinus 262.6 159.8 2754.9 1452.7 0.85 ***

Tree Carya 6.1 26.3 141.4 529.9 0.77 ***
Tree Morus 60.6 4.8 3095.5 87.6 0.76 ***
Tree Fraxinus 1.7 7.6 41.2 160.6 0.71 ***
Tree Betula 15.4 241.2 136.7 1273.3 0.66 ***
Tree Salix 18.9 41.9 104.1 197.7 0.57 ***
Tree Acer 3.4 1.7 301.5 42.7 0.51 ***
Tree Alnus 0.2 6.4 6.5 113.0 0.38 ***
Tree Cupressaceae 2.6 0.2 36.9 10.3 0.28 **
Tree Olea 0.4 12.8 23.9 236.1 0.28 **
Tree Populus 0.3 2.0 15.4 36.9 0.21 ***

Weed Ambrosia/Iva 2.6 1.9 36.7 49.4 0.72 ***
Tree Ulmus 2.7 1.7 91.7 37.0 0.05 #

Weed Asteraceae 0.1 2.9 3.0 29.5 0.03 #

Weed Plantago 0.4 6.5 9.5 84.8 −0.02 #

Weed Urticaceae 0.2 0.4 5.9 9.4 −0.05 #

Weed Rumex 0.6 0.7 21.7 18.5 −0.08 #

Weed Cyperacease 0.1 1.3 2.2 49.4 −0.11 #

Overall 350.3 332.1 8863.3 7753.8 0.77 ***
#: p > 0.05, **: p < 0.01, and ***: p < 0.001.
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Figure 2. Time Series Plot and Scatter Plot of Daily Pollen Concentration Measured by Rotorod
sampler with manual counting vs. APS-300 in Marietta, Atlanta, 2020. Plot (A) displays a time series
plot of the peak pollen season with a Pearson correlation plot. Plot (B) displays a time series plot of
the off-peak pollen season with a Pearson correlation plot.

Figure 3A shows the pollen taxa comparison of weekly total pollen counts at the
Marietta site in the peak season. While the Rotorod with manual counting recorded the
highest daily pollen count, the highest weekly mean level estimated by APS-300 was
slightly higher (the week of 30 March 2020). The top five dominant taxa are individually
colored, while the other taxa are summed into one category of ‘others.’ Major contributors
at Marietta identified by APS-300 are similar to those identified by the Rotorod with manual
counting, but not identical. For example, both methods identified Quercus (oak) and Pinus
(pine) as the top contributors to pollen levels during this period. However, the APS-300
also identified Chenopodium, a large group of annual weedy plants, as a dominant pollen
taxon in the peak season, but manual counting did not. It is difficult to tell whether this is
a false positive or an improvement. However, some weed pollen taxa, such as pigweed
and sheep sorrel, are reported by Rotorod with manual counting but not included in the
APS-300 image library. We speculate that there might exist some misclassification between
Chenopodium and other weed pollen by the APS-300. In addition, some pollen taxa in the
image library, such as hazelnut and mugwort, were collected elsewhere, and are probably
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not sufficiently representative of these pollen particles in Atlanta. As a result, APS-300 was
not able to identify them in our study.

Figure 3. Dominant pollen taxa in the peak season of 2020. Plot (A)—comparison of dominant
pollen taxa measured by Rotorod sampler with manual counting and APS-300 at Marietta site. Plot
(B)—comparison of dominant taxa measured by APS-300 in Marietta, Southface, and Emory.

3.2. Internal Consistency of APS-300 Measurements

Figure 4 shows similar time trends of total pollen concentrations from the two co-located
APS-300 sensors at the Southface site. One unit recorded slightly higher overall pollen levels
and a 50% greater peak value in early April of 2021. The scatterplot in Figure 4 indicates
excellent overall agreement of the two sensors with a Pearson correlation coefficient of 0.99
(p-value < 0.001). Both units identified 12 tree pollen taxa and one weed pollen taxon. All
pollen taxa (Table 2) measured by the two sensors during the consistency test were strongly
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correlated with Pearson correlation coefficients greater than 0.93. The scatter plot and simple
linear regression in Figure 4 indicated a highly linear relationship between the two sets of
measurements in the entire data range.

Figure 4. Time series plot and scatter plot of daily pollen concentration measured from the consistency
test at the Southface site in 2021. *: multiplication.

Table 2. Pearson Correlation of Matched Pollen Taxa (Southface1 vs. Southface2).

Category Pollen Taxa r (p-Value)

Tree Betula 0.99 ***
Tree Alnus 0.99 ***
Tree Fraxinus 0.99 ***
Tree Ulmus 0.99 ***
Tree Carya 0.99 ***
Tree Populus 0.99 ***
Tree Pinus 0.98 ***
Tree Acer 0.97 ***
Tree Morus 0.97 ***
Tree Salix 0.95 ***
Tree Quercus 0.93 ***
Tree Cupressaceae 0.93 ***

Weed Plantago 0.99 ***
In the period of consistency test (5 March 2021–1 May 2021), there were no observations of Olea,
Chenopodium/Amaranthus, Urticaceae, and Poaceae. ***: p < 0.001.

3.3. Spatiotemporal Variation of Pollen Counts

To study the spatiotemporal variation of pollen levels in Atlanta, we analyzed the
APS-300 measurements at Marietta, Southface, and Emory in 2020. Across the three sites,
the average daily total pollen concentrations ranged from 281 grains/m3 at Marietta to
561 grains/m3 at Emory. In terms of peak pollen counts, the Marietta site reported the
highest level of over 8800 grains/m3 while, the Southface site (Southface 1) had the lowest
peak level of 5933 grains/m3. Figure 5A shows that, during the spring peak pollen season
(1 March–15 April), Marietta had the most concentrated peak pollen season and Emory had
the longest and most dissipated pollen season, with Southface between the two. Unlike
Marietta’s distinct peak, pollen levels at Emory and Southface fluctuated with multiple
peaks. During the fall peak pollen season (1 August–31 October), pollen levels at Marietta
were lower than Emory and Southface. The daily pollen levels measured at each site are all
significantly correlated, and Southface and Marietta have the lowest Pearson correlation
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coefficient of 0.53, probably because they are the furthest apart and have different vegetation
types (Figure 5C–E).

Figure 5. Time Series Plot and Scatter Plot of Daily Pollen Concentration Measured by APS-300 in
Marietta, Southface, and Emory in 2020. Plot (A) is a spring peak and off-peak pollen season time
series plot. Plot (B) is a fall peak and off-peak pollen season time series plot. Plot (C) is a scatter plot
between measurements at Marietta and Southface. Plot (D) is a scatter plot between measurements at
Marietta and Emory. Plot (E) is a scatter plot between measurements at Southface and Emory. The
peak pollen season was from late March to mid-April.

Marietta and Southface sites identified 23 different pollen taxa. On average, 98%,
96%, and 97% of total pollen grains were speciated at Marietta, Southface, and Emory,
respectively. Figure 3B shows the weekly dominant pollen taxa at these three sites. Overall,
all three sites identified similar dominant pollen taxa including Quercus (oak), Pinus (pine),
Betula (birch), Carya (hickory), and Chenopodium. At the weekly level, the dominant pollen
taxa varied. For example, during the week of 30 March, Pinus, Quercus, Betula, and
Chenopodium contributed the most to total pollen levels at Marietta and Southface, while
Carya, Betula, and Chenopodium were the dominant taxa at Emory.

Taking advantage of APS-300’s real-time sampling capabilities, we investigated the
diurnal variability of pollen levels at our study sites from 24 March to 31 March 2021,
which measured the highest pollen levels during our study period. To understand the
local meteorological drivers of hourly pollen concentration patterns during this peak week,
we extracted the surface level hourly meteorological fields at each site generated by the
High-Resolution Rapid Refresh model (HRRR) model [22]. The HRRR model is a numerical
atmospheric model that provides hourly weather forecasts at 3 km spatial resolution in the
U.S. [23]. The frequency of the meteorological parameters determined the aggregation of
real-time APS-300 measurements to the hourly level. We also averaged the hourly pollen
concentrations during this week to reduce day-to-day fluctuations due to weather condi-
tions. Figure 6 shows that all three sites followed a similar pattern: hourly pollen levels
were the lowest from early morning (4 a.m.) to noon, followed by a sharp increase from
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noon to approximately 2 p.m. where they remained relatively high until approximately
9 p.m., after which pollen levels began to decrease. We performed site-specific Pearson
correlation tests between various meteorological parameters with hourly pollen concen-
trations (Table A1). Overall, pollen level has a moderate and positive correlation with
temperature and boundary layer height, and a negative correlation with relative humidity.
The correlation with surface-level wind speed was significant at both Southface and Emory,
but was not at Marietta.

Figure 6. Real-Time Pollen Monitoring of Three Devices from 12 p.m. of 24 March to 12 p.m. of
31 March 2021.

4. Discussion

The motivation of this study was to evaluate the potential of the APS-300 in inves-
tigating how pollen levels and speciation vary in space and time at the urban scale. To
this end, we designed our study to focus on the accuracy and internal consistency of the
APS-300. We first compared APS-300 with a NAB certified Rotorod sampler to evaluate
their agreement of pollen time trend, analyzed the correlation of total and speciated pollen
levels, and compared the dominant pollen taxa of these two methods. In our study, the
APS-300 demonstrated similar abilities when compared with the Rotorod sampler with
manual counting. The correlation coefficient of the daily pollen concentrations measured
by the APS-300 and the Rotorod sampler with manual counting was as high as 0.85 in
the peak pollen season. The APS-300 was able to process and analyze pollen taxa soon
after an image of pollen grains on the sampling tape was captured, which allowed us to
analyze pollen trend, report pollen level, and identify up to 23 pollen taxa in near real-time.
Both the APS-300 and the Rotorod with manual counting identified Quercus (oak) and
Pinus (pine) as the dominant pollen taxa during the peak pollen season in Atlanta. The
concentrations of major tree pollen taxa measured by the APS-300 are strongly correlated
with those of the Rotorod sampler with human counting except Ulmus (Elm) (Table 1).
Rotorod collected mostly fall elm pollen; however, the APS-300 only captured some spring
elm pollen. The concentration of fall elm pollen captured by the APS-300 is much lower
than the manual counting results, which is the main reason for the insignificant correlation.
The weak correlation results of weed and grass pollen indicate that the APS-300 system
needs to strengthen its image library of these taxa to better train the pollen identification
algorithm. Several previous studies also compared automatic pollen monitors with a Hirst
type sampler, another NAB certified sampling method [14,19,24]. For example, Oteros
et al. evaluated a BAA500 automatic pollen sensor which also uses imaging recognition
technology. They found that, during the pollen season, the correlation coefficient of daily
total pollen count between their sensor and a Hirst type sampler was 0.98. The BAA500
automatically identified 16 pollen taxa, 9 of which had a correlation coefficient of over
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0.9 with the Hirst sampler measurements [19]. The BAA500 automatic pollen sensor has a
higher correlation compared with Hirst-type traps with manual counting; however, the
APS-300 is much smaller, cheaper, and easy to operate. In addition, the APS-300 has a
shorter delay time (<1 min) compared with the BAA500 (3 h); therefore, we could see
hourly pollen concentrations immediately.

The consistency test showed that daily total pollen concentrations measured by two
collocated APS-300 devices were highly correlated with a correlation coefficient of 0.98.
The simple linear regression analysis suggests that systematic differences between two
identical APS-300 sensors can exist but are likely small in relation to the average pollen
level (Figure 4). The automatic pollen counting and identification algorithm used by the
APS-300 provides particle recognition in size and range of most airborne particles, such as
pollen, molds, dust, pollutants, and various other elements that may be organic, naturally
occurring, or synthetic. The discrepancies shown in our consistency test could be due to
the uncertainties in weed and grass pollen identification, as well as other particle types.

The APS-300 measurements at three sites are significantly correlated, but the cor-
relation grew weaker with distance. This is expected, as weather conditions can help
explain the distance-dependent correlation of pollen levels among sampling sites, e.g.,
similar onset of the pollen season driven by temperature and similar total pollen counts
driven by horizontal mixing by wind. A closer examination of the temporal trends showed
more noticeable differences in terms of absolute levels, temporal patterns, and dominant
taxa. For example, the maximum daily pollen concentrations during Phase 1 ranged from
~6000 grains/m3 within the city perimeter (Emory and Southface) to ~8000 grains/m3 in
the suburb (Marietta). This could be due to different dominant pollen-emitting species
at these sites. The spatial contrast of pollen levels within a city has been reported in a
handful of studies before. For example, Weinberger observed that total tree pollen influx
ranged from 2942 grains/cm2 to 17,460 grains/cm2 across monitoring sites in New York
City [25]. A previous study also suggested that pollen concentration trajectories over an
entire pollen season driven by the local conditions were different among different areas
of the city [26]. Precipitation has a strong impact on pollen levels. We did not observe
any precipitation events during our peak pollen season, therefore were unable to assess
its correlation with pollen levels in our study. To test any hypothesis of the drivers of
the pollen spatial contrasts will require additional monitoring sites with varying weather
conditions and land cover types, which is beyond the scope of the current study. It is our
future research direction.

The differences in the temporal trends of pollen levels among our study sites are
more substantial. Figure 5A indicates that Marietta had the most concentrated and shortest
pollen season, while the other two sites had an earlier start date of the peak pollen season,
multiple peak days, and a longer pollen season. This might be due to the differences in
quantity of pollen-emitting taxa, land use patterns, and microclimate among these sites.
In general, our findings agree with a systematic review which reported that pollen season
duration was correlated with its start date, where locations with earlier start dates have
longer pollen seasons [13].

Compared with the current gold-standard pollen counting technology, the APS-300 has
a significant advantage of providing near real-time pollen concentrations. As we explored
the hourly variability of pollen levels in Atlanta, we observed a similar diurnal pattern
shared by all three sites during the peak pollen week, i.e., the lowest pollen levels appear
around noon, followed by a period of relatively high pollen levels until midnight. While
most previous studies addressed the relationship between pollen levels and meteorology
factors at the daily to monthly level, few have examined the hourly variation of pollen due
to the lack of high-frequency data [27]. For example, Hernández-Ceballos et al. assessed
the intra-diurnal variations in airborne oak pollen levels at two sampling stations 40 km
apart in Spain. The pollen grains were captured using Hirst-type volumetric spore traps at
the bi-hourly level followed by manual counting [28]. Thibaudon et al., aimed to detect the
origin of and the weather impact on ragweed pollen in France by collecting bi-hourly pollen
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grains with Hirst-type traps and manual counting under a microscope [11]. Our correlation
analysis suggests that pollen diurnal variability might be driven by temperature, relative
humidity, and boundary layer height at the hourly level. These findings are consistent
with previous evidence that the increasing temperature and decreasing relative humidity
enhance the proportion of dehisced anthers [29]. As far as we know, our study is the first
attempt to explore the association between hourly pollen concentration measurements
and weather conditions. We speculate that higher temperature and greater boundary
layer height are usually associated with stronger convection and vertical mixing, causing
larger pollen particles to resuspend and be transported [30]. A possible explanation of
the negative association between humidity and pollen concentration is that it has been
reported that fresh pollen grains can rupture at high humidity and during precipitation
events and change to sub-pollen particles [31] which are more challenging for the APS-300
to count and identify. The effect of wind is harder to explain. One possibility is that
the APS-300 is placed much higher above the ground at both Southface and Emory than
Marietta. The effect of wind transport might have a stronger impact on pollen levels at
these two sites [32]. However, meteorological factors alone are insufficient to fully address
the temporal variability of pollen concentrations. Future research that also considers pollen
production patterns is warranted.

5. Conclusions

Our ultimate goal is to develop a spatially resolved pollen model at the urban scale
using pollen measurements from ground monitors, land cover types, and high-resolution
meteorology. Such a task requires a denser pollen monitoring network. Our field evaluation
of the APS-300 sensor showed statistically significant and strong correlations between its
measurements of total and speciated tree pollen when compared with the current gold
standard. It also demonstrated strong internal consistency despite the slight systematic
differences. We also identified areas in need of future improvement, including the counting
and speciation of grass and weed pollen. Our spatial analysis indicated that pollen levels
and their temporal trends vary within the city of Atlanta. Therefore, a portable and
automatic pollen sensor such as the APS-300 can be a useful tool to better understand
the spatiotemporal variability of pollen at a finer spatial scale, which may be linked
to community-level disparities in allergic respiratory illnesses. Going forward, we will
continue exploring the relationship between pollen levels and various meteorological, land
cover, and land use parameters in order to build a comprehensive spatial pollen exposure
model which will support the research of pollen-related health effects.
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Appendix A

Table A1. Pearson correlation coefficients of hourly pollen counts and meteorology factors at each
field-testing site.

Temperature Relative Humidity Wind Speed Boundary Layer Height

Marietta 0.48 *** −0.44 *** 0.15 # 0.43 ***
Southface 0.39 *** −0.35 *** 0.16 * 0.48 ***

Emory 0.64 *** −0.53 *** 0.34 *** 0.59 ***
#: p > 0.05, *: p < 0.05, and ***: p < 0.001.

Figure A1. Colocation of two APS-300 sensors at the Southface Site for the internal consistency tests.
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