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A higher incidence of lower urinary tract symptoms (LUTS) among diabetic men is unexplained. Recently, prostate inflammation
and fibrosis have been implicated as major contributing factors to bladder outlet obstruction and LUTS. We characterized the
inflammatory cell infiltrate and collagen content of the anterior, dorsal, and ventral lobes of 18-week-old DBA2J.Ins2-Akita mice
(Akita) and age-matched control mice. We performed hematoxylin and eosin staining to score tissue injury and inflammation,
picrosirius red staining to quantitate collagen content, and immunostaining to identify monocytes/macrophages and infiltrating
fibrocytes. We observed significantly greater numbers of monocytes/macrophages and fibrocytes specifically in the ventral prostate
of the Akita mice and found that this was associated with significant greater collagen content specifically in the ventral prostate
of the Akita mice. These observations support the inference that diabetes elicits monocyte/macrophage infiltration and collagen
accumulation in the prostate and suggest that further study of Akitamicemay inform translational studies of diabetes in the genesis
prostatic inflammation, prostatic fibrosis, and LUTS.

1. Introduction

Lower urinary tract symptoms (LUTS) in aging men have
historically been ascribed to enlargement of the prostate
gland referred to as benign prostatic hyperplasia (BPH).
However, there is growing appreciation that the genesis of
LUTS is likely multifactorial and, in addition to prostate
enlargement, is likely to include age-related changes in
bladder function, autonomic dysregulation, and metabolic
influences [1]. Recently, prostate inflammation was identified
as very strongly associated with severity of symptoms and
prostatic fibrosis was associated both with irritative voiding
symptoms such as urinary frequency and urgency and with
diminished urine flow [2, 3].

Men diagnosed with symptomatic BPH have a higher
incidence of diabetes than the general population [4]. Pos-
tulated mechanisms for this association include increased
sympathetic tone, stimulation of prostate growth by insulin,
alterations in steroid hormone secretion, inflammation,

and oxidative stress. Given recent clinical studies implicating
prostate inflammation and fibrosis in the genesis of LUTS,
we examined the prostate of mouse model of type 1 diabetes
(DBA2J.Ins2-Akita) for evidence of inflammation and/or
fibrosis. This work was supported as a pilot study by the
NIH Animal Model of Diabetic Complication Consortium
(AMDCC).

2. Materials and Methods

2.1. Animals and Tissue Collection. Heterozygous
DBA2J.Ins2-Akita (Akita) female and male mice (The
Jackson Laboratory, strain number 007562, Bar Harbor,
ME) were obtained for breeding. All procedures in this
study were performed with 18-week-old heterozygous Akita
male mice and wild type controls (WT) as approved by the
Institutional Animal Care and Use Committee, University
of Wisconsin-Madison. The tip of the tail from each male
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Figure 1: Representative H&E stained sections of the AP, DLP, and VP of 18-weeks-old DBA2J (WT: 𝑛 = 4), DBA2J.Ins2-Aktia (diabetic:
𝑛 = 3), or DBA2J.Ins2-Akita mice with severe inflammation (diabetic: 𝑛 = 1).

adult mouse were collected and sent to Transnetyx, Inc. for
genotyping (Cordova, TN). At 18 weeks of age, each prostatic
lobe (AP, DLP, and VP) was identified as described earlier [5]
and harvested. Collected anterior prostate [6], dorsal lateral
prostate (DLP), and ventral prostate (VP) were rinsed in
DPBS and fixed in 10% formalin. Paraffin embedded tissues
were serially sectioned (5𝜇m). Three random areas from
each prostatic lobe from each animal were acquired for H&E
(Thermo Scientific, Waltham, MA, Anatech LTD, Battle
Creek, MI) staining (WT: 𝑛 = 4; diabetic: 𝑛 = 4).

2.2. Characterization of Inflammatory Cells. Thenumber and
type of inflammatory cells were characterized in the prostate
of Akita and WT mice. Three random areas from each
prostatic lobe from each animal were acquired (WT: 𝑛 = 4;
diabetic: 𝑛 = 4). Neutrophils were identified and quantitated
in H&E stained sections. Immunohistochemistry was used
to quantitate monocytes/macrophages, T lymphocytes, B
lymphocytes, and fibrocytes. Briefly, sections were blocked
for 4 hours in PBS containing 10% donkey serum and 1% BSA

(both from Sigma-Aldrich, St. Louis, Missouri) was followed
by primary antibodies-rat anti-F4/80 (1 : 50, eBioscience, San
Diego, CA), rabbit anti-CD3 (1 : 100, Dako, Carpinteria, CA)
and goat anti-CD20 (1 : 100, Santa Cruz, Santa Cruz, CA), and
rat anti-CD45 (1 : 100, Abcam, Cambridge, MA) and rabbit
anti-vimentin (1 : 100, Abcam, Cambridge, MA) overnight at
4 degrees. Secondary antibodies-donkey anti-rat Alexa 594,
donkey anti-rabbit Alexa 594, donkey anti-rat Alexa 488, and
donkey anti-goat Alexa 488 (1 : 100, Invitrogen, Grand Island,
NY) were incubated for one hour at room temperature.
Four𝜇g/mL of Hoechst 33258 (Sigma-Aldrich, St. Louis,
Missouri) was incubated for 10 minutes. For quantification of
each cell type, three random areas from each prostatic lobe
from each animal were acquired using Nikon eclipse Ti-U
microscope.

2.3. Collagen Quantification. Picrosirius red staining was
performed with serially sectioned tissues. Paraffin embedded
tissues were incubated in 0.1% sirius red solution for an hour
at room temperature.Three randomareas from each prostatic
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Figure 2: Number of inflammatory cells in the AP, DLP, andVP of 18-week-old DBA2J (WT, white circles), DBA2J.Ins2-Akita (diabetic, white
squares), or DBA2J.Ins2-Akita with severe inflammation (diabetic, black squares) by H&E staining and IHC presented as the mean number
of cells. (a) Neutrophils, (b) monocytes/macrophages, (c) T lymphocytes, and (d) B lymphocytes. ∗𝑃 value <0.05.

lobe from each animal were acquired (WT: 𝑛 = 4; diabetic:
𝑛 = 4) using a Spot-advanced camera on an Olympus BX51
microscope. Areas of positive staining were quantitated using
MacBiophotonics Image J.

2.4. Statistics. Comparisons within each prostatic lobe
between Akita and WT mice were performed by a two-
sample 𝑡-test. We employed ANOVA with multiple compar-
isons using Fisher’s protected least significant difference tests.
Prior to analysis, all values were rank-transformed in order
to better meet the assumptions of ANOVA. 𝑃 values less
than 0.05 were considered as significant. All analysis was
performed using SAS statistical software versions 9.1 and 9.2
(SAS Institute Inc., Cary, NC).

3. Results

3.1. Increased Monocytes/Macrophages in the VP and AP
of Akita Mice. Prostate lobes from 18-week-old Akita and
WT mice were examined for evidence of tissue injury

and inflammation by routine H&E staining and scoring
according to a previously published scoring system [7].
(see Figure 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/939053). We observed no
evidence of increased tissue damage, epithelial atypia or
atrophy, or reactive hyperplasia. Mild inflammation was
observed in all WT mice examined and three of four Akita
mice (Figures 1(a), 1(b), 1(d), 1(e), 1(g), and 1(h)). The
prostate from one Akita mouse exhibited severe inflam-
mation (Figures 1(c), 1(f), and 1(i)). In order to identify
any qualitative difference in the inflammatory infiltrate in
WT and Akita mice, we performed immunostaining for
different inflammatory cell subsets (Figure 2). For both WT
and Akita mice, the infiltrate was composed primarily of T
lymphocytes and monocytes/macrophages. This comparison
revealed no difference in the number of neutrophils, T
lymphocytes, or B lymphocytes between the WT and Akita
mice. However, the number of monocytes/macrophages was
significantly increased in the VP and AP of Akita mice as
compared to WT. When the one Akita mouse with severe
inflammation was excluded from the analysis, the number
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Figure 3: Representative section of the AP, DLP, and VP of 18-week-old DBA2J (WT; (a), (d), and (g)), DBA2J.Ins2-Akita (diabetic; (b), (e),
and (h)), or DBA2J.Ins2-Akita with severe inflammation (diabetic; (c), (f), and (i)) stained for collagen with picrosirius red. Quantification
results of collagen level in (a)∼(i) ((j), white circles = WT, white squares = Akita, and black squares = Akita with severe inflammation). ∗𝑃
value <0.05.
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Figure 4: Representative section of the VP of 18-week-old DBA2J (WT; (a)), DBA2J.Ins2-Akita (diabetic; (b), (d)), or DBA2J.Ins2-Akita with
severe inflammation (diabetic; (c), (e)) stained for CD45 and vimentin. Quantification results of fibrocyte infiltration in the AP, DLP (image
not shown), and VP ((f), white circles = WT, white squares = Akita, and black squares = Akita with severe inflammation). ∗𝑃 value <0.05.
Arrow denotes CD45+/vimentin+ fibrocytes.

of monocytes/macrophages in the VP was still significantly
increased.

3.2. Increased Collagen Deposition and Fibrocyte Infiltrate in
the VP of Akita Mice. We performed picrosirius red staining
to compare collagen content in the WT and Akita mice.
We observed significantly increased staining in the VP of
Akita mice, a difference that remained significant even when
we excluded the Akita mouse with severe inflammation
(Figure 3). Fibrocytes have recently been identified as playing
a key role in tissue fibrosis. These cells originate from bone-
marrow derived circulating monocytes and have an interme-
diate phenotype of fibroblasts and macrophages. Costaining
for CD45 and vimentin was performed to identify and
quantitate fibrocytes in the prostate lobes of WT and Akita
mice.The number of fibrocytes was significantly increased in
the VP of Akita mice as compared toWT controls (Figure 4).
The number of fibrocytes was still significantly increased
in the VP even when we excluded the animal with severe
inflammation.

4. Discussion

Our studies revealed increased collagen content in the
VP of Akita mice as compared to age-matched controls.

This conclusion is based on increased picrosirius red
staining. Picrosirius red staining is considered a reliable
indicator of collagen content and has been tightly correlated
with tissue hydroxyproline content by a colorimetric assay
[8] and HPLC (manuscript in preparation). Increased
picrosirius red staining can result from increased collagen
synthesis, decreased collagen degradation, or enhanced
collagen cross-linking [9]. These are all changes associated
with persistent wound healing—a feature of repeated
injury, chronic inflammation, and prolonged cytokine
release—and are cardinal aspects of fibrosis [10, 11]. The
specificity of fibrosis for the VP of the Akita mouse is
unexplained; however, it does echo a previous report of
thickened collagen fibrils in the VP of a type 1 diabetic rat
[12, 13]. Similarly, Cagnon et al. reported thickening of the
extracellular matrix and reduced cell height of glandular
epithelium in the VP of Streptozotocin-treated mice [14].
One of the things that confounds prostate research in
rodents is the lack of correlation between the lobes of the
rodent prostate and the zones of the human prostate as
the anatomic and gene expression profiles for the lobes
and zones are incongruent [15]. Work in various models
has shown changes both in the VP [12–14] and in the
DLP [16, 17]. These studies resonate with a larger body
of work reporting an association of tissue inflammation
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and fibrosis in multiple organ systems in diabetes
[6, 18–23].

It has been previously reported that tissue injury and
inflammation and/or senescence results in increased col-
lagen deposition [10, 16]. However, histologic examination
and scoring of tissue damage and inflammation revealed
no increase in tissue damage or generalized inflammatory
infiltrate in theVPofAkitamice as compared toWTcontrols.
However, we observed that monocyte/macrophage infiltra-
tion was significantly increased in the VP and AP of Akita
mice as compared to WT controls. Monocyte/macrophage
infiltration is a feature of cellular immunity that has been
noted in the glomeruli of Akitamice [24] and Streptozotocin-
induced diabetic mice [25] and speculated to be the source
of proinflammatory cytokines that promote glomeruloscle-
rosis [26]. Given these precedent findings, our observa-
tions might reflect a functional connection between mono-
cyte/macrophage infiltration and VP fibrosis.

Recent studies have identified fibrocytes as having a
primary role in collagen synthesis in tissue remodeling and
inflammation [27]. These cells are bone marrow derived cells
that take up residence in the tissue and exhibit costaining for
CD45 and vimentin. Our unpublished studies of bacterial-
induced prostate inflammation show robust numbers of
CD45+/vimentin+ cells that costain for prolyl-4-hydroxylase,
an enzyme catalyzing the formation of 4-hyroxyproline [11].
We found that CD45+/vimentin+ cells were significantly
increased in the VP of Akita mice and suggest a role for
fibrocytes in VP fibrosis.

The increased incidence of LUTS in diabetic men is as
yet unexplained. Postulated mechanisms include accelerated
rates of prostatic enlargement, bladder muscle dysfunction,
and neuropathic effects on bladder function [2, 28, 29]. Given
recent studies suggesting that fibrosis of the prostate produces
a change in prostatic compliance that impairs opening of the
bladder neck during voiding, our studies suggest that fibrosis
instigated by monocyte/macrophage infiltration may be one
mechanism by which diabetes contributes to development
of LUTS in men. The possible effect of prostate fibrosis on
opening of the bladder neck is uniquely important in humans
because the encapsulated prostate completely surrounds the
bladder neck and urethra. Since the prostate in mice is not
encapsulated and the arrangement of the prostate and bladder
neck is such that fibrosis would not be expected to impinge
on either the bladder neck or urethra, we are unable to
specifically evaluate the effect of the fibrosis we observe on
voiding function in this model. Even so, it is a valuable
model in which mechanistic studies may be performed
to understand how diabetes-induced inflammation induces
prostatic fibrosis.

5. Conclusions

These observations support the inference that diabetes elic-
its monocyte/macrophage/fibrocyte infiltration and collagen
accumulation in the ventral prostate and suggest that further
study of Akita mice may inform translational studies of

diabetes in the genesis of BPH, prostatic inflammation and
fibrosis, and LUTS.
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