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The cell wall plays a central role in protecting bacteria from some environ-
mental stresses, but not against all. In fact, in some cases, an elaborate cell
envelope may even render the cell more vulnerable. For example, it contains
molecules or complexes that bacteriophages recognize as the first step of host
invasion, such as proteins and sugars, or cell appendages such as pili or fla-
gella. In order to counteract phages, bacteria have evolved multiple escape
mechanisms, such as restriction-modification, abortive infection, CRISPR/
Cas systems or phage inhibitors. In this perspective review, we present the
hypothesis that bacteria may have additional means to escape phage attack.
Some bacteria are known to be able to shed their cell wall in response to
environmental stresses, yielding cells that transiently lack a cell wall. In this
wall-less state, the bacteria may be temporarily protected against phages,
since they lack the essential entities that are necessary for phage binding
and infection. Given that cell wall deficiency can be triggered by clinically
administered antibiotics, phage escape could be an unwanted consequence
that limits the use of phage therapy for treating stubborn infections.
1. Introduction
Bacteriophages, or (in short) phages, are viruses that infect bacteria. It has been esti-
mated that they outnumber bacteria in the biosphere by a factor of 10 and are
present in almost all natural environments [1,2]. As phages are non-motile micro-
organisms, it is presumed that the initial contact between a phage and a suitable
host occurs via random collisions as a result of free diffusion [3]. Phages recognize
their host species by interacting with specific receptors, especially sugars and pro-
teins, exposed on the bacterial cell surface. Here, we propose that the ability of
bacteria to shed their wall may be an underappreciated mechanism to evade
phage infection, as phages may no longer be able to recognize their host.

In this perspective review,wewill start with discussing the detailed structure of
the bacterial cell envelope and its specific components that enable phage attachment
to their hosts. Currently, all known mechanisms for this first step of host infection
involve bacterial surface-associated macromolecules. We then discuss the ability
of several bacteria to shed their cell wall under influence of stressors and the conse-
quences of a cell wall-deficient (CWD) lifestyle. Finally, wewill discuss how phage
infection may be evaded by shedding of the cell wall. We hypothesize that
phages will no longer be able to recognize their bacterial host and render such
wall-less cells immune to phage infection. Since cell wall-less states have been
reported to occur in pathogenic species [4,5], this evasion mechanism may be
highly relevant for the development of phage therapy treatments.
2. Phage–host attachment
Bacteriophages used to be classified according tomorphological types, whilemore
recently, sequence similarity and phylogenetic relationships have become the
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Figure 1. Tailed bacteriophages. The Caudovirales order consist of three families: (a) Myoviridae, with a contractile tail, (b) Podoviridae, which have no baseplate and
are short-tailed and (c) Siphoviridae with a long non-contractile tail. RBPs can be found on long- or short-tail fibres and sometimes even on the spike. Created with
BioRender.com.
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Figure 2. Bacterial cell wall. (a) The cell wall of monoderm bacteria consists of a thick peptidoglycan layer intertwined with teichoic acid, which can both be
recognized by RBPs of phages. (b) Diderm bacteria have a thinner peptidoglycan layer and an additional outer membrane with several components that
phages can recognize for attachment. Created with BioRender.com.
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primary method to distinguish taxa [6,7]. The majority of
phages contain double-stranded DNA in their capsid heads,
although single-stranded DNA, single-stranded RNA and
even double-stranded RNA are also common in nature [8–10].
Approximately 96% of all known phages are tailed phages
(figure 1) belonging to the order Caudovirales, which can vary
tremendously in size, structure and DNA content. This order
can be sub-divided into three families, based on the contractility
of the tail, whereby phages with non-contractile tails can be
divided into those with short and long tails [7,11]. The best-
studied organism in this order is the bacteriophage T4. This
Myoviridae iswell studied by cryo-EM, anddetailed information
on the structure and infection process of its host Escherichia coli
are available [12–14].

Although phages come in various shapes and sizes, one
common feature is the need to identify and attach to a suitable
host. The receptor-binding proteins (RBPs), often located at the
tip of the phage’s tail, recognize surface-associated molecules
on a host bacterium. The nature of the bacterial molecules recog-
nized by phages differs between various taxonomic groups and
is commonly highly specific for the host cell wall or cell envelope
composition.Amajor component of thebacterial cellwall is pep-
tidoglycan, which is often associated with phage adsorption in
monoderms (formerly calledGram-positive bacteria) [15]. Pepti-
doglycan strands are composed of chains of monomers
consisting of N-acetylglucosamine and N-acetylmuramic acid,
which are covalently cross-linked via peptide stems to create a
gigantic molecule, called the sacculus [16]. Besides peptidogly-
can, other macromolecules can be found in the cell wall of
monoderm bacteria (figure 2a), such as teichoic acids, which
are also known to be involved in phage adsorption [17]. In
fact, over 96% of themolecules identified onmonoderm bacteria
so far are associated with either residues or structures of teichoic
acid and peptidoglycan [18]. Diderm (Gram-negative) bacteria
on the other hand display a large variety of molecules, as seen
in figure 2b [12]. Molecules that can be recognized by phages
are for instance, enzymes, transporter proteins, substrate recep-
tors and many more structures located on the outer membrane
[19]. Multiple studies have used the model organism E. coli
and more recently also Salmonella to identify new molecules

BioRender.com
BioRender.com


royalsocietypublishing.org/journal/rsob
Open

Biol.11:210199

3
that are necessary for phage infection in diderm bacteria, such as
the important proteins OmpA, OmpC, OmpF and LamB, but
also many lipopolysaccharides [20–24].

In addition to receptors molecules, proteins and lipopoly-
saccharides, some phages can also attach to structures that
are not located directly on the cell wall or outer membrane
of bacteria, such as flagella, pili and capsules. The adhesion
of phages to a flagellum often starts as a process that initially
is reversible. However, the rotating movement of the flagel-
lum guides the phages towards the cell body, where it then
tightly attaches to surface molecules located near the base
of the flagellum [18,25]. In addition, some phages can ‘hitch-
hike’ on non-host bacterial flagella to increase their chances of
meeting a host species. This has been shown for the bacterio-
phage PHH01 that can attach to the flagella of the carrier
bacteria Bacillus cereus to help encounter its host E. coli [26].
Another recent example is the transport of E. coli lambda
phage by Capnocytophaga gingivalis swarm [27]. Phages can
also attach to extracellular structures such as pili or fimbriae,
which are proteins that help bacteria to attach to each other or
surfaces. For phages ϕCb13 and ϕCbK, it has been shown that
the initial attachment to pili is necessary for successful attach-
ment to Caulobacter crescentus, as mutant bacteria without pili
could not be infected [25]. These studies demonstrate that
loosing structures like pili or flagella is an effective defence
mechanism from bacteria to evade phage attachment. It
further suggests that the loss of the entire cell wall may be
an additional effective mechanism for phage evasion.
3. Bacterial defence mechanisms against
phages

To prevent phage infection, bacteria have developed multiple
and impressive anti-phage strategies. Restriction-modification
systems act as the prokaryotic innate immune system, consisting
of a restriction nuclease and methyltransferase. Bacteria prevent
self-cleavage bymethylation of their ownDNA,while incoming
phage DNA is generally not methylated [28]. A more costly
defence system is called the abortive infection process, where
the infected cell initiates programmed cell death before the
phage can replicate, therebyprotectingother cells in the bacterial
colony [29]. The toxin-antitoxin system can be seen as one of the
components of abortive infectionandconsists of a toxin that inhi-
bits bacterial cell growth upon phage infection and an antitoxin,
which protects the cell duringnormal conditions [30]. Thephage
growth limitation (Pgl) system is often described as an inverted
restriction-modification system or abortive infection-like mech-
anism, where the primary infected bacteria do not survive the
infection, but mark the progeny phage DNA by methylation
[31,32]. If such modified phages subsequently infect neighbour-
ing Pgl+ bacteria, the phage is restricted. Although Pgl systems
are only found in Actinomycetes, a comparable mechanism,
called the BacteRiophage EXclusion (BREX) system was discov-
ered in Bacillus cereus [33]. This system possesses two genes that
are homologous to the Pgl system. However, unlike Pgl, the
BREX system prevents initial phage replication by methylation
[32]. In addition to protein-mediated anti-phage defences,
some streptomyces species can use a chemical defence mechan-
ism. Here, small molecules are produced that serve as phage
inhibitors [34]. The only known adaptive immune system in pro-
karyotes is the CRISPR/Cas defencemechanism,which protects
against phages and other foreign genetic elements, like plasmids
and transposons [35]. Recently, a new counter-defence mechan-
ism against CRISPR/Cas has been uncovered, where phage T4
restores the broken genomic material, thereby making progeny
phages resistant against future CRISPR attacks [36]. For those
interested in more detailed information on anti-phage systems
and the phage-bacteria arms race, we refer to some excellent
recent reviews [31,35,37,38].

Bearing anti-phage systems is associated with a trade-off
between fitness costs and the benefit of resisting phages [39].
As bacteria typically only carry a small subset of the available
defence mechanisms, the ‘pan-immune system’ was recently
proposed [37]. Here, the authors suggest that although a
single bacterial strain cannot carry all existing defence mechan-
isms, it can use horizontal gene transfer to access defence
mechanisms encoded by closely related species.

However, the bacterial cell wall remains the first barrier a
phage needs to overcome during host infection. The prime
defence of bacteria is therefore directed at the initial prevention
of phage attachment to the bacterial surface-associated macro-
molecules. When bacteria are living in a biofilm, this mode of
growth already acts as the first layer of protection. Amyloid
fibre networks inhibit phage transport into the biofilm and
also coat the surface of individual cells to prevent phage attach-
ment [40]. Another defence strategy used by the diderm
bacterium Vibrio cholerae is the production of outer membrane
vesicles with an almost identical cell surface as the bacteria
itself, to serve as natural decoys against phages [41].

Other common mechanisms to prevent phage attachment
are shielding surface-associated molecules by glycosylation,
masking them with polysaccharide capsules or mutating
the molecules on the bacterial cell surface [42–44]. If phages
cannot recognize and attach to the molecules on the cell sur-
face of bacteria, the host will remain uninfected. However, the
production of a capsule or adaptation of receptor molecules
can be metabolically expensive [45]. Therefore, a possible
energetically more favourable way to escape phage binding
would be by shedding the cell wall altogether. In this case,
not only the molecules located on the bacterial cell surface
will vanish, but also structures like the capsule, flagella and
pili are no longer present.
4. Cell wall deficiency as a possible
mechanism to escape phage attack

Some filamentous actinobacteria have the ability to shed their
cell wall under influences of hyperosmotic stress or limited
oxygen availability, which may be common in soil ecosystems
[46]. Under these conditions, CWD cells are extruded from
the vegetative mycelia. These cells are unable to proliferate
without their wall and will ultimately revert to the mycelial
mode of growth [47]. However, if these CWD cells acquire
mutations due to prolonged exposure to hyperosmotic
stress conditions, L-forms are formed that can proliferate
without a cell wall [48,49]. To start a CWD lifestyle, cells
first have to escape the sacculus, followed by coping with
the increased oxidative stresses in the environment [47].
Thereafter, an upregulation of membrane synthesis is
required, resulting in an enlarged surface area to volume
ratio [50]. Not only filamentous actinobacteria, but many
other bacteria, including both monoderm and diderm
species, are able to switch to a CWD state. CWD cells of
different species have been found in the urine of patients
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Figure 3. Cell wall deficiency as an escape mechanism for phage infection. Walled bacteria are susceptible to phage infection, since phages can recognize molecules
located on the cell surface or bind to structures such as pili and flagella. Several bacteria can shed their wall and form wall-deficient cells. We hypothesize that
phages can no longer recognize its host in this wall-deficient state, which therefore stays uninfected. Created with BioRender.com.
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suffering from recurrent urinary tract infection [51].
Additionally, such CWD cells have been detected in the bio-
films of individuals with chronic and aggressive periodontitis
[5]. These studies support the assumption that CWD bacteria
could hide inside their host for an extended amount of time,
as they are insensitive to wall-targeting antibiotics and can
possibly also evade elements of the host’s immune system.
In fact, exposure to cell wall-targeting antibiotics could
even promote the formation of CWD cells. This response is
best studied for β-lactam antibiotics like penicillin, which tar-
gets the catalytic enzymes involved in cell wall synthesis,
resulting in lysis of the bacterial cell wall of for instance
E. coli [52]. Prolonged exposure to these antibiotics can be
used to induce cell wall deficiency in an osmotically stable
environment [52]. While cells without their wall are inher-
ently fragile, wall deficiency probably provides bacteria
with some crucial advantages over walled bacteria. In their
natural environment, bacteria are challenged by various stres-
ses, such as changing environmental conditions, competing
organisms and the possibility of phage attack. The formation
of CWD cells has been observed as a response to escape
various environmental stresses [47]. For example in Mycobac-
terium bovis, where L-forms were isolated after nutrient
starvation and cryogenic stress treatments [53] or in E. coli,
which could survive lethal treatments like autoclaving and
boiling by shedding their cell wall [54]. This indicates that
cell wall deficiency could be a temporary coping strategy to
protect the bacteria during unfavourable environmental
conditions, like the possibility of phage infection.

As the vast majority of molecules phages can attach to,
are located in or associated with the cell wall, transient loss
of the wall could render bacteria immune for phage binding
and infection (figure 3). In monoderm CWD cells, the shed-
ding of the wall would result in the loss of almost all
known molecules a phage can recognize, as these are
almost invariably associated with peptidoglycan and teichoic
acids in the cell wall. The formation of diderm CWD cells is
less well understood. For example, it remains debatable
whether diderm bacteria that can form CWD cells retain
their outer membrane, which contains the majority of the
known molecules that phages recognize. Literature of CWD
diderms with and without their outer membrane have been
reported, and even thin-section electron microscopy cannot
clearly distinguish between a single membrane and two
membranes if the periplasm is pressed closely together
[55,56]. On the other hand, more recent papers have shown
that a rigid outer membrane is essential for the formation
and survival of wall-deficient cells in E. coli [57,58]. Here,
the outer membrane proteins Lpp, OmpA and Pal are necess-
ary for this rigidity. These and many more outer membrane
proteins could also serve as molecules for phage attachment
and, perhaps in this manner, serve as a sink for phages. In
this way, such CWD cells could help to protect the other
cells in the colony similar to the previously described decoy
outer membrane vesicles of V. cholera [41]. Additionally,
when bacteria shift to a CWD lifestyle, small fragments of
the original cell wall probably remain in close proximity of
the newly formed CWD cells for some time. It may be that
these small cell wall particles can also serve as a decoy for
phages, just like outer membrane vesicles [41]. Building
upon the theory that cell wall deficiency could be an escape
mechanism for phage attack, the holin-endolysin system
might also play an important role. Lytic phages use endoly-
sins to degrade the peptidoglycan layer from inside a
bacterium, which have a similar outcome as penicillin treat-
ment. We know that penicillin is often used to induce cell
wall deficiency, so possibly the holin-endolysin enzymes
could be a cue for other nearby bacteria to shed their cell
wall and therefore be protected from the released phages.

Wall-deficient cells of actinomycetes that revert back to fila-
mentous growth often show a wide range of phenotypically
different colonies, which can be explained by gross genetic
changes [49,59]. Such mutations can sometimes lead to the
evolution of beneficial traits, such as phage-resistance [60].
Many phages can infect members of the bacterial Actinobac-
teria phylum and for most bacteria, even multiple phages are
known [61]. There is rich literature on phages that can infect
Actinobacteria but, to our knowledge, no phage is currently

http://BioRender.com


royalsocietypublishing.org/journal/rsob
Open

Biol.11:210199

5
known to infect Kitasatospora viridifaciens, which easily makes
CWD cells. In fact, one of the features by which Kitasatospora
species are classified in their unique genus is their resistance
to the most common Streptomyces phages [62,63]. Perhaps K.
viridifaciens has accumulated a specific set of mutations
during many switches of CWD cells to the mycelial mode of
growth in nature, resulting in broad resistance against most
common Streptomyces phages. Nevertheless, this resistance to
phages can also be explained by our hypothesis that the for-
mation of wall-deficient cells is an escape mechanism by
itself, although both possibilities are not mutually exclusive.
On the other hand, switching to a wall-less state may not
only be beneficial for the bacteria, but also for the bacterio-
phage. A recent study demonstrated that T4-like phages
could be adsorbed by E. coli L-forms, which however did not
result in lysis of these CWD bacteria [64]. These results imply
that cell wall deficiency could not only be an escape mechan-
ism for the bacterial host, but the phage may also profit from
this situation, as they could switch to a pseudolysogenic life-
style within CWD cells. Taken together, these examples
demonstrate the advantages of switching to a CWD lifestyle
during the possibility of phage attack.
5. Concluding remarks and outlook
Our knowledge about the biology of bacteriophages and their
bacterial host have increased significantly over the last few
decades. However, the understanding of CWD cells and
their ecological role in association with phages is largely
unexplored territory. The hypothesis that cell wall deficiency
could be a new and underexplored mechanism for phage
evasion raises several interesting research options. The most
interesting one would be to investigate if phages indeed
cannot recognize their usual host and whether this is due
to the absence of molecules in the cell wall. On the other
hand, if phages are still able to recognize their host without
a cell wall, to which molecule(s) do they attach and can
they eject their genome?
Perhaps CWD cells are currently one step ahead in the
ongoing evolutionary arms race between phages and their
host. If we assume this to be true, would there already be a
sign of coevolution between the phage’s RPBs and the
CWD surface-associated molecules? Most research about
CWD bacteria, such as mycoplasma, protoplasts and L-
forms, and their interaction with phages, date from the pre-
molecular era [65–67]. It would be interesting to explore
their interaction with more modern technologies, such as
cryo-EM, next-generation sequencing or genome editing.

Apart from exploring possible phage–host interactions
and defence mechanisms in CWD bacteria, improving our
understanding on bacterial and phage biology may provide
biotechnological advances in, for example, phage therapy.
In this case, specific phages are used as an alternative for anti-
biotics to treat bacterial infections [68]. Phage therapy
therefore seems like a suitable strategy to treat recurrent infec-
tions and chronic diseases caused by CWD bacteria, as they
are insensitive to wall-targeting antibiotics and phages can
selectively kill pathogenic bacteria without harming the
host or its microbiome. However, the use of bacteriophages
for treating stubborn infection might be restricted if phages
do not recognize wall-deficient pathogenic bacteria. In
addition, clinically administered antibiotics can trigger the
formation of CWD cells, which could be an unwanted conse-
quence that limits the use of bacteriophage treatment
afterwards. If phages are unable to recognize the CWD bac-
teria, a mixture of different phages should be considered
for phage therapy or the genomes of bacteriophages could
be genetically modified [69,70]. Further studies should con-
tinue to contribute valuable insights on phage infections of
CWD cells and phage therapy.
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