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We present a stochastic transmission chain simulation model for Ebola viral disease (EVD) in West Africa, with the salutary
result that the virus may be more controllable than previously suspected. The ongoing tactics to detect cases as rapidly as possible
and isolate individuals as safely as practicable is essential to saving lives in the current outbreaks in Guinea, Liberia, and Sierra
Leone. Equally important are educational campaigns that reduce contact rates between susceptible and infectious individuals in
the community once an outbreak occurs. However, due to the relatively low 𝑅

0
of Ebola (around 1.5 to 2.5 next generation cases are

produced per current generation case in näıve populations), rapid isolation of infectious individuals proves to be highly efficacious
in containing outbreaks in new areas, while vaccination programs, even with low efficacy vaccines, can be decisive in curbing future
outbreaks in areas where the Ebola virus is maintained in reservoir populations.

1. Introduction

Beginning with a hypothesized natural reservoir-to-human
spillover of the Zaire ebolavirus (EBOV) in Guinea in Febru-
ary 2014 [1, 2], by mid-November this outbreak had grown to
more 15,000 cases, which is at least thirty times larger than
the largest Ebola virus disease (EVD) outbreak in recorded
history [3]. Though small by pandemic standards, mortality
rates around 30–90% [4, 5] make EBOV and allied filovirus
of the same family some of the most feared pathogens in
the world. Further, beside the social human cost, failure
to control epidemics has catastrophic consequences for the
economies of countries where major outbreaks occur [6] and
substantial negative impacts on global travel and trade as well
[7].

Current efforts to control the West African outbreak
include, among other international agencies, deployment of
WHO personnel and US Army units to help detect, isolate,
and treat infectious individuals. The outbreak itself is much
more complex than suggested by the models we build to
predict incidence rates over time and appears to be governed
by different frequency parameters in different regions ofWest
Africa. For example, a differential equation model, fitted to
incidence data for the current EVD outbreaks inWest Africa,
estimated 𝑅

0
(the number of cases produced by each case at

the start of the epidemic) to be 1.52, 2.42, and 1.65, respec-
tively, in Guinea, Sierra Leone, and Liberia [8]. A related
approach obtained an aggregated estimate of 𝑅

0
= 1.78 across

all of West Africa [9, 10]. These estimates, while useful, can
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be quite variable [11, 12]. Further, they do not inform us, for
example, about the relative importance of early case detection
versus effective isolation inmanaging the current outbreak. In
addition, they also neglect to include structures that can easily
be incorporated to provide assessments of the effectiveness of
vaccination programs, presumably because no vaccines have
yet been approved by recognized authorities.

In the modeling study presented here, our focus is
threefold: (1) to demonstrate the range of variability that can
be expected in terms of fadeouts (epidemic fails tomaterialize
from a few initial cases: see [13, 14] for more details) and out-
break sizes, as EVD may spread from one region to another;
(2) to provide an indication of the sensitivity of outbreak sizes
and length of epidemics to changes in contact frequencies
among susceptible and infected individuals, case detection
rates, and isolation rates during the course of the epidemic;
and (3) to evaluate the importance of developing a vaccine
[15] for future control of EVD in terms of vaccine efficacy
levels needed for a vaccination program to be effective.

2. Model

Here we build a Markov transmission chain model [16] that
allows us to investigate the three focal issues mentioned
above. To achieve this, our model, as outlined in Figure 1,
distinguishes between infected and infectious individuals,
as well as between infections arising in the community,
from isolated individuals or to and from healthcare workers.
Further, as depicted in Figure 1, it incorporates functions
characterizing population and public health responses to the
epidemic, including community responses, healthcare case
detection, patient isolation, and vaccine interventions. We
relegate themathematical details of ourmodel to supplemen-
tary online information (SOI) and we refer to a set of baseline
parameter values that are provided inTable S1 (SOI). A typical
run of our model produces either a fadeout or an outbreak
(as discussed in Figure 1) in which the number of cases grows
each week during the initial stages of the epidemic.

Simulations of our model allow us to estimate both
fadeout rates [13, 14], which are associated with emerging epi-
demics in new regions (i.e., naı̈ve population), and the range
of epidemic sizes that we can expect in future outbreaks.They
also allow us to address our focal issues of inherent variability
in the size of epidemics, assessment of the sensitivity of out-
break sizes and length of epidemics to selected processes, and
an evaluation of possible vaccine efficacy [15] on future out-
breaks.

We note that since estimates of 𝑅
0
for outbreaks in

different countries have ranged between 1.5 and 2.5 [8], it
makes no sense to estimate model parameters from the data
for one country and then apply the model to predict the
course of an outbreak in another country. Additionally, the
stochastic nature of outbreaks implies, as we demonstrate
in our baseline simulation results below, that the same
model parameters produce events that may either fadeout
or breakout, where, in the latter case, the outbreak sizes
may differ by nearly two orders of magnitude. Finally, even
within country, as our data (Figure 2) and the data of others

show (as discussed below), sufficient spatial structure exists
so that a model not accounting for this spatial structure
(e.g., rural areas versus towns and cities) cannot accurately
forecast the course of any within country epidemic.Thus, the
primary value of our model is to investigate, in the context
of an ensemble of simulated events, the potential impacts of
healthcare responses such as reductions in contact rates of
community members with infected individuals or the effi-
cacy of vaccination programs, should a suitable vaccine be
released.

3. Incidence Data

In Figure 2, we illustrate the average weekly incidence over 80
suchmodel-simulated outbreaks.We also present data on the
incidence rates collected from 6 different locations in Sierra
Leone between the periodMay 23, 2014, and July 14, 2014 (see
SOI Methods and daily numbers plotted in Figure S3.).

The question arises whether any of these incidence data
appear to be a self-contained local outbreak, in which a single
case, transmitted from “outside-to-inside” can be regarded as
the index case. In Figure 2, we see that Villages 1–3 could
represent small local outbreaks, while Village 4 and Chief-
doms 1 and 2 have incidence patterns that would correspond
to an earlier outbreak that could be fading (Village 4), an
early outbreak that could be in its midstages (Chiefdom 1), or
part of a bigger regional outbreak with infected individuals
moving in and out of the village at a quite variable rate
(Chiefdom 2). In reality, the epidemics in any one of these
local areas is likely to be part of a greater epidemic that has
considerable spatial structure. Inherent in this structure are
heterogeneities in both transmission rates and susceptibility
levels among individuals who are stochastically moving in
and out of a collection of villages and small or larger towns
that constitute a more self-contained region. Similar patterns
have been found in Liberia [17], where, for example, the
983 cases in the Montserrado district roughly follow its own
outbreak pattern from week 22 to 37 (the week starting Sept
8, 2014), while the 707 cases in Lofa during the same period
indicate that Lofa must be a small part of a larger regional
outbreak.

The spatial complexity indicated by our Sierra Leone data
(Figure 2) and by comparable Liberian data [17] suggests
that models assuming within-country spatial homogeneity
are likely inadequate for making reliable predications on the
course of the current outbreaks in Sierra Leone, Liberia,
and Guinea. Future elaborations of our model to incorporate
spatial structure require information on the rate at which
individuals move among different regions [7, 18]. Given the
lack ofmodels with any spatial structure, ourmodel currently
provides the best available tool for obtaining insights into the
importance of different tactics for managing EVD during the
current outbreak, preventing off-shot EVDoutbreaks in other
countries, or from developing strategies for preventing future
EVD outbreaks in the countries where Ebola virus exists in
reservoir populations.

4. Baseline Simulation Results

Any outbreak is a single realization of an underlying stochas-
tic process that exhibits considerable variability among
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Figure 1: Our model is a Markov chain branching process in which an individual in state 𝑈Exp (Exp: exposed/infected but not yet infectious
state) can be generated from an individual in state UInf (Inf: infectious state) with probability 0 < 𝜆min < 𝜆(𝑡) < 𝜆max < 1, which is assumed
to decrease with time as individuals in the community become more cautious about making casual contact with individuals that have Ebola
virus-like symptoms (see SOI Methods for functional forms). Setting the local time of infection of this individual to 𝑠 = 0, this individual
becomes infectious at 𝑠 = 𝑠

1
, which we assume to be constant, but can be treated as a random variable with a finite range distribution centered

on 𝑠
1
(e.g., a beta distribution). While infectious on the interval [𝑠

1
, 𝑠
2
], this individual may contact and infect other individuals, say one at

time 𝑠∗—provided this individual is not immune (recovered) or has not been vaccinated with probability V(𝑡) increasing over time (see SOI).
We assume the infected individuals UInf either die or recover and are immune at 𝑠

2
units of time after being infected (this can also be made

a random variable if desired). Here we illustrate several (ignoring Exp or Inf subscript) infected individuals:𝑈
1
the index case, 𝑈

2
the first of

the secondary cases, and 𝑈
𝑖
, an arbitrary general case. Over global time, 𝑡, we assume that it becomes increasingly likely—with probability

0 < 𝜏(𝑠, 𝑡) < 1 (see Figure S1 in Supplementary Material available online at http://dx.doi.org/10.1155/2015/736507)—that any individual 𝑈
𝑖

is isolated from the community while in its Inf state, and it is then able to transmit only to healthcare workers and does so to an arbitrary
healthcare worker𝐻

𝑗
. The dependence of this probability on 𝑠, as well as 𝑡, allows us to consider case detection efficiencies. Additional model

assumptions include the following: isolated patients can only transmit to healthcare workers at a rate given by 𝜆min, and infected healthcare
workers are isolated immediately on infection.

repeated realizations of the same exact process. To demon-
strate this variability, we repeated 20 simulations of the
model, using a set of baseline parameter values (Table S1)
obtained from a combination of estimates in the literature
and tuning the results of our simulations to include the
current epidemic as a possible realization of our model.
From the results of these 20 simulations (Table 1), we see
that the process failed to break out 20% (4 simulations) of
the time: these are the “fadeout” rates that occur even when
𝑅
0
> 1 [13, 14]. The number of total cases throughout the

course of the simulated epidemic exceeded 1,000 in half of the
remaining runs (8 simulations) but reached a cumulative total
of less than 1,000 in the other half. The largest and smallest
simulations yielded total cases differing by a factor of nearly

30 (3627/128 = 28.3). The direct calculations of the mean
of the offspring distributions (distribution of the number of
new cases produced by each case) of those individuals dying
or recovering in the first 50 days provide an estimate of 𝑅

0
.

We see in Table 1 that estimates of 𝑅
0
are rather variable

because of small population sizes and the demographic
stochastic effects arising from the fact that transmission is a
Bernoulli variable [19] (cf. Figure 1). For example, though we
obtained much larger outbreaks with a slight modification of
parameters, the largest of the twenty simulated outbreaks in
Table 1 is 3,627 cases (Run 17), its initial offspring distribution
was calculated from 26 cases, and it had a mean value
of 𝑅
0
= 2.48. By contrast, another realization of the same

epidemic process (Run 19, Table 1) produced a total of 454
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Figure 2: (a) A bar plot of the average weekly incidence rates during outbreaks (i.e., given that immediate fadeout did not occur) over 12
weeks, starting with an index case at the beginning of week 1, as generated from 100 runs of our transmission model, using the baseline
parameter set in Table S1 (see SOI for details). (b) Plots of weekly incidence rates in 6 local areas (see Figure S2 for daily rates) that have been
shifted to allow us to visually compare the shapes of these bar plots with model output.

cases and its initial offspring distribution was calculated from
only 9 cases and had amean value of𝑅

0
= 1.76 (Table 1). Using

Althaus’s method [8] to estimate 𝑅
0
from the incidence data

produced by these two simulations, we obtained 𝑅
0
= 3.03

(cf. Table 1 Run 17, 𝑅
0
= 2.48) and 𝑅

0
= 2.21 (cf. Table 1, Run

19, 𝑅
0
= 1.76). Since both runs are realizations of the same

stochastic process, these results support the reservations of
some researchers concerning the utility of 𝑅

0
as an index of

epidemic intensity [20, 21], at least if it is estimated during the
early stages of any outbreak.

Our results inTable 1 indicate that, as simulated outbreaks
proceed, the value of 𝑅

0
(which we calculate directly from

the offspring distributions: it is just the means of these
distributions) decreases over consecutive intervals of time
and ultimately falls below 1.0 as the epidemic burns out
(either due to a decreases in contact rates or a decrease in the
probability of transmission-per-contact due to interventions
or changes in the behavior of individuals). This is clearly
depicted in Table 1, where, across the 20 runs, the values of
𝑅
0
are relatively consistent across the larger epidemics in the

sampling periods 51–100 days (𝑅
0
≈ 1.5–1.7), 101–151 days

(𝑅
0
≈ 0.9), and 151–200 days (𝑅

0
≈ 0.5). Note that implicit in

our model is the assumption that the proportion of infected
individuals in the total population remains negligibly small
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Table 1: Summary of results from 20 simulations of model using the baseline data (Table S1).

Run number Cases Length
(days)

𝑅
0
(𝑁)∗
1–50

𝑅
0

51–100
𝑅
0

101–150
𝑅
0

151–200
𝑅
0

HCW Total 𝑅
0

17 3627 235 2.48 (26) 1.71 0.93 0.51 0.37 1
3 2949 220 2.54 (25) 1.68 0.91 0.54 0.37 1
6 2236 229 2.41 (18) 1.64 0.92 0.53 0.34 1
8 1975 201 2.21 (19) 1.63 0.93 0.49 0.36 1
16 1658 240 2.33 (18) 1.62 0.87 0.51 0.46 1
9 1598 212 2.00 (20) 1.63 0.89 0.51 0.42 1
12 1456 232 2.55 (13) 1.59 0.91 0.54 0.42 1
11 1018 222 3.17 (7) 1.57 0.89 0.61 0.38 1
Mean ≥1000 2065 224 2.46 1.63 0.91 0.53 0.39 1.00
4 790 222 2.11 (11) 1.55 0.87 0.51 0.32 1
15 742 214 2.33 (7) 1.6 0.97 0.52 0.375 1
10 682 200 2.33 (5) 1.74 0.86 0.45 0.37 1
18 501 213 1.75 (5) 1.61 0.87 0.52 0.43 1
19 454 198 1.76 (9) 1.47 0.91 0.40 0.39 1
1 273 203 1.75 (8) 1.39 0.91 0.50 0.40 1
5 235 224 1.50 (4) 1.71 0.88 0.60 0.46 1
0 128 177 1.67 (6) 1.31 0.82 0.44 0.20 0.99
Mean <1000 476 206 1.90 1.55 0.89 0.49 0.37 1.00

Index cases that fail to cause outbreaks
2, 7, 13, 14 1-2 16–28 NA NA NA NA NA NA
∗
𝑁 is the number of individuals in the offspring distribution use to calculate 𝑅0. Over subsequent intervals that are 50 units of time apart, the numbers of

individuals in the offspring distribution are much larger when the number of cases exceeds 1000 (a couple to several hundreds) and hence estimates for these
simulations are less variable across runs.

throughout the epidemic (i.e., less than 1%). Surprisingly,
the value of 𝑅

0
as whole for each simulated outbreak is 1.00

when rounded to two decimal places, except for the smallest
outbreak in Table 1 where it is 0.99. This level of consistency
from a stochastic process was not anticipated by the authors,
particularly given the variability in the initial estimates of 𝑅

0

from the twenty different realizations recorded in Table 1 of
repeated realizations of the same Markov-chain pathogen-
transmission process. Also, the distribution of lengths of
epidemics is more consistent than the distribution of the total
cases recorded in Table 1, ranging between only 177–240 days,
despite a near 30-fold difference in the size of the outbreaks.
This result holds because the length of the outbreak is strongly
affected by the time course of the functions in our model
that characterize changes in the background transmission
rate (𝜆(𝑡): see SOI) and in the healthcare response (𝜏(𝑡, 𝑠):
see SOI). Besides the number of cases, length of epidemic,
offspring distributions, and associated 𝑅

0
(the latter two over

selected periods of time), each run of the model can also be
used to compute new infections per day, incidence curves,
new isolations per day, number in isolation facilities day by
day, and so on (Figure S1), thereby providing estimates of
resources needed under different intervention strategies.

5. Alternative Simulation Results

As a note of caution, the results presented in Table 1 pertain
to a community that has a learning response parameter of 100

days (the time it takes for contact rates in the community
to drop from a maximum level to halfway between the
maximum and minimum levels, as the community adapts to
reducing transmission during the course of the epidemic: cf.
the 𝜆(𝑡) curve in Figure 1), which is our baseline value. This
learning response parameter appears to have higher values in
the current West African epidemic, so by way of illustration
we also ran 100 simulations with this parameter set to 350
days. In these simulations the outbreaks grow more slowly
but aremuch larger on average than those depicted in Table 1.
In several of these runs, the outbreaks exceeded 20,000 cases
within six months after initiation of the index case. This
compares with estimates that by the start of November the
number of cases in the current West African outbreak will
exceed 20,000 [2]. Additionally, our simulations indicated a
doubling time around the 120-daymark of 28 days. Assuming
case estimates are accurate [2], this compares with a 26- to 27-
day doubling time for the currentWest African epidemic over
the month of September 2014 (SOI Table S3).

We also evaluated the effect of increasing the detection
rate parameter by carrying out 100 simulations with the
baseline parameter values, but changing the detection rate
parameters in the function 𝜏(𝑠, 𝑡) from 𝑐

3
= 3 to 𝑐

3
= 1 and

𝑐
4
= 250 to 𝑐

4
= 500. The effects of these parameter changes

on the probability of isolating cases are considerable, as
illustrated in Figure S1 (SOI). For example, 100 simulations of
the baseline parameter case corresponds to a 6% probability
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of isolating a case halfway through his or her infectious
period on day 100 of the epidemic, while the 100 simulations
of the alternate case corresponds to a 63% probability for
the same time parameters.This increase in probability of early
isolation curtailed all outbreaks to fewer than 1000 cases (cf.
50% of outbreaks exceed 1000 in Table 1). More importantly,
however, the expected size of the 76 outbreaks that occurred
(24 of the simulations were fadeouts with fewer than 10 cases)
now fell to 235 cases (mean duration 165 days), with only 5 of
76 outbreaks exceeding 500 cases. Beyond repeat simulations
of ourmodel with various parameter values to obtain statistic
on fadeout rates, size, and duration of epidemics, we use it to
obtain estimates for the proportion of index cases that fadeout
compared to those that breakout, as well as the expected
number of cases and duration of the epidemic.

In addition, they allow us to construct offspring distri-
butions for different phases of the epidemic across different
realizations and transmission tree structures [22, 23] that
might provide clues to the role of superspreaders [14], or
other heterogeneities in the susceptibility and infectiousness
of individuals (e.g., deceased patients and unsafe burial cer-
emony). Information on offspring distributions can also be
used to help fit models to single outbreaks [24]. From Table 1
we see that estimates of 𝑅

0
are very robust across epidemics

differing in size by more than an order of magnitude,
provided the offspring distributions are sufficiently large,
which typically holds except for the initial and final stages of
an epidemic.

6. Model Fitting Considerations

With the rapidly increasing power of genetic sequencing
methodologies, transmission trees can be constructed for
viral pathogens, such as EBOV [25], using genetic data [12,
22, 26, 27]. Thus, despite being a very challenging problem,
the key to fitting a stochastic process model to a single
realization, represented by a particular outbreak, appears to
be rooted in fitting the model to the associated offspring
and phylogenetic tree distributions that emerge and that
better characterize the actual process [23, 24] than the much
more variable case size or 𝑅

0
statistic. It has recently been

reported that EBOV genomes were sequenced, using blood
samples from 78 patients in Sierra Leone [25]. Although
these data were informative regarding the origin of the
epidemic and in estimating viral mutations rates during
the course of the current epidemic, they were insufficient
for constructing transmission trees using newly developed
Bayesian methods [28]. Obtaining reliable transmission trees
from genetic data is a daunting task. However, obtaining
sufficient data to estimate offspring distributions for windows
of time during the course of an epidemic is within the realm
of current technology, particularly if accurate contact tracing
or, at least, spatiotemporal incidence records can be used
in conjunction with pathogen genome data to infer likely
offspring relationships.

Although we have insufficient offspring distribution data
at this time to fit our model to the current EVDWest African
outbreak, our baseline parameters generate realizations that
are compatible with past and current EVD outbreaks. To

assess the sensitivity of our model to selected perturbations
in our baseline data, for the purposes of illustration we
generated a set of realizations with initial transmission risk
rate reduced from 𝜆max = 0.30 to 0.23. At the same time,
also for purposes of illustration, we increased the learning
response parameter from 100 (baseline value) to 200 days. In
comparing the baseline parameters (referred to as Params1)
and this alternative case (referred to as Params2; cf. Table 1
and Table S2), the initial outbreak is more likely to fadeout
than breakout into a full-blown epidemic using Params1.
When epidemics do breakout, however, they are larger in the
case of Params2 (cf. 7958 versus 3627 for largest epidemics in
each set of runs) and last for a longer time (average 310 days
versus 224 days for epidemics >1000 cases). This sensitivity
demonstrates the importance of looking at distributional
structures, such as offspring distributions, during the course
of an epidemic when it comes to assessing both the likely size
and duration of an ongoing outbreak.

Given that we cannot currently decide, with the data we
have, whether Params1 or Params2, or another set of similarly
valued parameters, provides themost reliable fit of ourmodel
to outbreaks in Guinea, Liberia, Sierra Leone, or elsewhere,
we can, at least, use our model to qualitatively evaluate the
response of a particular outbreak to both tactical and strategic
interventions. In particular, we use our model to assess the
effectiveness of vaccination programs in preventing future
outbreaks.

7. Vaccination Strategies

Candidate vaccines exist, as well as therapeutic approaches,
and are undergoing early trail evaluations: calls for their
use in the current epidemic have been made [15]. Using
Params1 (Table S1), we assessed the value of rolling out a
vaccination program in which coverage is zero at the start of
the epidemic and gears up slowly initially (first twoweeks) but
then more rapidly to reach half the maximum coverage rate
by day 50, after which it rises more slowly again to asymptot-
ically approach the maximum coverage rate as the epidemic
progresses (Figure 3(a)). We compared four cases (Figures
3(b)–3(e)) in which the maximum coverage rates were 0%
(control case, panel (b)), 5% (panel (c)), 10% (panel (d)), or
20% (panel (e)). These produced reductions of 40%, 72%,
and 91%, respectively, relative to the no vaccination (control)
case (for a similar analysis in the context of measles in sub-
Saharan Africa see [29]). We performed a similar analysis
using Params2 and found that a 10% maximum vaccination
rate reduced the expected outbreak size by 83% (from 1569
to 261 cases: see Figure S4). We note that this analysis applies
to both vaccination coverage of a 100% effective vaccine at
the indicated levels and vaccination coverage at greater levels
using a vaccine that is not 100% effective. Thus, for example,
Vmax = 10% could pertain to 20% coverage using a vaccine that
is only 50% effective.

8. Conclusion

Real epidemics are considerably more heterogeneous than is
suggested by the model we developed here. First, incubation
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and infectious periods are not constant, but they have lengths
that are better represented by random variables distributed
over some finite range of values [30]. Second, heterogeneity
occurs at the individual level with regard to likelihoods that
some individuals transmit pathogens (e.g., individuals may
be superspreaders for physiological or behavioral reasons)
[14] or succumb to infection (due to both environmental
and genetic factors) more than others [31]. Third, pathogen
strain diversity can lead to considerable complications that
have been comprehensively discussed in the context of many
diseases [27, 32]. Fourth, both reservoir hosts and pathogens
evolve over time, so that no two epidemics separated in
space or time are likely to be driven by identical underlying
transmission processes [33], and metapopulation structure
itself plays a crucial role [34]. Fifth, individuals move around,
and spatial processes can often critically influence outbreak
patterns [7, 18]. Clearly, only individual-based models can
be refined to account for all of these different kinds of
heterogeneity. In particular, with regard to our second point,
the existence of asymptomatic EVD cases has been shown to
occur in previous outbreaks. If such cases are not explicitly
accounted for, models will tend to overestimate the size
of resulting outbreaks [35]. We can account for this phe-
nomenon in our model by estimating proportions of individ-
uals in communities that have essentially undergone a natural
immunization process, possibly due to exposures to low
viral doses; but appropriate data is then needed to account
for these natural vaccination rates [36].

It has always been the case that best practices require
that we use the most appropriate models available at the
time for assessing management options. In this vein, our
model provides a useful tool at this time for understanding
how reductions in contact rates of community members with
infected individualsmay bring the currentWest African EVD
outbreak under control. It also helps us understand how effec-
tive vaccination programs could be, should a suitable vaccine
be released. Additionally, our model exposes the limitations
of the type of data available to support model fitting at this
time.Our analyses suggest that regional campaigns to educate
individuals on risky behaviors, detect cases more rapidly,
isolate infected individuals more diligently, and deploy a vac-
cination program as soon as logistically feasible are all very
important in moving towards extinguishing the epidemic
within different countries, provided movement of infected
individuals among countries can be detected and cases
effectively isolated.
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