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ABSTRACT: Single-chain nanoparticles (SCNPs) are intriguing
materials inspired by proteins that consist of a single precursor
polymer chain that has collapsed into a stable structure. In many
prospective applications, such as catalysis, the utility of a single-
chain nanoparticle will intricately depend on the formation of a
mostly specific structure or morphology. However, it is not
generally well understood how to reliably control the morphology
of single-chain nanoparticles. To address this knowledge gap, we
simulate the formation of 7680 distinct single-chain nanoparticles
from precursor chains that span a wide range of, in principle,
tunable patterning characteristics of cross-linking moieties. Using a
combination of molecular simulation and machine learning
analyses, we show how the overall fraction of functionalization
and blockiness of cross-linking moieties biases the formation of certain local and global morphological characteristics. Importantly,
we illustrate and quantify the dispersity of morphologies that arise due to the stochastic nature of collapse from a well-defined
sequence as well as from the ensemble of sequences that correspond to a given specification of precursor parameters. Moreover, we
also examine the efficacy of precise sequence control in achieving morphological outcomes in different regimes of precursor
parameters. Overall, this work critically assesses how precursor chains might be feasibly tailored to achieve given SCNP
morphologies and provides a platform to pursue future sequence-based design.
KEYWORDS: topology, unsupervised learning, dimensionality reduction, enzyme mimics, structure control, sequence effects,
structure−property relationships

1. INTRODUCTION
Single-chain nanoparticles (SCNPs) are an intriguing class of
materials obtained by collapsing or folding a polymer chain
into a stable nanostructure. The formation and stability of a
SCNP is driven by intrachain interactions, which are
characteristically noncovalent (e.g., hydrophobic, electrostatic,
polar), covalent, or dynamic covalent.1,2 Inspired by proteins,
SCNPs have prospective applications in catalysis, nano-
medicine, and biosensing.2−8 Ultimately, the functionality
and utility of a SCNP depends on its morphology, which may
determine factors such as hydrophobic character near catalytic
active sites.9 Consequently, fundamental study regarding the
structures formed by single polymer chains has implications for
the technological advancement of SCNPs10,11 and under-
standing of single-chain polymer physics.12−14

Significant progress has been made in both developing facile
chemical pathways for synthesis of possible precursors (i.e., the
initial, unfolded polymer chains) and the characterization of
resultant morphologies for SCNPs. Typically, precursors are
obtained by first synthesizing a polymer with specific

functional groups and then performing postpolymerization
reactions at dilute conditions to promote structure formation.2

Experimental scattering techniques (e.g., small-angle X-ray and
neutron scattering, dynamic light scattering, etc.) have shown
that the conformational behavior of SCNPs ranges between a
self-avoiding random walk (ν ≈ 0.56) and globular (ν ≈ 1/3)
behavior, depending on the nature of the linking chem-
istry.3,12,15−20 Reaction conditions may also be varied or
advanced synthetic techniques employed to achieve more
precise monomer and functional-group placement and bias
formation of target structures in SCNPs.21−25 Substantial
structural dispersity, though, can exist among SCNPs that
formed from identical precursors in even polymers with
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relatively small numbers of chemical moieties.26 Knowledge
relating a precursor to structure formation (and its reliability)
in resulting SCNPs will be crucial in achieving target functional
properties of these materials.
Molecular dynamics (MD) simulation provides a useful tool

to examine the formation of SCNPs under well-controlled
conditions and with exquisite structural resolution. Prior MD
studies have supported experimental observations while also
generating insight regarding both the detailed nanoscopic
structure of SCNPs and the mechanisms by which they might
form.11,15,16,20,27−30 For example, good solvent conditions limit
contact between distal portions of the polymer chain, thereby
promoting intrachain linkages over shorter backbone contour
distances and resulting in pearl-necklace-like struc-
tures.16,20,28,29 MD simulations have also highlighted new
strategies, such as the use of ring-polymer architectures for the
precursor or manipulation of solvent quality29 to bias
formation of more compact, globular structures,11 which
have been experimentally challenging to achieve. Nevertheless,
most simulations probe either random or regular sequence
patterning of cross-linking moieties on SCNP structure
formation.29 Moreover, although structural dispersity is often
noted in simulations of SCNP formation, it is rarely
characterized, and its implications in technological applications
is largely unexplored. Thus, a comprehensive view of the
impact of sequence patterning of cross-linking moieties, a
thorough assessment of structural dispersity in SCNP, and
examination of their interplay is needed.
Exploring and characterizing the structure−function land-

scape of polymeric materials is generally nontrivial given the
multitude of behaviors enabled by a large chemical and
architectural space.31−35 To contend with this challenge,
machine learning (ML) techniques have been increasingly
utilized to probe and understand structure−function relation-
ships in soft materials.36−44 In the context of single polymer
chains,45−47 supervised ML models have been proven effective
at relating polymer chain characteristics to average conforma-
tional behavior, thereby expediting targeted sequence- and
composition-based design tasks. Meanwhile, unsupervised ML
algorithms have usefully discriminated among morphological
structures formed in many-chain soft materials assembly by
noncovalent and supramolecular interactions.48,49 Collective
variables obtained from unsupervised ML can also form the
basis for predicting and designing morphology.50 Overall, these
works illustrate the promise of ML to help understand the
distribution of morphologies that are accessible by a given
precursor and to reveal potential strategies to control that
distribution.
In this study, we use molecular simulation in tandem with

machine learning analyses to assess how the patterning of
cross-linking moieties on precursor chains impacts the
morphology and properties of SCNPs. To comprehensively
probe the sequence−structure space, we simulate the
formation of 7680 SCNPs from precursors chains that are
predominantly distinguished by the fraction and distribution of
reactive cross-linking groups along the backbone. These
simulations are analyzed to characterize resulting SCNPs via
structural analysis and unsupervised manifold learning. These
analyses reveal not only the landscape of possible SCNP
morphologies but also the dispersity of structures arising from
given precursor specifications, which has not been previously
well-characterized. We further examine the variability in
morphological outcomes for different sequences with the

same patterning descriptors to assess the efficacy of tuning
SCNP properties with more precise control over the precursor
sequence. In aggregate, this work provides a critical assessment
of how precursors might be feasibly tailored to achieve given
SCNP morphologies and a platform to pursue SCNP design
with specific consideration of structural fidelity.

2. METHODS

2.1. Systems
2.1.1. Model of Precursor Chains and Single-Chain Nano-

particles. We adopt a coarse-grained, phenomenological model to
study the formation of SCNPs from precursor polymer chains. Within
the model, precursor chains are comprised of backbone beads as well
as pendant beads that can function as cross-linking moieties (Figure
1a); these pendant beads are colloquially referenced as “linkers”.

SCNPs are thus obtained from precursor chains by allowing linkers to
react and form bonds. A modified Kremer−Grest model51 describes
the interactions among beads in both precursor chains and SCNPs.
The standard elements include (i) excluded-volume interactions
characteristic of good-solvent conditions (captured by a Weeks−
Chandler−Andersen pair potential) and (ii) covalent-bond inter-
actions (captured by the typical finite extensible nonlinear elastic
potential function with standard parameters); good-solvent conditions
are often experimentally used to avoid intermolecular linkages
between different precursor molecules.2 The modified components
include (i) the introduction of chain semiflexibility, which is
common,52,53 and (ii) the reactivity of linker beads, which has been
handled similarly in prior studies of SCNPs.11,16,20,28 All beads
(backbone and linker) are of the same characteristic size σ, the
repulsive interaction from the Weeks−Chandler−Andersen pair
potential is set by ε = kbT, and all bonds are treated equivalently,
irrespective of whether they are between backbone−backbone,
backbone−linker, or linker−linker beads. Interaction parameters are
kept uniform in this study to emphasize the role of patterning of

Figure 1. Overview of model and precursor chain parameters. (a)
Simulation snapshot of a precursor chain. Annotations highlight the
presence of backbone beads (pink) and linker beads (teal). Single-
chain nanoparticles are formed by allowing the linker beads to react
based on specific geometric criteria. (b) Schematic depiction of the
precursor parameter blockiness, b. (c) Visualization of the precursor
chain parameter space. Ten distinct precursor chains are generated for
each (b, f) pair indicated by the markers. The underlying shaded
region visualizes the accessible space subject to the bound on b
imposed by f. (d) Visualization of the precursor chain parameter space
in the normalized blockiness β−f plane. For a given f, points are
uniformly distributed with respect to β. In panels c and d, the markers
are colored according to f to illustrate the mapping from b to β.
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cross-linking moieties, although manipulation of monomer chemistry
and sequence effects to bias structure formation45 may be of future
interest.

Chain semiflexibility is introduced via 1−3 bending interactions of
the form

E K( ) (1 cos )ijk ijk= (1)

for which θijk is the angle formed by two consecutive bonds between
polymer backbone beads (i with j and j with k) and K controls the
local bending rigidity, which we set to K = 5kbT. Future
phenomenological models may benefit from additional bending and
torsional interactions that include the linker beads, but these are not
included in the present work.

Reactions between linkers to form SCNPs are handled in the
following manner. First, reactions between two linkers results in the
formation of a covalent bond; this bond is modeled equivalently as
with any other covalent bond in the model. Second, reactions between
two linkers can and will proceed only if certain geometric criteria are
satisfied. In particular, the distance between two linkers must be
within a “capture” radius of 1.3σ, and the angle formed by bond
vectors adjoining the linker and their respective backbone bead must
be 180 ± 30°. Third, reactions may not proceed between linkers on
adjacent backbone beads. Fourth, reactions are irreversible (i.e.,
covalent bonds are preserved for the duration of the subsequent
simulation). Fifth, a linker may only participate in one reaction (i.e.,
its valency is one and saturates upon formation of a covalent bond
with another linker). With respect to prior literature on modeling
SCNPs, the utilization of a capture radius is common and follows
work from Moreno and collaborators,16,29 whereas the addition of an
angle-based criterion is not ubiquitous but has been employed in
atomistic simulations.27 Here, this constraint and the null reactivity
among topologically adjacent linkers is motivated by considering
steric and electronic factors of conventional cross-linking chemical
moieties.2 Without this addition, we find that linkers on adjacent
backbone beads can undergo facile reaction, which seems generally
unphysical given the disposition of cross-linking agents.
2.1.2. Precursor Chain Parameters. Many facets of precursor

chains (chain length, chemistry, patterning, architecture, etc.) might
be feasibly manipulated to control SCNP morphology. Here, only
particular parameters of precursor chains are varied while others are
common to all precursor chains. Specifically, all precursors consist of
Nbb = 400 backbone beads arranged in a purely linear topology; each
backbone bead may be considered as a monomer or constitutional
unit. We choose this number of constitutional units inspired by Lo
Verso et al.29 who noted apparent differences in structures formed by
precursors with random sequence patterning versus those formed
from regular sequences at this length. In principle, the number of
backbone units is another physical parameter that can be tuned and
experimentally realized by controlling the extent of polymerization.
The primary variable parameters herein are (i) the extent of
functionalization or linker fraction f = Nl/Nbb and (ii) a descriptor
b, which relates to the “blockiness” of linker beads as distributed along
the polymer chain (Figure 1b). The parameter b is given by

b
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where k and k + 1 are indices of backbone beads along the polymer
chain (∈[0, Nbb − 1]) and 1i,j is an indicator function, such that
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In this fashion, a precursor sequence with backbone beads perfectly
alternating between having and not having a linker would yield b =
Nbb

−1, while a sequence with all backbone beads possessing linkers
followed by all backbone beads without linkers would yield b = 1. This
blockiness parameter bears some similarity to but is not equivalent to

the correlation parameter used to describe the statistics of random
copolymers.54,55

An overview of precursor chain parameter combinations examined
in this study is shown in Figure 1c. Notably, eq 2 implicitly depends
on the linker fraction f, such that the minimum accessible b varies with
f (i.e., min b( f) ≈ |2( f − 0.5)|). Consequently, precursor chains are
studied for f ∈ {0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8}, and values of b at
each composition are chosen such that β ∈ {0.2, 0.4, 0.6, 0.8} where

f
b f b f

b f
( )

( ) min ( )
1 min ( )

=
(4)

is a normalized blockiness parameter that can be sampled uniformly
irrespective of composition (Figure 1d). We emphasized study at
lower f with the expectation that heterogeneity in SCNP
morphologies would diminish at higher f.

Based on prior work,40,46 we hypothesized that these parameters
would enable study of a vast set of precursor chains that would result
in distinct SCNPs. Although a precise connection of f and β to
experimental synthetic conditions may be nontrivial, we expect that
such parameters would meaningfully relate to aspects of monomer
concentration and reactivity ratios.56,57 In the long term, advances in
sequence-level polymerization may enable more precise defini-
tions.21−25,58

2.1.3. Precursor Chain Sequence Generation. Ten unique
sequences are generated for each combination of ( f i, βj) to assess
dispersity of SCNP morphologies as a function of precursor
parameters. Thus, in total, 320 unique precursor chains are
considered. To generate a given precursor chain sequence at a
specified ( f i, βj), a fixed number of linkers (set by f i) are first
randomly distributed across the polymer backbone, and the resulting
initial normalized blockiness βj(0) is computed. Supposing that βj(0) ≠
βj, a random pair of backbone beads (one with a linker and one
without) is selected, and the linker position is swapped if it would
yield |βj(1) − βj| < |βj(0) − βj|. This process is repeated until the trial
|βj(k) − βj| < 0.001. All sequences generated by this process can be
found in the Supporting Information.
2.1.4. Simulation. All MD simulations are performed using a

modified version of the 3 Mar 2020 distribution of the LAMMPS
simulation package.59 Simulations are performed in reduced units
with characteristic quantities of m, σ, and ε for mass, distance, and
energy, respectively; the reduced time unit is τ = (mσ2/ε)1/2.
Simulations correspond to a single polymer chain in implicit solvent.
There are no periodic boundary conditions to prevent self-interaction.
The simulations therefore correspond to SCNPs forming at infinite
dilution. Additional details regarding general simulation protocols,
precursor preparation, precursor equilibration, SCNP formation, and
SCNP simulation are provided in the Supporting Information.
2.2. Analysis
2.2.1. SCNP Structural Descriptors. Topological descriptors of

the SCNP are assessed via its representation as a molecular graph60,61

( , )= . Here, the beads of the SCNP comprise the set of
vertices ( )v v v v, ... , , ...,N N N N1 1bb bb bb l

= + + , and bonds among beads
comprise the set of undirected edges or bonds between beads, ;
coordinates of beads are not used for this analysis. Using this
framework, we compute two topological descriptors: the number of
free backbone beads nf and the number of topological domains nd;
both of these descriptors have been previously examined in simulation
studies to assess SCNP structure.28,62 For their computation, we
adopt the labeling algorithm of Moreno et al. reported in ref 62. In
brief, for any pair of bonded linkers vm, vn, the backbone vertices along
the directed contour path comprise a set m n, ; if there are nb linker−
linker bonds, then there will be such sets. Then, a domain is
defined as the union of sets, for which every set has nonempty
intersection with at least one other set in . Backbone beads that are
not found in any path set (i.e., the complement of the set of all
backbone beads with the union of all domains) constitute a set of free
segments , such that nf = | | is the cardinality (number of
members) of the free-segment set.
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SCNP structures are also characterized by shape descriptors
derived from their gyration tensor:

N
S r r r r1

( )( )
i

N

i i
bb 1

cm cm
T

bb

=
= (5)

where ri is a column vector of the position of the ith backbone bead,
rcm is the center-of-mass position of the SCNP, and T denotes the
transpose. Subsequent diagonalization of eq 5 yields S = diag(λ12, λ22,
λ32), where the diagonal elements are the principal moments of the
gyration tensor such that λ12 ≤ λ22 ≤ λ32. From these, conventional
shape descriptors63 are computed, including the radius of gyration

Rg 1
2

2
2

3
2= + + (6)

which indicates the overall size of the SCNP; the acylindricity

c 2
2

1
2= (7)

which measures departure from cylindrical symmetry with respect to
the eigenvectors of λ2 and λ1; the asphericity

b 1
2
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2

1
2

2
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which measures the overall symmetry of the distribution of beads with
respect to three coordinate axes; and the relative shape anisotropy

3
2 ( )

1
2

0, 12 1
4

2
4

3
4

1
2

2
2

3
2 2=

+ +
+ +

[ ]
(9)

which assesses departure from spherical symmetric morphologies (κ2
= 0). Notably, both b and κ2 will yield zero for spherically symmetric
configurations, while b will yield zero for any Platonic solid. Ensemble
averages of the shape parameters are computed using the final 107
time steps of the production trajectory.
2.2.2. Unsupervised Machine Learning. SCNP morphologies

are also identified, distinguished, and compared with the aid of
unsupervised ML. The essence of the approach is to discriminate
between SCNP morphologies in a data-driven fashion on the basis of
collective differences in the local environments of the composite
backbone beads; this is largely inspired by methods and analyses by
Reinhart, Statt, and co-workers in the context of colloidal crystals, ice
crystals, binary mesophases, and model polymer aggregation.48,50,64

Here, we consider the local density of backbone beads n(rc) = N/σ3 to
be descriptive of the local environment of a bead, such that a given
configuration of a SCNP can be numerically represented by a
histogram of such local densities. In this study, local densities are
measured only for backbone beads using a spherical cutoff of rc = 6σ,
and histograms possess 40 evenly spaced bins over the range [6.63 ×
10−3, 0.239]σ−3, which spans observed values across all configurations.

The histograms can be constructed for any given configuration of a
SCNP to provide a 40-dimensional feature vector xi. To obtain a
representative ensemble, 20 distinct configurations for each SCNP
(dumped at a frequency of 2.5 × 106 time steps) are featurized. This
results in 320 sequences × 24 independently formed SCNPs per
sequence × 20 configurations per SCNP = 153,600 total feature
vectors; the 20 configurations taken for each SCNP accounts for
structural fluctuations, which may be of interest in certain
applications. Subsequently, the uniform manifold approximation and
projection (UMAP) algorithm is used to learn a low-dimensional
numerical embedding of the SCNP morphologies and the manifold
over which they are distributed. To facilitate visualization and
interpretation, we simply target a two-dimensional embedding.
Hyperparameters related to UMAP include the size of the local
neighborhood (set to 200), the overall density of the embedding
(minimum distance between points set to 1), and the distance metric
for points in the feature space (Euclidean). In effect, this approach
generates a mapping x Z: UMAP( )i i

40 2 = where Zi is a
coordinate vector in the learned low-dimensional representation of
the set of local densities around monomers. As such, Zi provides
information on the nanostructural characteristics of SCNPs. We note

that additional descriptions of the local environment, including that
used by Reinhardt,64 as well as those equivalent to atom-centered
symmetry functions,65 were also examined for the embedding
described above (see Supporting Information, Figure S2). However,
all approaches yielded qualitatively similar organization of morphol-
ogies, and local density was thus employed for its ease of
interpretability, despite it being the least descriptive of the local
environment.
2.2.3. Metrics of Dispersity and Sequence Variability. To

quantify morphological dispersity in SCNPs and assess the
importance of precise sequence control, we introduce a series of so-
called dispersity and sequence variability metrics. Dispersity metrics
primarily address variability in outcomes of SCNPs for a given
precursor chain, while sequence variability metrics address the range
of possible outcomes for a given specification of f and β, which is
associated with a set of realizable precursor chains. In the following, a
given SCNP is characterized by a tuple (c( f, β), sc) where c denotes a
precursor chain from the set of all possible precursor chains with
characteristics f and β, and sc is an element of the set c of all possible
SCNP structures that can form from precursor c. In addition, the
notation x∼Y indicates that the variable x was sampled from the set Y.
In the present study, relevant sets practically correspond to (i) the 24
independent trajectories that yield unique SCNPs from a given
precursor chain or (ii) the ten distinct precursor chains generated for
each combination of f and β; these sets are respectively used in the
calculation of expectation values indicated by sc c

[·] and c [·].
Dispersity in the size of the SCNPs arising from a given precursor

chain is given by

c f R R( ( , )) ( )R s s s sg g
2

c c c c c cg
[ [ ] ] (10)

where ⟨Rg⟩sdc
is the ensemble-average Rg for a given SCNP; this is the

variance in ⟨Rg⟩sdc
sampled over c . Dispersity in ⟨Z⟩ (related to the

density of local environments) for SCNPs arising from a given
precursor chain is given by

c f P c cZ( ( , )) log( ( ))Z [ | | ] (11)

where “x|c” denotes conditioning the variable x on c. This quantity is
the entropy of the distribution of ⟨Z⟩ and measures the differences in
the nanostructures of the SCNP that are formed from a given
precursor c.

Because not all manifestations of c( f, β) are expected to yield the
same distribution of SCNPs, we define four sequence variability
metrics. Sequence variability on the outcome of Rg at a particular f and
β is defined as

f R R( , ) ( )R c C s s c s sg g
2

c c c c c cg
[ [ ] [ [ ]] ]

(12)

which probes the variance of the mean SCNP sizes formed from c
across all c in . Sequence variability on the dispersity of chain sizes is
similarly defined as

f c c( , ) ( ( ) ( ) )c C R c C R
2

Rg g g
[ [ ] ] (13)

This probes the variance of the dispersities of SCNP sizes (eq 10)
formed from c across all c in . Because the position on the manifold
⟨Z⟩ is two-dimensional, sequence variability of Z is instead defined as

f P f fZ Z Z( , ) log( ( , )) , , s S sZ c c
[ | | ] [ ]

(14)

This is the entropy of the distribution formed by the expectation
values of ⟨Z⟩sdc

over c for all c in . Lastly, we define the sequence
variability in the dispersity of positions on the manifold:

f c c( , ) ( ( ) ( ) )c C c CZ Z
2

Z
[ [ ] ] (15)

This is related to the variance in the dispersity of nanostructures (eq
11) formed from c across all c in .
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3. RESULTS AND DISCUSSION

3.1. Characterization of Morphologies

3.1.1. Unsupervised Learning Facilitates Understand-
ing of SCNP Morphologies. To effectively process and
identify morphological archetypes of all simulated SCNPs, we
utilized unsupervised machine learning to construct a low-
dimensional manifold of SCNP morphologies (section 2.2)
wherein the structure of every SCNP can be represented via a
two-dimensional coordinate vector Z = (Z1, Z2). Importantly,
the morphologies of SCNPs are expected to share similar
features when closely positioned on the manifold (e.g., when |
Zi − Zj| is small).
Figure 2a shows that the manifold of SCNP morphologies,

as determined by the unsupervised machine learning, is
primarily organized by the average local density of backbone
beads n̅. Moving from left-to-right (increasing Z1), SCNPs
transition from compact (high n̅, green colors) to expanded

(low n̅, blue colors) structures. Figure 2b reveals a secondary
level of organization, more so along Z2, wherein structures are
differentiated by the distribution of local environments, which
is quantified by the standard deviation of local densities around
backbone beads, σ(n). Moving from the bottom toward the
top of the manifold within a band of constant n̅, morphologies
transition from having relatively homogeneous local environ-
ments toward having increasingly heterogeneous nanostruc-
tures. Thus, the unsupervised learning approach distinguishes
between, for example, different manifestations of similarly
compact SCNP morphologies (i.e., dense core and less
confined shell versus more homogeneous structure).
Figure 2c illustrates how representative SCNP structures are

distributed across the low-dimensional manifold, revealing
several archetypal morphologies that arise in congruence with
the specific local environments. Specifically, structures on the
left side of the manifold (Z1 < 5) are globular, typified by
relatively large n̅. Structures on the top-right side of the

Figure 2. Visualization and analysis of single-chain nanoparticle (SCNP) morphologies. (a) A two-dimensional manifold organization of
morphologies for SCNPs based on the Uniform Manifold Approximation and Projection (UMAP) unsupervised learning algorithm. For visual
clarity, only a fraction of the overall data is shown (see also Figure S3). Each marker corresponds to a single configuration of a SCNP and is colored
by the average local density around backbone beads, n̅, revealing bands of constant n̅ distributed across the manifold. Five additional markers
(warm colors) that correspond to selected coordinates that span the manifold for each band are also shown; these coordinates are used for analysis
in panel (b). Particular examples are noted within the figure axes for n̅ = 80. (b) The standard deviation of local densities around backbone beads,
σ(n), as a function of fractional distance λ across each band. The distance across each band is estimated by selection of two distal reference points
z0(n̅) and z1(n̅), such that intermediate positions can be selected as zλ = (1 − λ)z0(n̅) + λz1(n̅). Each marker corresponds to the average of σ(n) for
a collection of structures found within 0.3 units of the corresponding marker in panel a; the line colors reflect the band for each n̅. Error bars report
the standard deviation of σ(n) across the aforementioned collection of structures. (c) Simulation snapshots of 103 representative configurations
across the latent space manifold. Each rendering is positioned above its coordinate position in the manifold. In the renderings, only backbone beads
are shown and are colored by the local density of other backbone beads within a 6σ radius.

ACS Polymers Au pubs.acs.org/polymerau Article

https://doi.org/10.1021/acspolymersau.3c00007
ACS Polym. Au 2023, 3, 284−294

288

https://pubs.acs.org/doi/10.1021/acspolymersau.3c00007?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00007?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00007?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00007?fig=fig2&ref=pdf
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.3c00007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


manifold (Z1 ≈ 5, Z2 > 5) resemble pearl-necklace and
tadpole-like morphologies, typified by larger σ(n). Structures
on the bottom-right side (Z1 > 10, Z2 ≈ 0) are populated with
diffuse globular, worm-like, and rod-like morphologies, with
lesser σ(n). Therefore, it becomes possible to make a
distinction between stringy versus clumpy pearl-necklace-like
structures based on the heterogeneity of local environments.
Collectively, these results indicate that (i) the precursor chains
over the β−f parameter space yield a rich array of SCNP
morphologies and (ii) the manifold coordinates Z, which
broadly correlate to the average and heterogeneity of
nanostructural environments within a SCNP, provide a
reasonable organization of those structures.
Observed archetypes also resemble those of prior studies,

albeit with some distinctions. While Moreno and co-workers
observe many of the same archetypes, they noted an
abundance of pearl-necklace-like structures16,20,28 which are
represented to a much lesser degree across our morphologies.
We suggest that this difference arises due to our use of angular
constraints for linker-bond formation, which inhibits linkers
forming bonds over short contour distances of the polymer
backbone. In another study, Tulsi and Simmons found SCNPs
that also adopt pearl-necklace, worm-like, and dense globular
structures.30 They further identified “gnarled” structures, which
are similar to the more diffuse globules observed in this study.
Interestingly, their SCNPs arise from a model with different
physical characteristics and distinct mechanism for assembly;
this suggests that the present and prior theoretical studies may
be homing in on a general set of readily realizable SCNP
morphologies. In addition, many of our structures resemble
tadpole morphologies which are similar to morphologies
observed in experiments.66−68

3.1.2. Sequence Characteristics of Precursors Bias
Structure Formation. To assess how linker patterning
impacts SCNP structure, we examine how precursor
parameters f and β dictate position on the manifold of
SCNP morphologies (Figure 3a,b). While f and β both impact
morphology, they have different effects. Roughly, trends with f
and Z track with n̅. This suggests that structures formed from

high-f precursors (left) predominantly display more compact,
globular morphologies typified by high n̅, while structures
formed from low-f precursors (right) result in more diffuse,
low-n̅ morphologies. The impact of β is less striking but
evident at low f (i.e., f ≲ 0.3). In particular, β impacts how
cross-links are distributed over the SCNP topology: at fixed
and low f, high-β precursors yield SCNPs with few centralized
“hubs” of cross-links, while the low-β precursors result in
SCNPs with cross-links that are more evenly distributed over
the chain. As a result, increasing β biases morphologies from
worm- or rod-like (bottom right) to more pearl-necklace- and
tadpole-like structures (top right); the nature of this effect is
further resolved in Figure S4.
We characterized 7680 unique SCNPs across the β−f space

by the number of free backbone beads nf, the number of
domains nd, and the radius of gyration Rg to quantitatively
examine how particular morphologies arise as a result of β and
f. Figure 3c−f show the averages of these structural descriptors
over the ensemble of SCNPs generated from precursors with
specific blockiness and linker-fraction combinations; precise
numerical values are reported in the Supporting Information.
All four descriptors possess identifiable trends that resonate
with the qualitative observations from Figures 2c and 3a,b.
Figure 3c shows that decreasing f and increasing β typically
increases the extent of polymer chain that is not present in any
cross-linked domain. Meanwhile, Figure 3d indicates that
decreasing β and f tends to result in SCNPs with more
domains that possess fewer beads. Together, these results
suggest that β and f can be manipulated to tune aspects of
SCNP topology, although not arbitrarily. Beyond a certain f, it
appears these structural descriptors are not strongly affected by
β. This is evident by the flat color saturation at f ≥ 0.6,
indicating that all SCNPs are essentially one large topological
domain in this precursor regime. The nature of these
topological structures has clear implications on the size of
the SCNP, as seen in Figure 3e. To first order, SCNP size, as
given by Rg, is controlled by the number of free segments,
which is strongly biased by f; only at low f does β appear to
have subtle impact on Rg; we observe near-identical trends for

Figure 3. Relationship between sequence characteristics of precursors and structural features of resulting single-chain nanoparticles. Variation of (a)
linker fraction f and (b) normalized blockiness β as a function of manifold coordinates Z1 and Z2. In both panels a and b, grid points within the
manifold are colored by the median value of single-chain nanoparticles within a small radius of the grid point. Heat maps showing the average over
single-chain nanoparticles generated from precursors at specified β and f for (c) the number of free backbone beads nf, (d) the number of
topological domains nd, (e) the radius of gyration Rg, and (f) the standard deviation of the distribution of local densities around monomer beads.
The values used to color ( f) are normalized by the mean value observed at a given f to highlight trends with respect to β.
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shape descriptors derived from the gyration tensor (Figure S5).
Rather, β mostly controls the extent of heterogeneity of SCNP
nanostructures (Figure 3f). In particular, decreasing β biases
from morphologies that feature more heterogeneous local
environments around beads toward those with more
homogeneous ones, even while Rg is largely unaffected.
Collectively, these results illustrate how sequence patterning
of precursors can be manipulated to bias the morphological
characteristics of SCNPs.
3.2. Characterization of Structural Dispersity

3.2.1. Morphological Dispersity Depends on Se-
quence Patterning. We next investigate the impact of
precursor patterning on the consistency of forming SCNP
morphologies. Figure 4 illustrates that a single precursor
sequence can give rise to a set of SCNPs with diverse
morphological characteristics. This is first demonstrated in
Figure 4a, which compares P(⟨Rg⟩) for ten SCNPs originating
from precursor chains with f = 0.1 and β = 0.2 and ten
originating from precursor chains with f = 0.1 and β = 0.8.
Selected sequences (e.g., 5, 6, and 9 for f = 0.1 and β = 0.8) are
noted to have particularly broad distributions, which result
from averaging over the 24 replicate simulations. Across both
precursor conditions, many distributions are non-Gaussian,
bordering on bimodal or heavy-tailed, which would indicate
that the different trajectories produce disparate morphologies
rather than exhibit a single, dominant archetypal morphology.
Figure 4b,c shows that there can also be substantial
nanostructural diversity in the ensemble SCNPs formed by a
given precursor sequence; this would be evidenced by a diffuse
P(⟨Z⟩) for a given sequence. Such diffuse distributions are
particularly identifiable for sequence 0, 1, and 3 in Figure 4b,
which derive from low-blocky precursors. However, sequence
patterning can significantly impact the tightness of P(⟨Z⟩), as

sequence 2 for β = 0.2 is much more strongly peaked than that
of sequence 0. Diffuse P(⟨Z⟩) for β = 0.8 (Figure 4c) are not
quite as evident, and the P(⟨Z⟩) are generally similar in shape,
hinting at the possible role of precursor parameters like β on
dispersity.
3.2.2. Precursor Parameters Have Disparate Effects

on Different Measures of Dispersity. Figure 5 elucidates
the role of f and β on both dispersity in P(⟨Rg⟩) and dispersity
in P(⟨Z⟩). Intriguingly, we find that these measures of
dispersity are generally anticorrelated. This is evident by
examining trends with increasing f, which tends to decrease
dispersity in P(⟨Rg⟩) and increase dispersity in P(⟨Z⟩). This
can be understood by considering the high-f regime, for which
well-connected globular morphologies would have similar
overall size and limited capacity to change (low dispersity in
P(⟨Rg⟩)) but can nonetheless have disparate populations of
local environments (low dispersity in P(⟨Z⟩)), such as
observed in Figure 2. At low f but high β, dispersity in
P(⟨Rg⟩) is high yet dispersity in P(⟨Z⟩) is diminished.
Combined with the observation that SCNPs formed from
precursors with these characteristics resemble pearl-necklace-
like morphologies, diminished dispersity in P(⟨Z⟩) suggests
that the formation of dense (pearl) and diffuse (lace)
nanostructures is relatively consistent. Furthermore, height-
ened dispersity in P(⟨Rg⟩) suggests that how these
nanostructures are arranged or connected (i.e., the precise
topology) could result in relatively large changes P(⟨Rg⟩). In
addition, we observe an apparent maximum in P(⟨Z⟩)
dispersity at intermediate f (0.25, 0.3) and intermediate β
(0.4, 0.6), suggesting relatively greater diversity in the set of
nanostructures between SCNPs formed from these precursors.
Moving away from this maximum toward higher f decreases
the entropy of the distributions but to a lesser degree than
moving away from the maximum toward lower f. This reflects

Figure 4. Morphological dispersity of single-chain nanoparticles originating from given precursor sequences. (a) Comparison of distribution of
radius of gyration P(⟨Rg⟩) for distinct single-chain nanoparticles. The distributions are obtained from 24 independent replicate simulations of the
same precursor chain sequence. The data are for SCNPs formed from ten precursor sequences each from f = 0.1 and β = 0.2 (yellow, left) and f =
0.1 and β = 0.8 (green, right). The width of violins correspond to the density obtained from Gaussian kernel density estimation; the edges of box
plots in the violin depict the interquartile range, while white dots indicate the median value. Comparison of the distribution of manifold-coordinate
vectors P(⟨Z⟩) for single-chain nanoparticles formed from selected precursor chain sequences with parameters of (b) f = 0.1 and β = 0.2 and (c) f =
0.1 and β = 0.8. In panels b and c, the color reflects Gaussian kernel density estimation over the ⟨Z⟩ for each of the 24 distinct SCNPs formed by
each precursor sequence. The color scheme reflecting precursor parameters and sequence labels is the same across panels.
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the consistent, high-density core formed by structures at high f
but high variability in local densities around the outside of the
structure that depends on the precise folded shape of the
SCNP even when broadly characterized as a compact globule.
3.2.3. Specific Sequences Enable More Precise

Control over Morphology. Differences in the distributions
of ⟨Rg⟩ and ⟨Z⟩ across sequences with the same β and f exhibit
differences (Figure 4) suggesting that sequences might be
precisely crafted to fine-tune characteristics of formed
morphologies. To examine this, we calculate four “sequence
variability” metrics that report how distinct aspects of SCNP
morphologies are across different sequences for the same f and
β. In particular, we specifically examine the sequence variability
in the mean of P(⟨Rg⟩), the dispersity in P(⟨Rg⟩), the mean of
P(⟨Z⟩), and the dispersity in P(⟨Z⟩). We anticipate that
understanding sequence variability may be useful to ascertain
whether tailoring sequences would offer prospective advan-
tages over an ensemble of sequences defined by a given f and β.
Figure 6a,b shows that sequence variability is highest for the

mean value and dispersity of P(⟨Rg⟩) at low f and high β
values. By contrast, sequence variability in the mean and
dispersity of P(⟨Rg⟩) is diminished at high f, suggesting that
precise sequence control would be less valuable; this
observation is consistent with prior results (Figure 3 and
Figure 5) that indicated negligible impact of β on structure
formation at high f. Furthermore, Figure 6c indicates that
sequence variability in the mean of P(⟨Z⟩) follows a similar
trend, peaking at small f and intermediate values of β and
decreasing at large f. There are no discernible trends in
sequence variability for the dispersity of P(⟨Z⟩) (Figure 6d).
Together, these results suggest that precisely tailoring
sequences to manipulate the distribution of formed SCNPs,
whether it be aspects of the SCNP size or its average local
environment, is likely to be most effective for low f and
intermediate to high β.

4. CONCLUSIONS
In this work, we examined how sequence patterning of
intramolecular cross-linking moieties (linkers) in polymer
chains impacts the formation of single-chain nanoparticles
(SCNPs). To do so, we simulated the formation of 7680
unique SCNPs from precursor chains, which altogether
comprehensively spanned a parameter space defined by the
number of linkers in the chain, f, and the blockiness of the
chain, β. The morphologies of the SCNPs were subsequently
characterized using unsupervised machine learning and several
structural descriptors to elucidate the general roles of β and f
on morphological outcomes of SCNPs. Finally, we assessed
how β and f impact dispersity in the sizes of SCNPs (P(⟨Rg⟩))
and their characteristic nanostructural environments (P(⟨Z⟩)),
and we explored how precise sequence control might be useful
to further tune SCNP properties.

Figure 5. Effect of precursor parameters on morphological dispersity.
Heat maps at a given linker fraction f and normalized blockiness β for
the average (a) dispersity in ⟨Rg⟩ given by Rg

in eq 10 and (b)
dispersity in manifold coordinates given by Z in eq 11. For both
panels, average effects are estimated by considering the ten unique
precursor chains generated at a given f and β.

Figure 6. Analysis of sequence effects on morphological control. Heat
maps show sequence variability as a function of linker fraction f and
normalized blockiness β calculated as (a) variance in the means of
P(⟨Rg⟩), (b) variance in dispersities of P(⟨Rg⟩), (c) entropy of the
means of P(⟨Z⟩), and (d) variance in the dispersity of P(⟨Z⟩).
Quantities are computed from 10 independently generated sequences
for each specified f and β.
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Overall, we found several major trends with respect to
SCNP topology, morphology, and precursor parameters. Using
manifold learning, we showed that SCNP morphologies could
be distinguished principally by the mean-density of beads and
secondarily by the heterogeneity of local nanostructural
environments. For example, we identified two distinct globular
morphologies (one with a dense core−flexible shell structure
and one with more homogeneous density throughout). Specific
archetypal morphologies were also found to be strongly
associated with certain regimes of precursor parameters. Low-f
precursors tend to adopt topologically diffuse structures with
several domains and large chain segments between domains; in
this regime, increasing β biases structure formation toward
fewer and larger domains but a higher proportion of the
polymer chain that is not within any topological domain. By
contrast, precursors with high f consistently give rise to SCNPs
with globular structures that show weak sensitivity to β. In
addition, while low-β precursors tend to result in SCNPs with
rod-like morphologies (i.e., several domains of similar
nanostructures), high-β precursors result in tadpole-like
morphologies (i.e., fewer domains with disparate nanostruc-
tures). By examining the set of structures formed from every
precursor, we found that low-f precursors yield SCNPs with
substantial diversity in size but overall consistent local
environments, while high-f precursors generate SCNPs with
the opposite trend. Furthermore, comparing the distributions
of SCNPs generated from specific sequences that all
correspond to the same β and f highlighted the potential to
leverage precise sequence patterning for morphological
control, manifest in either specific average values or
distribution characteristics. Investigation of new “sequence
variability” metrics revealed that precursor chains with low f
and large β illustrate the widest range of possible morphology
and dispersity outcomes. Therefore, we hypothesize that this
regime could benefit most from precise sequence control to
tailor the morphological properties of SCNPs.
Ultimately, the methods and analyses herein may spawn

several directions of future research. First, while the present
and many prior studies emphasized the final SCNP
morphologies, future work may aim to quantify the physical
implications of SCNP structure and understand their relation-
ship to other SCNP properties (e.g., response to shear flow,
mechanical unfolding, etc.). Furthermore, there is significant
opportunity to establish how precursor patterning dictates the
mechanism(s) or pathway(s) of SCNP formation. Examination
of formation pathways may facilitate additional understanding
as to how SCNP morphology might be more tightly controlled.
Finally, our results point to the possibility of tuning the
dispersity of SCNP morphologies in numerous ways. While
prior work has leveraged assembly protocols to bias structure
formation (e.g., toward globular morphologies29), here we
show that dispersity outcomes (either SCNP size or nano-
structural environments) might be manipulated either by
setting particular precursor parameters or by tailoring
sequences. Furthermore, with many demonstrations of using
statistical ensembles of chains in functional materials,69−74 it
will be interesting to consider how distributions of chains can
be designed to achieve target properties. Approaches to
navigate such design tasks, particularly in the context of
experimentally verifiable systems will be needed.
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