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Abstract

Natural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges
nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of
bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to
bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content
screens that are compatible with microgram amounts of compound. For the deconvolution of the complex extracts into
their individual constituents, recent progress has been achieved on several fronts as analytical techniques now enable the
rapid microfractionation of extracts, and microflow NMR methods have developed to the point of allowing the identification
of microgram amounts of NPs. Here we combine advanced analytical methods with high-content screening in zebrafish to
create an integrated platform for microgram-scale, in vivo NP discovery. We use this platform for the bioassay-guided
fractionation of an East African medicinal plant, Rhynchosia viscosa, resulting in the identification of both known and novel
isoflavone derivatives with anti-angiogenic and anti-inflammatory activity. Quantitative microflow NMR is used both to
determine the structure of bioactive compounds and to quantify them for direct dose-response experiments at the
microgram scale. The key advantages of this approach are (1) the microgram scale at which both biological and analytical
experiments can be performed, (2) the speed and the rationality of the bioassay-guided fractionation – generic for NP
extracts of diverse origin – that requires only limited sample-specific optimization and (3) the use of microflow NMR for
quantification, enabling the identification and dose-response experiments with only tens of micrograms of each compound.
This study demonstrates that a complete in vivo bioassay-guided fractionation can be performed with only 20 mg of NP
extract within a few days.

Citation: Bohni N, Cordero-Maldonado ML, Maes J, Siverio-Mota D, Marcourt L, et al. (2013) Integration of Microfractionation, qNMR and Zebrafish Screening for
the In Vivo Bioassay-Guided Isolation and Quantitative Bioactivity Analysis of Natural Products. PLoS ONE 8(5): e64006. doi:10.1371/journal.pone.0064006

Editor: Tilmann Harder, University of New South Wales, Australia

Received January 14, 2013; Accepted April 9, 2013; Published May 21, 2013

Copyright: � 2013 Bohni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MLCM was funded by a PhD fellowship from the Vlaamse Interuniversitaire Raad (VLIR) linked to the VLIR-UOS project "Pharmacological
Characterization of Medicinal Plants from the South of Ecuador" at the University of Cuenca, Ecuador. DSM was funded by a fellowship from the Vlaamse
Interuniversitaire Raad (VLIR) linked to a VLIR-UOS cooperation program with the Central University "Martha Abreu" from Las Villas, Santa Clara, Cuba. This work
was funded in part by the Swiss National Science Foundation (SNSF, CRSII3_127187 to JLW). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alexander.crawford@pharm.kuleuven.be

. These authors contributed equally to this work.

" These authors also contributed equally to this work.

Introduction

Natural products (NPs) are an important source of drug-like

compounds for the discovery of new therapeutic candidates and

over time their chemical diversity has contributed significantly to

the development of drugs for a wide range of diseases. The

majority of new drugs approved within the last thirty years are

either natural products themselves or are derived from natural

products [1–3].

Currently, most drug discovery programs are based on high-

throughput screening (HTS) to rapidly query the bioactivity of

large libraries of synthetic compounds. In contrast, the isolation

and characterization of bioactive secondary metabolites present in

complex NP extracts involves the application of several comple-

mentary methodologies that require considerably more time and

effort [4,5]. In addition, there are several inherent caveats

associated with testing NPs in HTS. Crude extracts from various

species of plants, fungi, and bacteria, herein after called NP

extracts, are complex mixtures of mostly uncharacterized com-

pounds, some of which might have undesired effects. The chemical

properties of certain secondary metabolites might hinder the test
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readout and interfering constituents present in the crude extract

can either mask the biological activity [6] or cause toxic effects that

lead to false positives, e.g. in enzymatic assays. Nevertheless, a

considerable advantage of NPs is their chemical diversity. The

chemical space occupied by NPs is different from the one occupied

by synthetic compounds – often with far greater degrees of 3-

dimensionality and structural complexity. NPs are a promising

source of diverse molecular scaffolds for the discovery of novel lead

compounds against original targets [7] and recently, combinatorial

libraries with NP-like compounds have been used for HTS [3].

Bioassay-guided fractionation has proven successful as a well-

established platform to isolate and characterize active constituents

present in NP extracts, which are then suitable for HTS [8,9].

However, such an approach requires multiple chromatographic

steps and large amounts of biological material. Recent technolog-

ical improvements in the area of chromatographic separation

methods have nevertheless provided new possibilities to accelerate

the overall process of bioassay-guided fractionation. In particular,

the development of microfractionation approaches based on

advanced high performance liquid chromatography (HPLC)

techniques is now enabling the systematic separation of complex

plant extracts using more widely applicable protocols [10]. The

increasing sophistication of such techniques by linking them

directly (on-line) or indirectly by adding an additional step of

sample concentration (at-line) with analytical assays allows the

more rapid dereplication of extracts – identifying known NPs prior

to thorough characterization – thereby focusing resources on novel

molecules.

Although active constituents present in NP extracts can now be

identified more quickly as less time is expended on the purification

of inactive constituents, still appreciable amount of time is invested

if the bioactive compounds need to be isolated for the

determination of their structure and in-depth biological testing.

This is the bottleneck of bioassay-guided isolation since the de novo

structure elucidation of small molecules relies on NMR spectros-

copy, which has intrinsically low sensitivity. Nevertheless, with the

emergence of microflow NMR [11] and cryo and microcryo NMR

technologies [12–14] used routinely in NP drug discovery, the

boundaries could be pushed to the low microgram scale of sample

needed for the acquisition of 1H-13C and 13C spectra.

When working with HPLC-based biological profiling, another

issue is to quantify the potency of a given extract constituent in a

given bioassay since the microgram quantities obtained by

microfractionation have to be correctly estimated [15]. Weighing

of the individual microfractions is not only impractical but also

inaccurate at sub-milligram quantities. Furthermore, compound

purity is not taken into account. Since NMR gives an absolute

signal response, it can not only provide unambiguous compound

identification but allows precise quantification even of unknown

compounds and estimate ratios in fractions still containing

mixtures. NMR quantification can be performed either with an

internal standard, using the ERETIC (electronic reference to

access in vivo concentrations) [16] method that demands special-

ized electronic equipment, or the PULCON (pulse length based

concentration determination) [17] method with reference to an

external standard.

The ultimate impact of these new methods on the field of NP

discovery, however, will be determined by the bioassays with

which they can be combined. The recent report of a micro-

fractionation approach involving the coupling of microbore HPLC

separation with an at-line 1536-well biochemical screening assay

for protein kinase A activity assessment and with parallel QTOF

MS (quadrupole time of flight MS) data acquisition for analyte

identification is an excellent example of the potential of this

technology [18].

Despite its utility for HTS of active compounds, the reliance of

such strategies on enzymatic or in vitro cell-based assays to assess

their biological activity limits the biomedical relevance of the

active metabolites isolated in this manner. By combining high-

resolution microfractionation with high-content assays, the activity

of the separated constituents would be analyzed and validated to

an appreciably higher degree.

In contrast with enzymatic or cell-based reporter assays, high-

content bioassays (e.g. phenotypic assays using cells or organisms)

allow the unbiased analysis of pharmacological activity. In

particular, in vivo animal models offer the possibility to screen for

biomedically relevant bioactivities in a target- and pathway-

independent manner. Nevertheless, mammalian models such as

rodents require larger amounts of compound (in the milligram

range) for activity analysis, and are therefore not ideal in vivo

platforms for rapid HPLC profiling and microfractionation

strategies.

In this context, zebrafish bioassays represent an attractive

alternative to determine the in vivo bioactivity of chromatographic

fractions containing only microgram amounts of individual

compounds. Zebrafish – Danio rerio – have recently emerged as a

reliable in vivo vertebrate model system for functional genomics

and drug discovery [19]. Beyond their many physiological and

pharmacological similarities to mammals, zebrafish have impor-

tant advantages such as high fecundity (up to hundreds of offspring

per day), the small size of embryos and larvae (0.5 to 5 mm

depending on the developmental stage), optical transparency and

rapid development ex utero. These features confirm zebrafish as a

versatile in vivo experimental model compatible with HTS and

microfractionation techniques in the field of NP discovery [20]. In

this regard, the amenability of using zebrafish embryos and larvae

in microtiter plates (96- and even 384- well design) allows early

in vivo analysis of the activity of small-molecule compounds isolated

by microfractionation approaches. Depending on the potency of

these isolated compounds, the requirement of only microgram

amounts to induce an initial biological response represents another

excellent benefit of using zebrafish as a model organism over other

higher vertebrates (e.g. rodents, in which the active dose

requirements are usually a thousand-fold higher [21]).

This latter feature is key for NP discovery, as many high-

resolution separation methods based on HPLC, particularly

microfractionation, result in very limited amounts of samples that

would otherwise be insufficient for the in vivo analysis of activity.

In this study we combine HPLC profiling with microfractiona-

tion and sensitive microflow NMR at-line detection with a high-

content in vivo screen in zebrafish for the rapid identification of

bioactive NPs in crude plant extracts as well as for the direct

estimation of their biological activity and potency at the

microgram level. We illustrate this approach by investigating both

the anti-inflammatory and the anti-angiogenic activity of a

Fabaceae plant used in traditional Tanzanian medicine, Rhynchosia

viscosa (Roth) DC. Optimization of the workflow with minimal

amounts of extract was successfully achieved providing a generic

approach that is adaptable for any other sample, even if extracts

are only available in milligram amounts (e.g. because the

phytochemical analysis is done on a herbarium sample, supply

of the extract is difficult or the biological species under

investigation is small in size).

Microscale Natural Product Discovery in Zebrafish

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e64006



Results and Discussion

Anti-inflammatory and Anti-angiogenic Activity of
Rhynchosia viscosa in Zebrafish
Using a zebrafish-based inflammation assay [22], we screened

crude methanolic extracts from over 80 East African medicinal

plants. The extract of Rhynchosia viscosa (Roth) DC. (Fabaceae)

inhibited leukocyte migration in tail-transected four days post-

fertilization (4 dpf) larvae in a concentration-dependent manner

(Figure 1). The anti-inflammatory effect of the crude extract of R.

viscosa was evident at 50 mg/mL – a concentration at which a

relative leukocyte migration (RLM) value of 0.39 was achieved

(Figure 1D), in comparison with an RLM of 0.24 achieved by

100 mM indomethacin as a positive control (Figure 1E). Interest-

ingly, the ethnomedicinal use of R. viscosa in Tanzania (local name:

mfundofundo) includes the topical treatment of inflammatory skin

disorders and insect bites (M. J. Moshi, personal communication),

prompting us to perform follow-up studies for the identification of

anti-inflammatory constituents of this plant.

In parallel, we also screened the extracts of these East African

medicinal plants for their capacity to inhibit angiogenesis, based

on their ability to restrict vascular outgrowth in fli-1:EGFP

transgenic zebrafish embryos [23], which exhibit vasculature-

specific expression of enhanced green fluorescent protein (EGFP)

during embryonic and larval development. In addition to the

identification of Oxygonum sinuatum (Meisn.) Dammer (Polygona-

ceae) and Plectranthus barbatus Andrews (Lamiaceae) as anti-

angiogenic extracts [24], we found that the methanolic extract

of the aerial parts of R. viscosa inhibited intersegmental vessel (ISV)

outgrowth in fli-1:EGFP embryos in a concentration-dependent

manner (Figure 2). In order to rapidly localize the compounds

responsible for the bioactivity, high-resolution HPLC-based

bioassay-guided fractionation of the extract was performed using

the zebrafish vascular outgrowth assay given its higher throughput

and lower assay volume compared to the lipopolysaccharide

(LPS)-enhanced leukocyte migration assay.

Generic Chromatographic Procedure for Optimal One-
step Microfractionation of NP Extracts for the Rapid
Localization of Bioactive Constituents
For the rapid isolation and identification of the bioactive

constituents of R. viscosa we developed a generic chromatographic

procedure which combines (1) ultra high pressure liquid chroma-

tography – photo diode array – time of flight mass spectrometry

(UHPLC-PDA-TOFMS) for extract profiling, (2) gradient transfer

for one-step separation on semi-preparative HPLC and (3)

microfractionation for a rapid collection of all LC peaks for

further bioactivity assessment (Figure 3).

UHPLC-PDA-TOFMS Profiling and Dereplication
Initially, a metabolite profiling at the analytical scale was

performed with microgram amounts of crude extract on UHPLC-

PDA-TOFMS to evaluate the extract complexity. This method

combines high-resolution separation on sub-2 mm particle col-

umns with high-resolution MS detection, which provides molec-

ular formula information for all analytes on-line [25]. For this

generic profiling, the separation was achieved on an enriched

extract with optimal conditions for maximal peak capacity [26]

(Figure 3A). The metabolite profiling revealed a large number of

detected peaks to have PDA spectra corresponding to polyphenols

with molecular weights ranging from 250 to 450 Da. Most of the

PDA spectra were characteristic for either flavones or isoflavones,

both known to be present in the Fabaceae family [27]. The high-

resolution MS data gained from the UHPLC-PDA-TOFMS

analysis provided molecular formula information for all detected

LC peaks giving a first overview of the extract composition. This

preliminary structural information was later used in combination

with the bioassay results for the dereplication of the bioactive

constituents.

Determination of Generic Parameters for
Microfractionation
In order to rapidly determine which compounds were

responsible for the bioactivity of the enriched extract, a

microfractionation strategy was developed to enable the acquisi-

tion of fractions in 96-well plate format with sufficient quantities

Figure 1. Anti-inflammatory activity of the methanolic extract of Rhynchosia viscosa. Anti-inflammatory activity was determined in an acute
inflammation assay based on tail transection and treatment with lipopolysaccharides (LPS). A to D, zebrafish larvae are 4 days post-fertilization (dpf)
with anterior to the left, scale bar = 10 mm. After tail transection and LPS exposure, stained leukocytes appear as black-brown spots migrating to the
injured area in the transected tails. Migrating leukocytes were counted on one side in the tail in the region to the right of the dashed red arc and
migration values were expressed as relative leukocyte migration (RLM) (E). A, tail of an uncut larva; B, negative control (DMSO 1%); C, positive control
(indomethacin 100 mM) D, crude extract of R. viscosa at 50 mg/mL; E, graph displaying the RLM of 4 dpf larvae (n = 10) subjected to tail transection
and incubation with R. viscosa. RLM #0.5 was established as cutoff for anti-inflammatory activity. * p,0.05.
doi:10.1371/journal.pone.0064006.g001
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both for bioactivity testing (anti-angiogenic assay) and for

structural elucidation (high-resolution MS and 1H NMR analysis)

of the bioactive compounds at the analytical level, starting with

only a few milligrams of extract. According to the sensitivity of the

zebrafish anti-angiogenic assay which was deduced from several

known anti-angiogenic compounds with a range of in vivo

potencies in zebrafish including SU5416 and emodin [24], it

was estimated that the microfractionation procedure should yield

at least 1 mg per well for an initial tracking of the anti-angiogenic

activity over the entire chromatogram. On the other hand, since

compound identification was foreseen based on microflow 1H

NMR, it was necessary to keep a minimum of 5 mg for further

dereplication. In addition, as the bioassay is carried out in a 96-

well plate format that includes controls, the number of fractions

had ideally to be 90 or a multiple thereof.

In order to obtain 5–10 mg per microfraction, it was estimated

that 1.5 mg of enriched extract would be required. The loading

was multiplied by a factor of 10 to ensure that most of the activity

could be assessed and minor bioactive constituents could be

detected, factoring in the recovery of a given metabolite through

microfractionation on reversed phase (RP) columns is , 70% (see

Text S1). It was thus estimated that 20 mg of enriched extract

would be sufficient for the entire microfractionation procedure

and a column with an adapted loading capacity was selected. To

minimize sample handling, fractions were collected directly into

96-deepwell plates, facilitating the subsequent drying of all samples

at once by vacuum centrifugation, whereas a maximum volume of

1.2 mL of eluent per well had to be respected.

A column geometry of 250610 mm was found to be a good

compromise between loading capacity, HPLC resolution and

microfraction volumes. In order to fill the deepwells with adequate

eluent volumes and collect peaks with sufficient resolution, a

fraction collection time of 30 sec and a flow rate of 2.3 mL/min

were chosen.

Based on the gradient time constraints of the microfractionation

procedure (90 min6180 microfractions), corresponding gradient

time and flow rate were calculated for the analytical UHPLC

(gradient time 11.4 min, flow rate 306 mL/min). This was

necessary to optimize the gradient for the separation of the NPs

in a specific extract at the analytical scale. For a good

predictability of the separation efficiency between UHPLC and

semi-preparative HPLC, the same phase chemistry and columns

geometries with similar theoretical peak capacities [28] were

chosen (see Materials & Methods).

All of these steps are generic, as the procedure is adaptable for

any medium-polar extract compatible with RP separation.

Separation Optimization Specific to Rhynchosia viscosa
and Microfractionation
Since all generic parameters were fixed by the requirements of

the bioassay and the structure identification, only the solvent

system and the gradient needed to be adapted for profiling.

Therefore, the chromatographic gradient method for the micro-

fractionation was optimized on UHPLC-PDA-TOFMS by adapt-

ing the generic profiling gradient to maximize mixture component

resolution over the run time allowed by the collection. In the case

of R. viscosa, a linear gradient from 40% to 90% methanol (MeOH)

was optimal (Figure 3B) (see Materials & Methods). This gradient

was directly transferred to the semi-preparative system. The

enriched extract (19.8 mg) was chromatographed in one step

(Figure 3C) and 180 microfractions were generated and collected

into 96-deepwell plates. Each microfraction (1.15 mL total

volume) was divided into three aliquots: for the zebrafish

angiogenesis assay (115 mL, 10% of the total volume, aliquot A);

for LC-MS analysis (11.5 mL, 1% of the total volume, aliquot B);

and for microflow NMR analysis (ca. 1.12 mL, 89% of the total

volume, aliquot C).

Figure 2. Anti-angiogenic activity of the methanolic extract of Rhynchosia viscosa. Inhibition of vascular outgrowth was determined in fli-
1:EGFP transgenic embryos. At 16 hours post-fertilization (hpf), embryos were incubated with different concentrations of the methanolic extract of
the plant and anti-angiogenic effects were assessed at 48 hpf. A to C, all embryos are 48 hpf, with anterior to the left, scale bar = 10 mm. A, untreated
control (DMSO 1%); B, zoom of A (dashed box) showing normal outgrowth of intersegmental vessels (ISV) along the trunk of the larva (arrows); C,
embryo treated with 50 mg/mL crude methanolic extract of R. viscosa. Inhibition or reduction of ISV growth is observed along the trunk (arrows); D,
IC50 curve and values showing the inhibitory activity of the methanolic extract of R. viscosa.
doi:10.1371/journal.pone.0064006.g002
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Figure 3. Generic procedure for the rapid identification of bioactive constituents from medium polar plant extracts. A, Generic ultra
high pressure liquid chromatography – photo diode array – time of flight mass spectrometry (UHPLC-PDA-TOFMS) chromatogram. UHPLC conditions:
Acquity BEH C18 column (15062.1 mm i.d., 1.7 mm); A: 0.1 vol% formic acid (FA)-H2O, B: 0.1 vol% FA-acetonitrile, 5–95% B in 309; 0.46 mL/min; ESI-MS
detection in negative ion (NI) mode; B, Optimized UHPLC-PDA-TOFMS chromatogram for methanolic extract of R. viscosa. UHPLC conditions: Acquity
BEH C18 column (10062.1 i.d., 1.7 mm); A: 0.1 vol.% FA-H2O, B: 0.1 vol% FA-methanol (MeOH), 40–90% in 11.49; 0.306 mL/min, ESI-MS detection in NI

Microscale Natural Product Discovery in Zebrafish
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Anti-angiogenic Screen of Microfractions
Microfractions were screened for anti-angiogenic activity using

the zebrafish-based vascular outgrowth assay described above. In

an initial screen, 60% of each aliquot A (equivalent to 70 ml of the
original 115 ml) was used. Inhibition was observed as the absence

or reduction of vascular outgrowth. Microfractions inducing

complete inhibition of vascular outgrowth or embryonic toxicity

were tested at one third of this concentration (20% of each aliquot

A, equivalent to 23 ml of the original 115 ml). This in vivo biological

profiling revealed six main chromatographic zones containing

anti-angiogenic compounds at high concentration (30.0–33.0 min,

54.5–55.0 min, 56.5–57.0 min, 60.5–61.0 min, 66.5–68.5 min,

71.5–72.5 min and 79.5 min) (Figure 3D). When testing at the

lower concentration, only four zones (30.0–33.0 min, 54.5–

55.0 min, 56.5–57.0 min and 60.5–61.0 min) were still active

(data not shown). To rapidly identify the constituents responsible

for the anti-angiogenic activity and to estimate the amount tested

in the corresponding microfractions, 1H NMR spectra were

recorded using microflow NMR.

Rapid Compound Identification in Bioactive
Microfractions
In the first active chromatographic zone, ten consecutive

microfractions were found to inhibit angiogenesis (80–100%

inhibition of vascular outgrowth at high concentration). The MS

data recorded during microfractionation indicated a nominal mass

of m/z 269 [M-H]– for the main compound eluting in this region.

The corresponding exact mass recorded during the UHPLC-PDA-

TOFMS profiling of the extract was m/z 269.0461 (compound a)
indicative of the molecular formula C15H10O5 (calc. m/z

269.0450, D 4.1 ppm). This was also validated by application of

heuristic filtering [29,30] (see Materials & Methods). A cross

search with this molecular formula and with chemotaxonomic

information (Fabaceae, Leguminosae) in the Dictionary of Natural

Products (DNP) [31] revealed that a could correspond to 7,39,49-

trihydroxyflavone or 5,7,49-trihydroxyisoflavone (genistein). In

addition, the PDA spectrum presented an absorption maximum

(lmax) at 260, 290 sh and 325 sh nm characteristic for isoflavones

such as genistein. Compound a was easily confirmed to be

genistein (Figure 4) by the comparison of the 1H NMR spectrum

of the corresponding microfraction obtained by microflow NMR

(CapNMRTM) with literature values [32]. In all the fractions

collected in the 30.0–33.0 min region, the 1H signals of genistein

were present confirming it to be responsible for the in vivo anti-

angiogenic activity observed (Figure 3D).

The last two microfractions in this first zone contained another

constituent with m/z 299.0549 (compound e) consistent with the

molecular formula C16H12O7, and possibly another isoflavone

derivative based on the dereplication by TOFMS and PDA (calc.

m/z 299.0556, D 2.3 ppm, lmax 260, 290 sh, 340 sh nm). The

identification of this isoflavone was based on interpretation of the

corresponding additional 1H signals to those of genistein in this

microfraction. The presence of a methoxy substituent (d 3.90) was

revealed and its position at C-39 was confirmed by comparison

with reported data [33]. The molecule was finally identified as 39-

O-methylorobol. Further bioactivity analyses were not undertaken

for this constituent as the molecule was not isolated as a pure

compound but only in a mixture with genistein.

In the second active zone of the chromatogram, the two

microfractions contained one single constituent (compound b)
with m/z 477.1195 ([M-H]– C26H22O9, calc. m/z 477.1186, D
1.9 ppm). A database search yielded six NPs with this molecular

formula but none were isolated from Fabaceae species, nor were

they consistent with the 1H NMR spectrum of b. The complete

structure of this polyphenol could not be determined de novo only

based on these data. The compound was named rhynchoviscin

and its full structural identification is discussed below in the section

‘‘De novo identification of the novel compound b’’.

In the third zone, the two microfractions contained another

constituent (compound c) with m/z 351.0886 ([M-H]–, C20H16O6,

calc. m/z 351.0869, D 2.0 ppm) and with aromatic 1H signals

typical of an isoflavone. This molecular formula matched with

more than 100 possibilities in DNP and no hypothesis could be

deduced. The 1H NMR spectrum in deuterated methanol

(methanol-d4) was consistent with the configurational isomers

licoisoflavone B and sophoraisoflavone A. An additional experi-

ment by re-dissolution of the microfraction in acetone-d6
confirmed that it was sophoraisoflavone A (Figure 4) by

comparison of the 1H chemical shift of 5-OH (d 13.07) [34].

In the fourth zone, two microfractions contained one major

constituent (compound d) with m/z 353.1037 ([M-H]–, C20H18O6,

calc. m/z 353.1025, D 3.4 ppm) consistent with prenylated

isoflavone derivatives. Beside the aromatic protons characteristic

for isoflavones, 1H signals characteristic for a prenyl group were

detected (two methyl signals (d 1.66 and 1.77) correlating to a vinyl

proton (d 5.25) and further connected to a downfield-shifted

methylene group (d 3.38), as determined by 2D NMR).

Comparison of chemical shifts with literature data [35] confirmed

d to be licoisoflavone A (Figure 4).

At the high concentration, three more active zones were

detected for compounds eluting after 66 min (Figure 3D). No

exploitable NMR spectra could be recorded (no aromatic signals

were detected) in the corresponding microfractions, and the

activity was not seen when tested at the low concentration. These

microfractions were not further studied.

Quantification of Bioactive Molecules and Correlation
with Anti-angiogenic Activity
To rapidly evaluate the potency of the bioactivity measured, a

reliable estimation of the concentration present in each tested

microfraction was made. In order to be generic and not have to

depend on standards, NMR was used for quantification. Micro-

flow NMR was found to be well-suited for the limited sample

amounts present in the microfractions.

mode; C, Semi-preparative high performance liquid chromatography (HPLC) chromatogram for the microfractionation of the enriched extract of R.
viscosa. HPLC conditions: XBridgeTM BEH C18 column (250610 mm i.d., 5 mm); A: 0.1 vol.% FA-H2O, B: 0.1 vol% FA-MeOH, 40–90% in 74.99; 2.3 mL/
min; ESI-MS detection in NI mode. The chromatographic gradient is geometrically transferred using mathematical models to obtain a comparable
elution of extract constituents. Fractions were collected every 30 s directly into 96-deepwell plates. The so generated microfractions were aliquoted
for anti-angiogenic screening (10% aliquot A), for fast LC-MS analysis (1%, aliquot B), and for NMR analysis (89%, aliquot C); D, Anti-angiogenic screen
on 180 microfractions generated by microfractionation. Positive bars show inhibition of angiogenesis of microfractions tested at high concentration;
negative bars show inhibition of angiogenesis of selected microfractions at 25 mM. The concentration was determined by quantitative NMR (qNMR)
(H); E, Determination of IC50 using the quantitative information obtained by qNMR (H); F, On-line PDA and high-resolution MS information from (A)
for the dereplication of plant constituents; G, 1H NMR spectra using the CapNMRTM probe for structure confirmation of bioactive constituents; H,
Integration of well resolved aromatic protons for quantification of bioactive constituents to establish the potency of the anti-angiogenic and anti-
inflammatory activity of the targeted compounds (D, E).
doi:10.1371/journal.pone.0064006.g003
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Quantitative Microflow NMR
For NMR quantification a strategy that does not alter the

sample by addition of an internal standard was favored so that any

interference with bioassays is avoided. In this respect, a

quantitative NMR (qNMR) method using an external calibration

(PULCON [17]) was used. Further information on PULCON and

the validation of the qNMR method are given in the Text S2.

Overall, the microflow qNMR method (1) provides a universal

detection, (2) provides accurate estimation of sample amount in

the microgram range without need of any reference compounds,

and (3) is compatible with in vivo bioassays enabling fast and

reliable identification of bioactive NPs.

Quantification of Bioactive Constituents of Rhynchosia
viscosa
The optimized qNMR parameters were used for the acquisition

of the 1H NMR spectra of R. viscosa and thus, within the same

experiment, both identification and quantitative information could

be obtained for all microfractions displaying anti-angiogenic

activities. The proton signal chosen for quantification of all the

polyphenols corresponded to an aromatic proton signal on cycle B

well isolated from interfering signals (Figure 3H). Quantifiable

amounts were between 3 and 90 mg per microfraction. A

maximum analysis time of 50 min (128 transients) was found to

be a good compromise between throughput and detection limits.

For the bioactive compounds (a to d), the microfractions

containing the greatest amounts were the following: a (32.5 min,

87 mg), b (54.5 min, 50 mg), c (56.5 min, 35 mg), d (61.0 min,

55 mg). These sub-milligram amounts could be readily converted

into precise concentrations for determination of IC50 values in the

bioassays, since molecular weight in each case was known from the

LC-MS results. Thus, even at this stage, a good estimation of the

bioactive potency of the unknown compound b could be

established.

Assessment of the Purity of Microfractions by Fast
UHPLC-PDA-TOFMS
Prior to bioassay analysis and in parallel to NMR analysis, the

purity of the microfractions selected for IC50 measurements was

also determined using a fast UHPLC-PDA-TOFMS analysis using

aliquot B kept from the microfractionation (see above). This

revealed that the microfractionation generated always at least one

microfraction containing only one constituent for compounds a to

d. This also validates the reasoning to choose a collection strategy

of 30 sec per microfraction.

This indicated that the strategy chosen was able to rapidly

generate pure microfractions with well-defined quantities of

compounds to be evaluated biologically in the low microgram

range.

Anti-angiogenic and Anti-inflammatory Activity of
Compounds a to d
In the initial screen of the microfractions, a rapid localization of

the bioactive constituents in the extract could be efficiently

established (Figure 3D). This screen, however, provides informa-

tion on how the initial activity of the extracts is distributed among

its constituents based on their relative abundance in the extract.

Now, since the purity and the amount of each compound in each

microfraction is known from qNMR and MS analysis, a reliable

evaluation of the potency of the activity could be performed for the

determination of IC50 values.

For this, aliquot C of each microfraction (89% of the original

1.15 ml, which was previously used for NMR analysis) was

recovered and used to make a fixed-concentration solution in

dimethyl sulfoxide (DMSO) to perform a concentration-response

analysis and determine IC50 values for anti-angiogenic activity for

compounds a to d. Genistein (a) and licoisoflavone A (c) displayed
similar levels of potency, with IC50 values of 24.2 mM and

16.7 mM, respectively. Sophoraisoflavone A (d) and rhynchoviscin

(b) were less potent but still clearly anti-angiogenic, with IC50

values of 50.7 mM and 41.3 mM, respectively (Figure 5). All four

Figure 4. Anti-angiogenic constituents of methanolic extract of Rhynchosia viscosa. Compounds a and c exhibit anti-angiogenic and anti-
inflammatory activity.
doi:10.1371/journal.pone.0064006.g004
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compounds phenocopied the anti-angiogenic effects of the

R. viscosa extract in this assay (Figure 2).

Since the crude extract also exhibited anti-inflammatory

activity, compounds a to d were also assessed using the LPS-

enhanced leukocyte migration assay in zebrafish larvae. Moderate

but significant inhibition of leukocyte migration was observed for

genistein and sophoraisoflavone A at 12.5 and 25 mM (Figure 6B–

C). Intriguingly, no significant anti-inflammatory activity was

observed for licoisoflavone A or rhynchoviscin, indicating some

structure-dependent activity differences between these related

compounds (data not shown).

Genistein, an isoflavone synthesized by Fabaceae species and

usually derived from soybeans, inhibits the tyrosine kinases EGFR

(epidermal growth factor receptor), pp60v2src, and pp110gag2fes at

pharmacological doses, with negligible effects against serine/

threonine kinases such as protein kinase A, protein kinase C, and

phosphodiesterase [36]. With regard to its role in inflammation,

genistein inhibits LPS-induced nitrite production by cultured

macrophages and protects against LPS-induced necrosis by

reducing nitric oxide release via the downregulation of inducible

nitric oxide synthase [37]. Genistein also inhibits leukocyte-

endothelium interaction, thereby modulating vascular inflamma-

tion, and reduces reactive oxygen species (ROS) by attenuating the

expression of ROS-producing enzymes [38].

Regarding its role in angiogenesis, genistein as well as other

isoflavones are known to inhibit mammalian endothelial cell

proliferation and migration in vitro [39,40]. In vivo, genistein has

been found to inhibit angiogenesis in mouse models of melanoma

and breast cancer [41] and to inhibit retinal neovascularization, as

well as to downregulate vascular endothelial growth factor (VEGF)

and hypoxia-inducible factor (HIF1a) expression, in a mouse

model of oxygen-induced retinopathy [42].

To date, no anti-angiogenic or anti-inflammatory activity has

previously been reported licoisoflavone A and sophoraisoflavone

A.

In the initial screen, the inhibition of angiogenesis was

dependent on the original amount of each constituent in the

extract. The qNMR results enable the correlation of compound

amounts with bioactivity. For genistein, the analysis revealed the

anti-angiogenic activity of each microfraction to correlate well

with its calculated amount and thus the bioactivity profile in the

initial screen had a direct quantitative link with this compound.

For compounds b, c and d, similar activities were observed in the

primary screen for microfractions containing these pure com-

pounds, and these results were consistent with the subsequent IC50

analysis for each molecule – indicating the ability of this in vivo

approach to identify microgram-level quantities of NPs possessing

only moderate levels of bioactivity.

De Novo Identification of the Novel Compound b
During the first phase of dereplication and microfractionation

compound b could not be identified. Given that no phytochemical

analysis has been reported for R. viscosa and that the anti-

angiogenic activity of b was moderate, large scale isolation using a

MS-targeted fractionation yielded 420 mg of b. The NMR spectra

of b obtained from the large scale isolation matched the ones

obtained during the first microfractionation. A splitting of some of

the NMR signals was indicative of the possible presence of two

Figure 5. Bioactive compounds of Rhynchosia viscosa in the vascular outgrowth assay. IC50 curves and values were determined for each of
the bioactive constituents of the methanolic extract of R. viscosa. Each compound, at six different concentrations, was assessed for their effect in the
inhibition of intersegmental vessel (ISV) growth. A to F, all embryos are 48 hours post-fertilization (hpf), with anterior to the left, scale bar = 10 mm. A,
untreated control (DMSO 1%); B, zoom of A (dashed box) showing normal outgrowth of intersegmental vessels (ISV) along the trunk of the larva
(arrows); C, embryo treated with 50 mM genistein; D, embryo treated with 100 mM rhynchoviscin; E, embryo treated with 50 mM licoisoflavone A; F,
embryo treated with 50 mM sophoraisoflavone. Arrowheads point the interconnection zone between the dorsal aorta and the posterior cardinal vein,
arrows point the ISV; G, IC50 curves and values (mM) for each of the bioactive compounds of R. viscosa.
doi:10.1371/journal.pone.0064006.g005
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isomers. Attempts to separate these two isomers using high-

resolution isocratic conditions were not fruitful and structure

identification was thus performed on the mixture by extensive 2D

and 13C NMR spectroscopy (Figure S1).

Proton and carbon signals were assigned with the help of 1H,

COSY, HSQC, HMBC (short and long range) and APT

experiments recorded in deuterated DMSO (DMSO-d6).

The 1H NMR spectrum showed signals of two 1H pairs of a 4-

oxy-phenyl group at dH 7.20/7.24 (d, J = 8.6 Hz) and 6.74 (d,

J = 8.6 Hz), a tetra-substituted phenyl ring with the two proton

signals at dH 6.09 (d, J = 1.4 Hz) and 5.96 (d, J = 1.4 Hz), a penta-

substituted aromatic ring with a proton at dH 5.94, a dihydrofuran

ring substituted by two tertiary methyl and a secondary methyl

group (dH 0.94/0.97 (3H, s), 1.18/1.21 (3H, s), 1.24/1.26 (3H, d,

J=6.4 Hz) and 4.40/4.47 (1H, q, J=6.4 Hz)) and five hydroxyl

groups (dH 6.19/6.23 (1H, s), 9.38 (1H, brs), 9.63 (2H, brs) and

12.09 (1H, brs)). These signals were consistent with the skeleton of

a benzodihydrofuran fused to a benzodihydropyran with a phenyl

ring attached to the junction between furan and pyran ring

(Figure 4). This skeleton has been found in biflavonoids from

Daphne giraldii [43].

A long-range HMBC experiment showing a correlation

between the carbon C-2’’ and the hydroxyl group 3-OH as well

as H-6’’ and H-4’’ protons confirmed that the tetra-substituted

ring is linked to the dihydrofuran with the hydroxyl group 3-OH.

On the other side, 3JCH HMBC correlations between carbon C-6

with H-8 and the tertiary methyl groups attached the dihydrofuran

to the penta-substituted aromatic ring. Its linkage in position 6, 7

(instead of 5, 6) was confirmed by the downfield shift of the

hydroxyl proton (5-OH) at dH 12.09 indicating a hydrogen bridge

between 5-OH and the carbonyl C-4.

Several peaks (H-5’’’, H-4’’’, H-3’’’, H-2’’’, H-6’’, 3-OH, H-2’,

H-6’) were doubled and the carbon atoms affected were located on

the methylated dihydrofuran ring (C-1’’’ – C-5’’’), the phenol

moiety (C-1’ – C-6’) and the bridged carbon atoms between the

dihydropyran and the dihydrofuran ring (C-2 and C-3). This could

indicate that stereoisomerism is located at the bridge between the

dihydropyran and the dihydrofuran rings as observed for similar

biflavonoids where the structure was established by X-ray on the

co-crystals of the stereoisomeric mixture [43]. Thus, b corresponds

to a very rare skeleton and this new compound was named

rhynchoviscin; its structure as well as the ones of a, c, d and e are

given in Figure 4.

Conclusion
The known anti-inflammatory and anti-angiogenic activities of

genistein provide an initial validation of our NP discovery

approach. We used in vivo zebrafish-based assays to screen crude

plant extracts and subsequently, perform UHPLC-PDA-TOFMS

profiling and bioassay-guided microfractionation to isolate the

bioactive constituents of R. viscosa. These were then structurally

elucidated via high-resolution MS and microflow NMR.

Applying this generic miniaturized procedure, the phytochem-

ical analysis and the generation of microfractions for biological

evaluation of an NP extract and its individual constituents is

feasible within one day. An initial evaluation of the biological

profile of a given NP extract and its constituents is therefore

achievable within approximately one week in high-content

zebrafish-based bioassays.

This strategy represents a substantial acceleration of the NP-

based drug discovery process and allows valuable resources

required for the isolation of larger amounts of bioactive molecules

for testing in mice to be dedicated only towards extracts having

already demonstrated promising bioactivity in vivo at the micro-

gram scale.

The key advantages of this approach are the microgram scale at

which both biological and analytical experiments can be

performed and the speed and the rationality of the bioassay-

guided fractionation, which are generic for NP extracts of diverse

origin, and require only limited sample-specific optimization [44].

Moreover, TOFMS and microflow NMR data enable dereplica-

tion early in the NP discovery process, and the systematic use of

in vivo assays enables the identification of natural products with

Figure 6. Anti-inflammatory effect of genistein and sophoraisoflavone A. A to C, zebrafish larvae are 4 dpf (days post-fertilization) with
anterior to the left, scale bar = 10 mm. Migrating leukocytes were counted on one side in the tail in the region to the right of the dashed red arc and
migration values were expressed as relative leukocyte migration (RLM) (C). A, negative control (DMSO 1%); B, genistein 25 mM; C, sophoraisoflavone
A 25 mM; D, graph displaying the RLM in 4 dpf larvae (n = 10) after treatment with genistein and sophoraisoflavone A. RLM #0.5 was established as
cutoff for anti-inflammatory activity. * p,0.05.
doi:10.1371/journal.pone.0064006.g006
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novel bioactivities that to date could not readily be determined

through traditional assays.

In addition to genistein, bioactive constituents of R. viscosa

included licoisoflavone A and sophoroisoflavone A – isoflavone

derivatives that are structurally closely related. The novel

compound identified by this study, rhynchoviscin, indicates the

potential of this integrated approach to also identify bioactive NPs

that occur only in limiting quantities, and which have only

moderate bioactivity. Overall, these initial results demonstrate the

potential of zebrafish bioassay-guided microfractionation, in

combination with high-resolution MS and sub-milligram NMR

techniques, to rapidly identify bioactive NPs and to quantitatively

determine their in vivo bioactivity.

Materials and Methods

Ethics Statement
Permission to collect R. viscosa was granted by the Muhimbili

University of Health and Allied Sciences in Dar es Salaam,

Tanzania. Permission by local or federal government authorities

was not required to collect this species on public land.

Furthermore, as R. viscosa is not a protected or endangered

species, the collection of this species for any purpose, including for

scientific research, is not regulated.

All animal procedures were performed in accordance with

Belgian and European Laws, guidelines and policies for animal

experimentation, housing and care (Belgian Royal Decree of 6

April 2010 and European Directive 2010/63/EU on the

protection of animals used for scientific purposes of 20 October

2010). This project was approved by the Animal Ethics Committee

of the University of Leuven (approval number P101/2010).

General Experimental Procedures
Molar extinction coefficients were determined on a Perkin

Elmer UV/VIS Lambda 20 spectrometer and calculated based on

the quantities determined by NMR.

Chemicals & Compounds
Solvents used for sample preparation were MeOH from VWR

(HiPerSolv CHROMANORM), ultrapure water (Direct-Q 3 UV

water purification system, Millipore), and dichloromethane (DCM,

VWR). For the HPLC isolation step, solvents were HPLC grade

MeOH Chromanorm from VWR, formic acid (FA, 98%) from

Fluka and ultrapure water (Millipore). ULC/MS grade MeOH,

acetonitrile (ACN), H2O and FA (99%) from Biosolve was used for

the UHPLC-PDA-TOFMS analyses. For the NMR experiments,

methanol-d4 (99.8% atom deuterium), acetone-d6 and DMSO-d6
(99.9% atom deuterium) was obtained from Armar Chemicals and

Cambridge Isotope Laboratories Inc. respectively. Genistein (99%

pure) was obtained from Acros Organics and maleic acid

(ReagentPlusH .99.0%) from Sigma-Aldrich. For the bioassays,

1-phenyl-2-thiourea (PTU) and tricaine (ethyl 3-aminobenzoate)

were purchased from Sigma-Aldrich, DMSO from Acros Organ-

ics.

Plant Material, Extraction, Prepurification
Rhynchosia viscosa (Roth) DC. was collected on public land in

Tabora, Tanzania and a voucher specimen (number HOS 3119)

was deposited at the Faculty of Pharmacy of the Muhimbili

University of Health and Allied Sciences (MUHAS), Dar es

Salaam, Tanzania. The plant material was dried at room

temperature and ground. The dry, powdery plant sample was

exhaustively extracted with MeOH by maceration. The dry

methanolic extract was obtained after removing the solvent by

evaporation under reduced pressure. Prior to testing, an aliquot of

the dry methanolic extract was suspended in 100% DMSO; this

stock solution was then kept at -20uC.
The crude methanolic extract of R. viscosa was dissolved in 80%

aq. MeOH and purified by SPE (ZEOprep 60, C18, 40-63 mm,

Zeochem AG) using 80% aq. MeOH. Then, the sample was

solubilized in 95% aq. MeOH and eluted over a polyamide-filled

cartridge with 95% aq. MeOH that was pre-conditioned with

MeOH and 95% aq. MeOH [45] to remove tannins from the

extract. The sample was evaporated to dryness under reduced

pressure and a reddish solid as well as an orange oil was obtained.

This sample was extracted with DCM for enrichment and the

remaining part was used for microfractionation.

Microfractionation by Semi-preparative LC-MS
The enriched extract (19.8 mg) was redissolved in pure MeOH,

filtered over a 0.45 mm Nylon 66 syringe filter (BGB Analytik AG)

and fractionated by means of semi-preparative HPLC. The

gradient method was transferred using HPLC Calculator v3.0

[28]. The separation was accomplished on a Varian modular

HPLC system with a Varian 9012 pump coupled through a

Thermo Scientific electrospray ionization (ESI) interface to an ion

trap mass spectrometer instrument (LCQ, Thermo Scientific) and

a UV detector (at 254 nm, 2151 variable wavelength monitor,

LKB Bromma) to monitor the separation. A splitter enabled

50 mL/min of the flow coming from the HPLC to enter the mass

spectrometer. The following negative ionization-ESI (NI-ESI)

conditions were used: capillary temperature, 200uC; capillary

voltage, 238 V; spray voltage, 3 kV; tube lens offset, 23 V. The

acquisitions were performed in NI mode using a full scan mode

over an m/z range of 150–1000. An in-source fragmentation

energy of 5 V was applied. The separation was performed on a

250610 mm i.d., 5 mm, XBridgeTM BEH C18 column (Waters) in

gradient mode at 2.3 mL/min with the following solvent system:

A=0.1 vol% FA-H2O, B=0.1 vol% FA-MeOH; 40% B for

3.4 min and 40–90% B in 74.7 min and 90% B for 12 min. The

injected volume was 500 mL. Fractions of 1.15 mL were collected

every 30 s with a Gilson FC204 Fraction Collector directly into

conical-bottom 96-deepwell plates (VWR). An aliquot of each

microfraction (115 mL; 10% of the total microfraction volume,

aliquot A) from the semi-preparative isolation step was transferred

to a 96-well plate (Nunc, V96, PP, 0.45 mL), dried in a vacuum

centrifuge (Genevac HT-4X, Genevac Inc.) and used for

bioactivity testing in zebrafish. Another aliquot of each micro-

fraction (11.5 mL; 1% of the total microfraction volume, aliquot B)

was transferred to a 96-well plate (Nunc, V96, PP, 0.45 mL),

diluted to 200 mL with 85% aq. MeOH, sealed and stored at 5uC
for further purity check by UHPLC-PDA-TOFMS.

UHPLC-PDA-TOFMS Experiments
UHPLC-PDA-TOFMS analyses were performed using an

AcquityTM UPLC chromatograph and a Micromass-LCT Premier

Time of Flight mass spectrometer equipped with an ESI interface

(Waters). For the profiling of the crude extract, analyses on the

generic gradient method were performed using a 15062.1 mm

i.d., 1.7 mm, Acquity BEH C18 UPLC column (Waters). For the

optimized gradient method, a 10062.1 mm i.d., 1.7 mm, Acquity

BEH C18 UPLC column (Waters) was used and for the verification

of the purity and identity of the microfractions, a short analysis was

performed on a 5062.1 mm i.d., 1.7 mm, Acquity BEH C18

UHPLC column (Waters). The analysis conditions are given in

detail in the Text S1.
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Dereplication Procedure
The procedure published by Funari et al. [29] was used for the

dereplication of compounds in the crude extract and identification

of the isolated compounds. For the database search (DNP,

SciFinder), hits were refined by searching for compounds isolated

from Fabaceae species. More details on the dereplication

procedure are given in the Text S1.

Quantitative Microflow NMR Measurements
NMR spectra of the microfractions were recorded on a Varian

INOVA 500 MHz NMR instrument at 25uC, equipped with a

microflow NMR probe (CapNMRTM) and an automated sample

injection unit (One Minute-NMRTM) from Protasis. Remaining

amounts of microfractions (89% of the total microfraction volume,

aliquot C) were diluted in 10 mL of methanol-d4 whereof 8 mL
were injected.

For the quantitative studies, the relaxation delay T1 was

experimentally determined for all protons of genistein to choose

the recycle delay for qNMR acquisition and to determine the 1H

signals suitable for quantification. The protons on cycle B

(T1 = 2.0–2.3 s) and C (T1 = 2.7 s) were fully recovered (time

.5*T1) within a recycle delay of less than 15 s, whereas the

protons on cycle A were only fully recovered after 25 s. A recycle

delay of 20 s was set for qNMR experiments and well resolved 1H

signals on cycle B were chosen for quantification. The optimal

pulse width at 90u was arrayed (at 360u) for every individual

sample and lays between 4.1 and 4.2 ms. FIDs were Fourier

transformed with LB= 0.3 Hz. The resulting spectra were

manually phased, baseline corrected using a 1st order polynomial

function and calibrated to the residual methanol peak at 3.31 ppm

using MestReNova (version 6.01, Mestrelab Research S.L.) The

signals were integrated manually and the concentration was

determined using PULCON [17]. Maleic acid was used as

external standard.

Zebrafish
The transgenic line fli-1:EGFP [23] was obtained from the

Zebrafish International Resource Center at the University of

Oregon (Eugene, Oregon, USA). Zebrafish husbandry, embryo

collection, and embryo and larva maintenance were performed as

previously described [46,47]. For the leukocyte migration assay,

zebrafish embryos at one day post fertilization (dpf) were exposed

to 1-phenyl-2-thiourea (PTU) to suppress melanization (Text S1).

For this assay and for confocal imaging, larvae were anesthetized

with tricaine (Text S1).

The leukocyte migration assay was performed in 24-well

microtiter plates using ten 4 dpf larvae per well in 1 mL of

Danieau’s medium (Text S1). The vascular outgrowth assay was

performed in 96-well microtiter plates using five embryos at 16

hours post-fertilization (hpf) per well in 200 mL of Danieau’s

medium. Extracts and compounds were solubilized in DMSO, and

were added to the Danieau’s medium up to a maximum DMSO

concentration of 1%.

Anti-inflammatory Assay
Prior to assessment of the anti-inflammatory activity of R. viscosa

and its derivatives, in vivo toxicological tests were performed to

establish the maximum tolerated concentration of each sample

(Text S1). Next, a LPS-enhanced leukocyte migration assay was

performed. Briefly, larvae were pre-incubated (1 hour at 28uC,
60.5) with specific concentrations of each sample. Negative

controls, containing only vehicle (1% DMSO), and positive

controls, indomethacin 50–100 mM, were processed in parallel.

After pre-incubation, larvae were anesthetized and subjected to

complete tail transection made 0.5 mm (60.2) from the tip of the

tail of each larvae under microscopy light (Carl Zeiss Stemi

2000C) using a scalpel. Next, tail-cut larvae were briefly rinsed in

Danieau’s medium without tricaine and incubated for seven hours

with specific concentrations of each sample containing 10 mg/mL

LPS (Salmonella typhosa ATCC 10749, Sigma-Aldrich). After this

incubation, larvae were fixed in 4% paraformaldehyde and kept

overnight at 4uC. Fixed larvae were gently washed with PBST

(PBS-1X phosphate buffered saline, Gibco +0.1% Tween 20) and

next subjected to incubation (15 minutes at room temperature)

with 1 mL of freshly prepared staining solution (LeucognostH Pox,

Merck). Evaluation of the migrating leukocytes to the injured

region was done in one side of each larva under light microscopy

and scoring of the migration was assessed according to a 5-point

index of staining intensity. The average of these values for each

experimental group were normalized against the average values of

the control group (1% DMSO) and expressed as RLM, which for

significant anti-inflammatory activity has a cutoff point of RLM

#0.5. All experiments were performed in duplicate, with ten

larvae per condition. Statistical analysis was done using GraphPad

Prism 5 software using one-way analysis of variance (ANOVA).

Angiogenesis Assay
Prior the initiation of ISV outgrowth, fli-1:EGFP embryos at

16 hpf were incubated (32 hours at 28uC, 60.5) with specific

concentrations of extracts and compounds. Negative controls,

containing only vehicle (1% DMSO) were processed in parallel.

The microfraction samples for biological profiling (aliquot A of

each microfraction) were dried, re-solubilized in 3 mL DMSO and

diluted to 150 mL with Danieau’s medium, of which 90 mL were

used for a first screen. Microfractions with 100% inhibitory

activity or exhibiting toxicity were tested at a lower concentration

(1/3 of the initial concentration).

Inhibition of vascular outgrowth along the trunk of every larva

was evaluated under UV microscopy light (MZ10F Leica stereo

microscope) at 48 hpf and scoring of anti-angiogenic activity was

done according to a 5-point index for vascular outgrowth. The

average of the values for each experimental group was normalized

against the average of the values of the control group (1% DMSO),

yielding a relative vascular outgrowth (RVO) score that was then

expressed as percentage of inhibitory activity. All experiments

were performed in duplicate, with five larvae per condition.

Statistical analysis and IC50 curves were done using GraphPad

Prism 6 software using nonlinear regression to fit the data to the

log (inhibitor) vs. response curve (variable slope). Representative

embryos were subjected to confocal imaging (see below).

Confocal Imaging
Confocal imaging (Figure 2 and 5) was carried out using a

Nikon A1R confocal unit (Nikon) mounted on a Ti2000 inverted

microscope (Nikon). For the imaging, 46(0.2 N.A.) and

106(0.45 N.A.) lenses were used. For detecting the fluorescence

of the fish embryos, a 488 nm laser line (CVI Melles Griot) and

detection filters for the range of 515–550 nm were used. Confocal

stacks of the whole fish or the depicted regions were acquired and

projections of the maximum intensity of the 3D volume shown.

During imaging, zebrafish embryos were anesthetized using

0.1 mg/mL tricaine in Danieau’s medium.
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Novel Compound from Rhynchosia viscosa with Anti-
angiogenic Activity
Rhynchoviscin (b). Insufficient material was available to obtain

an optical rotation value. Purity: 80% (determined by NMR). UV

(MeOH) lmax (log e) 304 nm (4.39); 1H NMR (DMSO-d6,

500 MHz, CapNMRTM probe, dH): 0.94/0.97 (3H, s, H-5’’’),

1.18/1.21 (3H, s, H-4’’’), 1.24/1.26 (3H, d, J=6.4 Hz, H-3’’’),

4.40/4.47 (1H, q, J=6.4 Hz, H-2’’’), 5.90 (1H, d, J=1.4 Hz, H-

4’’), 5.99 (1H, s, H-8), 6.03/6.04 (1H, d, J=1.4 Hz, H-6’’), 6.19/

6.23 (1H, s, 3-OH), 6.74 (2H, d, J=8.6 Hz, H-3’/H-5’), 7.20/

7.24 (2H, d, J=8.6, H-2’/H-6’), 9.38 (1H, brs, 4’-OH), 9.63 (2H,

brs, 3’’-OH/5’’-OH), 12.09 (1H, brs, 5-OH). 13C NMR (DMSO-

d6, 500 MHz, CapNMRTM probe, dC): 13.8/14.3 (C-3’’’), 20.8

(C-5’’’), 24.5/25.4 (C-4’’’), 42.6 (C-1’’’), 80.3 (C-3), 90.4 (C-6’’),

90.4/90.6 (C-2’’’), 91.4/91.5 (C-8), 97.3 (C-4’’), 99.8 (C-4a), 105.6

(C-2’’), 113.0 (C-6), 114.5 (C-3’/C-5’), 117.1 (C-2), 124.6 (C-1’),

127.9/128.1 (C-2’/C-6’), 155.5 (C-3’’), 158.2 (C-4’), 161.0 (C-5’’),

161.5 (C-1’’), 163.9 (C-8a), 167.0 (C-7), 192.8 (C-4). ESI-MS (NI

mode): m/z 477.1195 [M-H]– (C26H22O9, calc. m/z 477.1186, D
1.9 ppm).

Detailed structure information on compound a, c, d and e can

be found in the Text S1. NMR spectra for rhynchoviscin are given

in Figure S1.

Supporting Information
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