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Elucidating the pathophysiology and molecular attributes of common disorders as well as developing targeted and ef-
fective treatments hinges on the study of the relevant cell type and tissues. Pancreatic beta cells within the islets of
Langerhans are centrally involved in the pathogenesis of both type 1 and type 2 diabetes. Describing the differentiated
state of the human beta cell has been hampered so far by technical (low resolution microarrays) and biological limitations
(whole islet preparations rather than isolated beta cells). We circumvent these by deep RNA sequencing of purified beta
cells from 11 individuals, presenting here the first characterization of the human beta cell transcriptome. We perform the
first comparison of gene expression profiles between beta cells, whole islets, and beta cell depleted islet preparations,
revealing thus beta-cell–specific expression and splicing signatures. Further, we demonstrate that genes with consistent
increased expression in beta cells have neuronal-like properties, a signal previously hypothesized. Finally, we find evidence
for extensive allelic imbalance in expression and uncover genetic regulatory variants (eQTLs) active in beta cells. This first
molecular blueprint of the human beta cell offers biological insight into its differentiated function, including expression of
key genes associated with both major types of diabetes.

[Supplemental material is available for this article.]

Phenotypic differences among cell types, individuals, and pop-

ulations (Stranger et al. 2007; Dimas et al. 2009; Nica et al. 2011)

are determined by variation in gene expression. A substantial

proportion of this variability is driven by DNA polymorphisms

residing in regulatory elements proximal or distal to the affected

genes (Price et al. 2011; Grundberg et al. 2012). Numerous such

variants have now been mapped for a variety of tissues, high-

lighting their tissue dependent properties and hence the acute

need for expression profiling of a diverse panel of cell types (Nica

et al. 2011; Grundberg et al. 2012). This became even more evident

in the context of functionally elusive results from genome-wide

association studies (GWAS), as transcript abundance has been

shown to provide a direct and causal link between genotype and

disease susceptibility (Emilsson et al. 2008; Nica et al. 2010). This

connection has been mostly attainable in disease-relevant tissues,

often in concordance with our present knowledge about the eti-

ology of complex diseases (Nica et al. 2011; Grundberg et al. 2012).

With the substantial improvement in the accuracy and resolution

of transcriptome profiling by direct RNA sequencing (RNA-seq)

(Montgomery et al. 2010; Pickrell et al. 2010), it is now possible to

explore these relations comprehensively in an unbiased manner,

with no theoretical limitation for dynamic range of expression

detection provided there is sufficient sequencing depth.

Insulin-secreting pancreatic beta cells within the islets of

Langerhans have been consistently involved in the pathogenesis

of diabetes via autoimmune mediated apoptosis (type 1 diabetes;

T1D) (Tisch and McDevitt 1996) or insulin deficiency (type 2 di-

abetes; T2D) (Saltiel and Kahn 2001). The genetic landscape of

both common forms of the disease has been substantially broad-

ened, with now over 60 known loci robustly associated with either

type 1 (Barrett et al. 2009) or type 2 diabetes (Morris et al. 2012). As

already attested (Gaulton et al. 2010), regulatory changes will

likely explain a proportion of these associations, but uncovering

them is entirely dependent on first describing the transcriptional

profile of the beta cell and understanding its genetic determinants.

In this context, we interrogate here the human beta cell tran-

scriptome in multiple whole-genome sequenced individuals and

uncover beta-cell–specific features in the context of other pan-

creatic endocrine cell types.

Results
Following ethical guidelines at the University Hospital in Geneva,

we obtained human islets from 11 cadaveric pancreata from in-

dividuals without documented diabetes (description in Supple-

mental Table 1). The islet preparations were of high purity (mean 6

SD: 84.6 6 10.3%) as measured by dithizone staining, indicat-

ing little contamination with exocrine tissue. The islet cells were

sorted by fluorescence-activated cell sorting (FACS) as previously

documented (Parnaud et al. 2008) in order to obtain a highly pu-

rified population of fully functional beta cells for each individual:

86.7 6 6.8% beta cell purity assessed by immunofluorescence

staining for insulin (INS). We identified any contaminating alpha
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and delta cells by costaining for glucagon (GCG) (4.4 6 3.4%) and

somatostatin (SST ) (2.7 6 0.8%). For five of the samples, we also

generated beta cell depleted ‘‘nonbeta’’ populations consisting

primarily of glucagon secreting alpha cells (59.8 6 14.1%), with

4.3 6 2.6% beta cells. RNA was extracted immediately after FACS

sorting from 23 cell preparations (11 beta, seven islet, and five

nonbeta), cDNA libraries constructed (Thomas and Ansel 2010),

and sequenced at very high depth.

We obtained a median of 209 million total reads (paired end,

49 bases) per sample (Supplemental Fig. 1a), attaining thus an

exceptional transcriptome resolution. The reads were mapped to

the latest version of the human genome assembly (GRCh37/hg19)

using BWA (Li and Durbin 2009) and subsequently filtered for

mapping quality and correct pairing. On average, 75% of the fil-

tered reads (median 121 million reads per sample) mapped to known

exons annotated by GENCODE (version 10) (Harrow et al. 2006). We

quantified all genes expressed in >90% of individuals in either of the

three cell type preparations (N = 19,975), normalizing the read counts

to exonic gene length and sequencing depth (reads per kilobase per

million [RPKM] mapped reads) (Mortazavi et al. 2008).

Principal component analysis (PCA) on RPKM units (Fig. 1A)

indicates that beta cells and islets cluster closely together and

markedly separate from nonbeta cells, with INS, insulin-like

growth factor 2 (IGF2), GCG, transthyretin (TTR), regenerating

islet-derived 1 alpha (REG1A), and SST driving most of this

separation (Supplemental Fig. 2). We notice a clear clustering of

the islet-derived RNA-seq data in the context of 18 other tissues

(obtained from Ambion’s FirstChoice Human Total RNA Survey

Panel and processed alike), with liver bearing most similarity to

the islet samples. Unsurprisingly, islet purity influences gene

expression (lowest purity preparation P786i clusters less well),

yet this effect is not very large in our samples of overall high

quality. To illustrate this, we quantified the proportion of true

positives estimated from the enrichment of significant P-values

(pi1) (Storey and Tibshirani 2003) resulting after correlating each

gene’s RPKM with purity (pi1 = 0–0.2) (Supplemental Fig. 3).

Overall, we observe a high ranked correlation between beta

cell and islet-expressed genes (rho = 0.94) (Fig. 1B), and we estimate

that 87% of the variance in beta cell gene expression can be

explained by using islet expression as proxy. Given the estimated

;75% beta cell composition of the human islet (Pisania et al. 2010)

and the quality of the material used for this study, the similarity

between these two cell types is not surprising. As expected, INS was

by far the most abundantly transcribed gene, followed by INS-IGF2

and IGF2, making up ;38%, 10%, and 2% of the total nuclear beta

cell transcriptome, respectively (Fig. 2A). The corresponding rela-

tive percentages are lower in the islet, by approximately twofold

(INS 21%, INS-IGF2 5.8%, IGF2 1.1%).

To uncover transcriptional signatures specific to beta cells, we

next tested for differential gene expression after appropriate sta-

tistical modeling of the raw counts (DESeq) (Anders and Huber

2010). When comparing the beta cell sequence count data to 18

non-islet tissues, we discovered 2980 differentially expressed (DE)

genes (;12% of genes tested) at 10% false discovery rate (FDR), 417

of which were significantly overexpressed in beta cells. These genes

underlie the general features of endocrine pancreatic activity

(DAVID) (Huang et al. 2009; Supplemental Table 2, enrichment

results). We next sought to identify beta-cell–specific genes only in

the context of the islet and its other hormone-producing cell types,

while controlling for islet purity (included as covariate). Of the

19,975 genes tested, we found 5555 DE genes between the beta cell

and islet preparations and 4380 DE genes when comparing beta

and nonbeta cells (Table 1A). The difference in power is due to

the smaller sample size of the nonbeta population and its greater

variance in composition of cell types. We find in both cases a larger

proportion (approximately two-thirds) of overexpressed genes

in the more heterogeneous of the cell populations compared

(log2 FoldChange > 0) (Fig. 2B,C). The remaining one-third of the

DE genes are significantly overexpressed in beta cells, with smaller

fold changes in islets as expected (log2 FoldChange mean 6 SD:

�1.06 6 0.37 islet/beta, �1.64 6 0.87 nonbeta/beta). Notably, we

observe a significant enrichment of annotated lincRNAs in beta

cell overexpressed genes, corroborating their cell-type–specific

expression properties reported previously in other tissues (Cabili

et al. 2011): We detect 132 overexpressed lincRNAs in beta versus

islet (1.59-fold enrichment over protein coding genes, Fisher’s

P-value: 1.1 3 10�4) and 148 overexpressed lincRNAs in beta versus

nonbeta (1.9-fold enrichment, Fisher’s P-value: 1.02 3 10�7). These

are likely underestimates as we limited ourselves to noncoding RNAs

currently present in the annotation (Morán et al. 2012).

To portray the unique biological

characteristics of beta cells in the islet

context, we defined a stringent ‘‘beta cell

specific’’ set of genes (N = 526) as the in-

tersection of the beta cell overexpressed

genes from the two pairwise comparisons

(1987 beta-islet and 1583 beta-nonbeta)

ranking in the following order of expres-

sion: beta > islet > nonbeta. Similarly, we

defined a set of ‘‘nonbeta cell specific’’

genes (N = 614) consistently and sig-

nificantly underexpressed in beta cells

(nonbeta > islet > beta). A functional an-

notation analysis reveals that beta-cell–

specific genes have neuron-like proper-

ties (Table 2), a similarity noted earlier in

studies implicating glucose-sensing hy-

pothalamic neurons in nutrient homeo-

stasis (Schwartz et al. 2000) or pancreatic

hormone release (Ahren 2000). Nonbeta-

cell–specific genes are mostly enriched

for cell surface components (N-glycopro-

Figure 1. High overall similarity between beta cell and islet gene expression. (A) PCA analysis of gene
RPKMs for beta (N = 11), islet (N = 7), nonbeta (N = 5) preparations, and 18 other tissues from unrelated
individuals. Beta cell and islet samples cluster together, separating from nonbetas. The other tissues
cluster separately, with liver being the most similar to the islet-derived RNA-seq data. (B) Scatterplot of
beta cell versus islet median RPKMs on log10 scale.
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teins) central to both intercellular and cell-environment commu-

nication (Danzer et al. 2012), secretory proteins (signal peptide),

and extracellular matrix components.

The two gene sets (‘‘beta’’ and ‘‘nonbeta’’) offer a more accu-

rate depiction of the transcripts that define the molecular identity

of the major islet cell types: Table 3 shows the top 30 beta and

nonbeta cell enriched transcripts, respectively, in descending order

of RPKM and fold change (RPKM > 1 cutoff was used). This ap-

proach successfully filters out highly expressed genes in contami-

nating cell types (e.g., SST, GCG from somatostatin, and glucagon

cells contaminating the beta cell population), otherwise mistaken

as key players in the expression signature of beta cells. In addition

to known beta-cell–specific transcripts (INS, IGF2, PDX1) we

highlight further targets, some featured already in a microarray

analysis of sorted islet cells (Dorrell et al. 2011b), e.g., RGS16,

negative regulator of G-protein signaling, involved in endocrine

pancreas development and re-expressed in adult cells in response

to GLP-1 (Villasenor et al. 2010); ADCYAP1, pituitary adenylate

cyclase activating polypeptide 1, involved in insulin secretion and

beta cell regeneration/proliferation (Sakurai et al. 2011); HADH,

hydroxyacyl-CoA dehydrogenase, negative regulator of insulin

secretion (Hardy et al. 2007) associated with Alzheimer’s (Nicolls

et al. 2003), which is in turn associated with diabetes. Many other

genes however have not been described before in the context of

beta cells, including: NPTX2, neuronal pentraxin 2, found in

neuronal cells and gliomas but also shown to be frequently down-

regulated in pancreatic cancers (Zhang et al. 2012); TSPAN1, tet-

raspanin 1, which can associate with alpha6.beta1 integrin and

promote FAK phosphorylation (Huang et al. 2008) shown by us to

be involved in insulin secretion (Rondas et al. 2011); GPM6A,

neuronal membrane glycoprotein of unknown function but

identified as a beta cell marker in sorted mouse islet cells (Dorrell

et al. 2011a); BMP5, bone morphogenic protein 5, implicated in

pancreas and fetal beta cell development ( Jiang et al. 2002); and

P2RY1, purinergic receptor through which ADP and ATP modulate

insulin secretion (Fernandez-Alvarez et al. 2001).

Alternative splicing (AS), a common feature of most (;94%)

eukaryotic genes contributing to tissue specificity (Pan et al. 2008)

is also significantly enriched in beta-cell–specific genes (N = 200

genes, 1.22-fold enrichment). To assess the extent of AS between

Figure 2. Expression differences between beta, islet, and nonbeta samples. (A) Dot chart of top 10 highest expressed genes and their contribution to the
nuclear transcriptome by cell type. (B) Histogram of log2 FoldChange (islet/beta) for differentially expressed genes (10% FDR) in islets and beta cells.
(C ) Histogram of log2 FoldChange (nonbeta/beta) for differentially expressed genes (10% FDR) in nonbeta and beta cells.

Table 1. Differentially expressed (DE) genes and exon links
between beta cells, islets, and nonbetas

(A) Differentially expressed genes (10% FDR)—19,975 genes tested

Beta
overexpressed

Beta
underexpressed Total

Islet 1987 3568 5555
Nonbeta 1583 2797 4380

(B) Differentially expressed exon links (10% FDR), corresponding
gene counts, and subset of candidate alternatively spliced genes
(genes not DE but having DE links)—12,334 genes tested

Beta
overexpressed

Beta
underexpressed Total

Islet
Links 11,843 16,340 28,183
Gene count 2130 2964 5072
Gene count excluding DE genes 2167

Nonbeta
Links 5688 10,238 15,926
Gene count 1199 1844 3025
Gene count excluding DE genes 998

Pairwise DESeq results (beta versus islet, beta versus nonbeta) of signifi-
cant changes in magnitude of expression of genes (A), exon links (B)
(reads spanning exon junctions).

Nica et al.
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islet cell types, we quantified all the exon links (reads spanning

pairs of exons only) (H Ongen and ET Dermitzakis, unpubl.) in

the beta, islet and nonbeta preparations and tested for differ-

ential expression, those exon pairs making a minimum of five

links in at least 90% of the samples (N = 154,190). We find

28,183 DE links (10% FDR) between beta and islets and 15,926

DE links between beta and nonbeta (Table 1B), corresponding to

5072 and 3025 genes, respectively. In 2167 and 998 of these

genes, respectively, the DE links observed between the different

islet cell types were not due to DE of the underlying genes. This

implicates 8%–18% of the 12,334 genes thus tested as candi-

dates for islet AS.

Mapping RNA-seq data to the genome fails to identify reads

that span exon junctions. To quantify this effect in our data and

discover potential unannotated transcripts, we constructed all

possible 96-mer exon junctions for each gene (read length-1 = 48

bases on either side of the junction) and mapped all reads against

them. On average, 2.9 million reads per beta cell sample did not

map to the genome but were recovered by junction mapping

(Supplemental Table 3), a small percentage (;1.36%) of the total

number of reads. Nevertheless, we used these together with reads

mapping better to exon junctions than the genome (better map-

ping quality and larger alignment length) to assess the percentage

of previously unobserved junctions. We identified 46,096 junc-

tions in 7717 genes covered by at least 10 good quality reads (map

quality greater than 10) in all beta cell samples, 657 of which (1.4%

of all junctions) were not present in the transcriptome annotation

(GENCODE v10). These correspond to 465 genes enriched for

posttranslational functions (acetylation: 8.9 3 10�27; phospho-

protein: 1.3 3 10�17; ribosome: 1.6 3 10�14) and possibly con-

taining new beta-cell–specific transcripts.

We next aimed to study the genetic control of the variation in

beta cell and islet gene expression by integrating genome sequence

level information when available. We extracted DNA from seven

of the donors and sequenced them to medium (163) coverage

(Supplemental Fig. 1b). The reads were aligned to the hg19 refer-

ence genome with BWA, we applied GATK (McKenna et al. 2010)

base quality score recalibration, indel realignment and duplicate

removal, followed by single nucleotide polymorphism (SNP) dis-

covery and genotyping across all seven samples, simultaneously

using variant quality score recalibration (DePristo et al. 2011).

Subsequently, we imputed the variants on the 1000 Genomes

reference panel and phased them with BEAGLE 3.3.2 (Browning

and Browning 2007), resulting in 5,748,462 good confidence au-

tosomal SNPs for analysis. For each individual, we tested the subset

of heterozygous SNPs with good coverage in the RNA-seq data

(beta, islet, and nonbeta) for allele-specific expression (ASE) (me-

dian 23,358 sites per sample). On average, we observe that 9.3% of

the heterozygous sites tested show significant ASE at 10% FDR

(median 2626 sites per sample) (Supplemental Fig. 4). These cor-

respond to a median of 1742 genes of 6756 genes tested per in-

dividual, harboring at least one ASE SNP (equivalent to 59.18% of

the total number of tested genes in all samples). A subset of these

genes are of particular functional interest, having been linked to

diabetes in GWAS: 15 of 23 T1D genes tested show ASE, 20 of 28

T2D genes and 15 of 18 genes associated with fasting glucose or

insulin levels. Except for the subset of genes associated to fasting

glucose or insulin (Fisher’s P-value 0.02), this enrichment was not

statistically significant. A substantial number of diabetes suscepti-

bility genes are however expressed in beta cells, corroborating the

GWAS predictions (32/40 T1D, 37/39 T2D, 19/20 glucose or insulin

levels) (Supplemental Fig. 5). Several of these (N = 9) are in fact beta-

cell–specific transcripts: T1D-associated INS, imprinted MEG3-DLK1,

GLIS3; T2D-associated VEGFA, SLC30A8; fasting glucose/insulin

levels-associated ADRA2A, G6PC2, SLC2A2. Interestingly, two other

genes, SH2B3 (T1D-linked) and IRS1 (T2D-linked) are significantly

Table 2. Functional characteristics of beta-cell–specific and –nonspecific genes in islet context

Beta-cell–specific genes in islet context (N = 526) Beta-cell–nonspecific genes in islet context (N = 614)

Term
Benjamini

P-value Count
Fold

enrichment Term
Benjamini

P-value Count
Fold

enrichment

Neuron projection 1.13 3 10�5 26 3.53 Glycoprotein 5.26 3 10�14 207 1.70
Axon 1.35 3 10�5 18 5.26 Signal 5.26 3 10�14 169 1.84
Cell projection 5.33 3 10�5 37 2.47 Signal peptide 7.64 3 10�13 169 1.83
Synapse 5.79 3 10�5 25 3.27 Glycosylation site:N-linked

(GlcNAc. . .)
2.58 3 10�11 194 1.65

Synapse part 7.50 3 10�5 20 3.78 Secreted 5.77 3 10�10 99 2.07
Passive transmembrane transporter

activity
1.77 3 10�4 27 3.02 Disulfide bond 1.50 3 10�8 140 1.69

Substrate specific channel activity 2.26 3 10�4 26 3.02 Extracellular region part 1.18 3 10�6 67 2.14
Intrinsic to membrane 2.29 3 10�4 155 1.31 Extracellular region 2.42 3 10�6 110 1.68
Ion channel activity 2.59 3 10�4 26 3.11 Plasma 4.64 3 10�6 16 6.08
Metal ion transmembrane transporter

activity
2.68 3 10�4 23 3.24 Response to wounding 7.07 3 10�5 42 2.62

Integral to membrane 3.22 3 10�4 150 1.32 Membrane 8.91 3 10�5 230 1.30
Channel activity 5.08 3 10�4 27 3.03 Extracellular matrix 9.77 3 10�5 23 3.37
Ionic channel 7.98 3 10�4 23 3.30 Extracellular space 2.30 3 10�4 47 2.11
Gated channel activity 1.15 3 10�3 21 3.13 Plasma membrane part 2.51 3 10�4 109 1.52
Calcium ion binding 1.18 3 10�3 41 2.06 Growth factor 2.65 3 10�4 16 4.32
Ligand-gated channel activity 1.26 3 10�3 13 4.73 Transmembrane 5.07 3 10�4 186 1.32
Ligand-gated ion channel activity 1.26 3 10�3 13 4.73 Polymorphism 6.75 3 10�4 374 1.14
Cation channel activity 1.74 3 10�3 19 3.19 Proteinaceous extracellular

matrix
1.06 3 10�3 27 2.59

Ion transport 2.19 3 10�3 31 2.44 Extracellular matrix 1.19 3 10�3 28 2.49
Glycoprotein 2.35 3 10�3 131 1.38 Cell fraction 1.22 3 10�3 61 1.73

Top 20 most significantly overrepresented functional annotation terms (DAVID).

The human pancreatic beta cell transcriptome
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overexpressed in the nonbeta population—given our data, it is

tempting to speculate that alpha cell misregulation would be det-

rimental in these cases. In some instances, we find evidence of

significant allelic imbalance for the exact GWAS SNPs reported,

e.g., rs5215 (KCNJ11), a missense SNP associated to T2D risk is also

an ASE variant in four beta cell samples, rs689 (INS), associated to

T1D autoantibodies is an ASE SNP in four samples, and rs11558471

(SLC30A8) associated with fasting glucose-related traits and pro-

insulin levels is an ASE SNP in 1 sample (the remaining samples

were homozygous for the respective SNPs, hence could not be

tested for ASE). These observations suggest that a subset of di-

abetes-associated loci could contribute to disease progression via

a change in beta cell gene expression.

As expected for true positive ASE sites, the direction of effect is

almost always consistent for the same individual between different

tissues (Fig. 3). The high overall concordance between beta cell and

islet expression data noted before is recapitulated at the sequence

level. Taking difference of power into account (using pi1 to mea-

sure sharing of statistical significance), we estimate a median

89.11% enrichment of significant beta cell ASE P-values in the islet

and a 88.11% median enrichment vice versa (significant islet ASE

in the beta cell). One of the explanations for the ASE events dis-

covered could be the presence of nearby regulatory variants (ex-

pression quantitative trait loci [eQTLs]). The current sample size is

prohibitively small for eQTL discovery; however, in an effort to

find those potentially active in beta cells, we integrated ASE sites

with eQTLs discovered in the best-powered multitissue data set to

date (MuTHER) (Grundberg et al. 2012), which reported 3148

eQTLs in fat, 3953 eQTLs in lymphoblastoid cell lines (LCLs), and

2515 eQTLs in skin. For each gene and tissue, we phased the top

eQTL SNP and top ASE SNP per individual, being thus able to test in

our data 1806 of the eQTLs discovered in fat, 2272 eQTLs discov-

ered in LCLs, and 1400 eQTLs discovered in skin. We observe

a significantly greater deviation from the expected reference/total

allelic ratio (0.5) in individuals heterozygous for the eQTLs com-

pared to homozygotes (Mann-Whitney P-value < 6.18 3 10�11),

indicating that a proportion of these regulatory variants are also

active in beta cells (Fig. 4). To shortlist them, we selected cases in

which the direction of the eQTL effect was in agreement with the

significant (ASE P-value < 0.01) allelic imbalance prediction. We

thus report 254 candidate beta eQTL genes using the data from fat

cells, 294 genes from LCLs, and 198 from skin. Reassuringly, 303 of

the 510 total genes detected as such (59.4%) are shared in at least

two of the MuTHER tissues, a significant enrichment (Fisher’s

P-value: 6.2 3 10�10) over the 44.8% eQTL sharing we began with.

This suggests that these eQTLs are not highly tissue specific and

therefore likely to be also present in beta cells.

Discussion
Pancreatic islets are essential for regulating and maintaining glu-

cose homeostasis. This functional role is fulfilled by at least five

Table 3. Top 30 genes enriched in the beta cell population and nonbeta cell population ordered by RPKM and fold change, respectively

Top 30 beta cell enriched genes Top 30 nonbeta cell enriched genes

Ordered by RPKM
Ordered by fold change

Ordered by RPKM
Ordered by fold change

Gene Beta RPKM Gene
Fold change

Gene Nonbeta RPKM Gene
Fold change

Beta/nonbeta Nonbeta/beta

INS 131,369.34 INS-IGF2 20.17 GCG 37,234.91 IRX2 23.79
INS-IGF2 36,383.24 IGF2 19.99 TTR 12,418.51 GCG 22.33
IGF2 7121.83 INS 18.88 CLU 895.89 LOXL4 18.31
SLC30A8 393.03 CAPN13 16.71 GC 415.26 GC 16.89
G6PC2 292.68 WSCD2 14.84 SERPINA1 410.05 FAP 16.55
DLK1 276.55 NPTX2 13.98 MUC13 220.59 PAPPA2 15.66
ERO1LB 272.02 RGS16 13.07 PTP4A3 176.18 ARX 13.89
PCSK1 207.63 ADCYAP1 12.18 TM4SF4 171.99 MUC13 13.57
NPTX2 200.05 HADH 11.50 TMEM176A 144.97 F10 13.07
SCD 166.61 TSPAN1 11.19 EZR 124.04 VSTM2L 12.88
VEGFA 164.97 ASB9 11.12 TPM4 116.04 FEV 12.75
HADH 163.95 DLK1 10.88 CRYBA2 113.63 IGFBP2 12.20
EIF4A2 157.07 GPM6A 10.84 IGFBP2 110.25 MYO10 11.94
TIMP2 145.81 GLP1R 10.48 COTL1 95.74 KCNJ3 11.50
MEG3 140.99 BMP5 10.15 LOXL4 94.37 APOH 11.44
UCHL1 136.25 P2RY1 9.99 TMEM176B 81.95 TM4SF4 9.80
SYT13 122.22 ENTPD3 9.96 F10 79.35 KCTD12 9.78
PDX1 119.25 MEG3 9.28 KCTD12 77.78 TTR 9.62
ADCYAP1 99.62 CYYR1 8.65 APOH 73.74 SEPT9 9.21
GAD2 96.59 VAT1L 8.53 LSR 72.98 NPNT 9.01
ALCAM 95.79 C8orf47 8.38 C19orf77 67.72 FOSL2 8.61
NKX6-1 91.78 PDX1 8.27 FOSL2 64.69 MAMLD1 8.31
GJD2 87.30 SLC17A6 8.12 LMNA 58.09 SERPINA1 7.93
TSC22D1 86.05 O3FAR1 8.07 IRX2 56.92 SMOC1 7.69
CASR 79.54 SCD5 8.05 PAPPA2 51.76 FXYD5 7.59
SLC6A6 77.41 OLFM1 8.05 ARX 50.97 NEDD9 7.49
RP11-713B9.1 70.46 SLC35D3 7.95 VWA1 50.20 KBTBD10 6.96
BTG3 64.76 FAM115C 7.90 SMOC1 40.44 AHNAK 6.60
CABP7 59.66 TMEM150C 7.89 RAP1GAP 40.29 LBH 6.36
SORL1 56.36 CASR 7.78 KBTBD10 39.63 DUSP4 6.20

Table contains genes with RPKM > 1 consistently and significantly overexpressed in beta cells (order of expression: beta > islet > nonbeta) and nonbeta
cells, respectively (order of expression: nonbeta > islet > beta), ordered in descending order of RPKM and fold change.
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distinct hormone-producing cell types, which act differently but

synergistically to help maintain appropriate glycemic levels in

healthy individuals. Therefore, uncovering the molecular identity

of ideally each of these cell types would ensure a better under-

standing of the mechanisms through which they become de-

fective in diabetic patients. We present here the first ever unbiased

transcriptome analysis of the differentiated human beta cell, the

most abundant pancreatic islet cell type that secretes insulin and is

severely affected in common forms of diabetes. The advanced cell

sorting protocol, immediate RNA extraction, and unprecedented

sequencing resolution makes this unique data set the most faithful

representation of the human beta cell transcriptome to date. Im-

portantly, we compare this to the expression profile of whole islets

and beta cell depleted islet preparations (‘‘nonbeta’’), uncovering

unique beta-cell–specific features in contrast to other pancreatic

endocrine cell types. In the absence of the three-way beta-islet-

nonbeta transcriptome comparison enabled by our study design,

such discoveries would remain concealed.

Overall, we observe that islets are a good proxy for beta cell

gene expression, provided they are of high enough purity (>85%).

However, important biological insights into cell-type–specific ex-

pression signatures are revealed when comparing detailed RNA

profiles of purified beta cells with those of whole islets or ‘‘non-

beta’’ cells. We find substantial evidence for differential expression

between beta cells and islets, with more than 5000 genes showing

significant changes in transcript abundance between the two.

Genes consistently overexpressed in beta cells are enriched

for neuron-like properties, a similarity suspected earlier that we

now independently confirm. These important biological insights

would not be revealed by islet expression studies alone. Further, we

corroborate current GWAS results by reporting beta cell expression

of a large number of genes (80%–95%) previously associated with

type 1 or type 2 diabetes. Differential splicing is also present among

islet cell types, with up to 18% of genes undergoing this process in

our data. Altogether, this draws attention to the general limitations

of analyzing a mixture of cell populations as opposed to prepara-

tions highly enriched for a single cell type of interest.

Finally, we describe here the first set of genetic variants

controlling interindividual variability in beta cell gene expres-

sion. Despite the small sample size and consequent limited

number of informative genetic variants, we are able to report al-

lelic and genotypic expression differences, offering a first glance

at the genetics behind human beta cell function. Our evidence for

diabetes-associated loci expressed in an allele-specific manner

Figure 3. Sharing of significant ASE effects between beta cells and islets (sample P775). Left panel histograms show the enrichment (pi1) of significant
ASE P-values in the islets for ASE sites discovered in beta cells and vice versa (beta cell ASE P-values of ASE sites discovered in islets). Right panel scatterplots
display the direction of ASE effects (ratio of reference allele count to the total number of reads covering that site) between the two cell types, almost always
in concordance.
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flags potential contributions to disease effects by genetically or

epigenetically driven expression changes in beta cells. These are

encouraging results, which remain to be refined and augmented

by a much-awaited beta cell eQTL study.

Taken together, the data will serve the diabetes research

community manifold ways, including toward the validation of

future stem-cell derived or other surrogate beta cells for research

purposes or regenerative medicine.

Methods

Sample collection
Islets isolated from cadaveric pancreas were provided by the Cell
Isolation and Transplant Center, Department of Surgery, Geneva
University Hospital (Drs. T. Berney and D. Bosco) through the Ju-
venile Diabetes Research Foundation (JDRF) award 31-2008-416
(ECIT Islet for Basic Research Program).

Beta cell sorting

Islets were dispersed into single cells, stained with Newport Green,
and sorted into ‘‘beta’’ and ‘‘nonbeta’’ populations as described pre-
viously (Parnaud et al. 2008). The proportion of beta (insulin), alpha
(glucagon), and delta (somatostatin) cells in each population (as
percentage of total cells) was determined by immunofluorescence.

RNA extraction

Sorted beta cells, nonbeta cells, and islets were centrifuged; the su-
pernatant was removed; and the pellet disrupted in RLT buffer
(RNeasy, Qiagen). Total RNA was prepared according to the standard
RNeasy protocol.

DNA extraction

DNA was prepared according to the stan-
dard DNeasy (Qiagen) protocol.

Library preparation and sequencing

Total RNA and genomic DNA libraries
were constructed following customary
Illumina TruSeq protocols for next-
generation sequencing. PolyA-selected
mRNAs were purified, size-fractioned,
and subsequently converted to single-
stranded cDNA by random hexamer
priming. Following second-strand syn-
thesis, double-stranded cDNAs were
blunt-end fragmented and indexed us-
ing adapter ligation, after which they
were amplified and sequenced accord-
ing to protocol. RNA libraries were
49-bp paired-end sequenced with one
or a maximum of two samples per
HiSeq 2000 lane. DNA libraries for
whole-genome sequencing were con-
structed similarly, but starting directly
from fragmented genomic DNA. The
seven DNA libraries were pooled and
sequenced in a total of nine HiSeq lanes
each (one control lane of 49-bp paired-
end reads and eight lanes of 95-bp paired-
end sequencing). Standard quality checks
for material degradation (Bioanalyzer,
Agilent Technologies) and concentration

(Qubit, Life Technologies) were done before and after library con-
struction, ensuring that samples are suitable for sequencing.

Read mapping

Paired-end reads were mapped to the human genome (assembly
version GRCh37/hg19) using BWA and allowing a maximum in-
sert size of 500 kb (for instances when not enough good align-
ments could be used to infer the insert size distribution). RNA-seq
reads were subsequently filtered for correct orientation of the
mapped mate pairs with an insert size <500 kb and a minimum
mapping quality score of 10.

Expression quantification

GENCODE annotation v10 was used to assign filtered reads to their
corresponding exons and genes. We filtered the annotation to in-
clude transcribed biotypes (coding and noncoding), i.e., all protein
coding genes, lincRNAs, processed transcripts, noncoding, poly-
morphic pseudogenes, transcribed processed pseudogenes, and
transcribed unprocessed pseudogenes. For each gene, we processed
the exons from all transcripts, which we quantified by taking into
account only filtered reads as above, in which both mates of a pair
map to exons of the same gene. The gene counts were incremented
nonredundantly, i.e., reads overlapping two exons are counted
once to the total count sum per gene. Resulting raw gene counts
were normalized to gene length (sum of exons) and sequencing
depth, i.e., reads per kilobase per million (RPKM) mapped reads.

Differential expression analysis

Raw gene/exon link counts were modeled using a negative bi-
nomial distribution and tested for differential gene expression

Figure 4. Candidate beta cell cis eQTLs discovered initially in other tissues (fat, LCL, skin). Top panel
boxplots show the deviations of allelic ratios (reference/total) from the expected 0.5 in ASE individuals
grouped by eQTL genotype, with heterozygotes having markedly higher effects on ASE ratios compared
to homozygotes. Bottom scatterplots show the beta coefficients of the MuTHER eQTLs and the corre-
sponding beta ASE ratios for the selected candidate beta cell regulatory variants.
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with the DESeq R package. Following author’s guidelines, we
estimated the size factor for each sample from the count data,
followed by dispersion estimations for each gene/link. Sub-
sequently, we tested for differential expression between condi-
tions. We grouped all beta cell, islet, nonbeta, and the 18 dif-
ferent tissues (adipose, bladder, brain, cervix, colon, esophagus,
heart, kidney, liver, lung, ovary, placenta, prostate, spleen, testes,
thymus, thyroid, trachea) in separate conditions (beta, islet,
nonbeta, other) and tested for differential expression: beta versus
other, beta versus islet, and beta versus nonbeta. For the pairwise
DESeq tests of islet-derived data only, we included islet purity as
a covariate: We fitted two generalized linear models and com-
pared them to see whether the purity factor improved the fit (i.e.,
had a significant effect). The P-values of the comparisons were
then adjusted for multiple testing using the Benjamini-Hochberg
method. Adjusted P-values < 0.1 were considered significant. In-
troducing the islet purity as a covariate improved the fit in all
cases.

Quantification of exon links

We made use of the paired-end nature of our RNA-seq experi-
ment to relatively quantify splicing events. Specifically, we used
filtered mate pairs (correctly paired and 10 minimum mapping
quality) where one mate maps to one exon and the other mate to
a different exon to count ‘‘links’’ between two exons. The first
exon in a link was referred to as the ‘‘primary exon.’’ Over-
lapping exons were grouped into ‘‘exon groups’’ and unique
portions of each exon in an exon group were identified. These
unique portions were subsequently used to assign reads to an
exon.

Generation of exon junctions

We have constructed all possible 96-mer junctions (flanking
sequence on either side = read length � 1) per gene using
the transcriptome information in Ensembl v65 (Flicek et al.
2013). For each gene, we first kept track of all the unique start
and end positions of all its exons. Subsequently, for non-
redundant exon–exon pairs with valid positions (i.e., starting
position of second exon greater than ending position of first
exon in junction), we constructed every possible pairwise
combination within the length limits of the exons involved.
For junctions failing this criterion due to short exons on one or
both ends, the sequence was expanded into flanking exons. For
every valid junction, we recorded whether it forms part of any
known transcript or not.

Functional annotation analysis

Gene functional analyses were performed using The Database for
Annotation, Visualization and Integrated Discovery (DAVID) v6.7.
We have used the Functional Annotation Chart tool to analyze our
genes of interest (e.g., beta cell specific) in the context of the whole
human genome. DAVID’s default annotation categories were used
and enrichment results sorted by significance of Benjamini cor-
rected P-values.

SNP calling

Variant calling was performed with the Genome Analysis Toolkit
(GATK) 1.5.31 following the Best Practice Variant Detection v3.
Reads were aligned to the hg19 reference genome with BWA, and
bam files from each lane were merged into one bam per sample. For
each sample we removed duplicates, realigned the reads around

known indels from the 1000 Genomes, applied GATK base quality
score recalibration, followed then by SNP discovery and genotyp-
ing across all seven samples simultaneously with variant quality
score recalibration. We used a confidence score threshold of 30 for
variant detection and a minimum base quality of 17 to consider
a base for calling. Good confidence (1% FDR) SNP calls were then
imputed on the 1000 Genomes reference panel and phased with
BEAGLE 3.3.2.

ASE analysis

Allele-specific expression (ASE) analysis was performed per-
individual on the subset of heterozygous sites with a minimum
coverage of 16 reads per site filtered for mapping quality of 10.
Problematic positions were filtered out as follows to exclude sites
susceptible to allelic mapping bias: (1) sites with UCSC 50-bp
mapability less than one, implying that the 50-bp flanking region
of the site is nonunique in the genome and collapsed repeat re-
gions were excluded; and (2) simulated RNA-seq reads overlapping
the site and showing >5% difference in the mapping of reads that
carry the reference or nonreference allele were also excluded. Next,
we calculated the expected reference allele ratio for each in-
dividual by summing up reads across all sites separately for each
SNP allele combination after down-sampling reads of sites in the
top 25th coverage percentile in order to avoid the highest cov-
ered sites having a disproportionally large effect on the ratios.
These expected REF/TOTAL ratios (in the range of 0.489–0.518)
correct for the remaining slight genome-wide mapping bias in
each individual. In a binomial test of the REF/NONREF allele
counts, we used these individual-specific expected ratios to
weight the occurrence of each allele and determine sites with
$16 reads in each individual deviating from the biased-corrected
expected allelic ratios. We called sites in significant ASE if
resulting P-values < 0.01.

eQTL integration

We obtained cis eQTLs (1% FDR) detected in the MuTHER study,
where 856 female twins were profiled for gene expression with
microarrays in three tissues: fat, lymphoblastoid cell lines (LCLs),
and skin. These amounted to 3148 genes in fat, 3953 genes in
LCLs, and 2515 genes in skin having cis eQTLs. We phased the top
SNPs per gene in each of these data sets with top beta cell ASE sites
for the same genes. We contrasted the beta cell allelic ratios for
individuals heterozygous for the MuTHER eQTLs compared to
homozygotes, expecting smaller effects in homozygotes, where
the eQTL itself (if active also in beta cells) would have no effect on
expression.

Data access
Genotype and sequence data have been deposited at the European
Genome-phenome Archive (EGA; http://www.ebi.ac.uk/ega/),
which is hosted by the European Bioinformatics Institute (EBI),
under accession number EGAS00001000442. Anonymized se-
quence files (matching the reference genome) are freely and pub-
licly available on our ftp server (ftp://jungle.unige.ch/) as well as
Ensembl.
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