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Chronic obstructive pulmonary disease
(COPD) exacerbations are key events in the
course of COPD that place both health and
economic burdens on individuals and
society (1). Exacerbations not only
accelerate decline in lung function, cause
disease progression, impair quality of life,
and increase mortality, but they are also the
main drivers of healthcare use such
as emergency department visits and
hospitalizations (2). Hence, exacerbation
prevention is a key goal of COPD
management. Recent efforts have been
made to develop predictive models to
identify patients at high risk for COPD
exacerbations because prediction could not
only help prevent COPD exacerbations
but also facilitate early treatment, shorten
the length of exacerbations, and lessen
exacerbation impact. According to a
systematic review of predictions models for
COPD exacerbations, most existing models
are based on clinical point-of care data

(3). The application of data collected for
administrative or billing purposes that
widely cover areas like demographic
information, drugs, physician services,
and hospital services, in these types of
prediction models is limited. As computing
technology and predictive modeling
advance, it becomes possible to use the
immense volume of healthcare administrative
data in healthcare research and surveillance,
including in real-time predictions to alert
people of health risks.

In this issue ofAnnalsATS, Tavakoli and
colleagues (pp. 1069–1076) conducted a
proof-of-concept study that developed
models to predict patients at high-risk for
hospitalization for acute exacerbations of
COPD (4). The study used healthcare
administrative data from between 1997 and
2016 from the province of British Columbia
inCanada, which has a universal, provincially
funded medical insurance plan that covers
most healthcare and pharmacy costs for the
entire population. The authors aimed to use
data from a 6-month time period to predict
the risk of severe COPD exacerbation in the
subsequent 2 months. Prediction models
were developed based on a cohort of 108,433
patients and validated by an internal
temporal cohort (the same source data as the
development cohort but at a later time
period) of 113,786 patients. A total of 1,126
and 1,136 people from these two cohorts,
respectively, were hospitalized because of
COPD within their outcome windows. By
using traditional statistical methods and
machine learning algorithms, the
investigators found health administrative
models that had better predictive abilities
than a reference model that only included
previous exacerbations history in terms of
both discrimination and calibration. The best
prediction model (gradient boosting), for
example, had an area under the receiver

operating characteristic curve of 0.82 (95%
confidence interval 0.80–0.83), whereas the
model with exacerbation history as the only
predictor had an area under the receiver
operating characteristic curve of 0.68 (95%
confidence interval 0.67–0.69). A method
called least absolute shrinkage and selection
operator was used to select variables, using an
approach that avoided including too many
variables in the models or overfitting.

Tavakoli and colleagues have
confirmed the potential application of
healthcare administrative data in public
health surveillance of COPD exacerbations.
Healthcare administrative datasets have
been used in the past to determine risk
factors for COPD exacerbation (5, 6).
However, these common casual analyses
examine the association between potential
risk factors and a health event on a
“population level” but do not quantify an
individual’s risk of a health outcome given
their characteristics. Predictive algorithms
allow us to use such characteristics to
identify or measure an individual’s
probability of experiencing a health
outcome (7). Hence, physicians, public
health professionals, and policy makers
could use the COPD exacerbation predictive
models developed to identify high-risk
individuals for specific disease management
through phone consultation, home visits,
and other support to prevent or delay
exacerbations. In addition, the predicted
number of patients at risk could also help
public health authorities determine their
ability to manage the problem. In turn,
at-risk individuals would be made aware of
their situation, be able to institute their own
self-management processes (if they had
them), and feel reassured by the help.

Some types of health administrative
data have many strengths in the context of
COPD exacerbation prediction. They cover
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a majority of the population and are less
likely to have missing values (8). They are
continuously updated over time, which
allows the predicted risk to also be updated
over time and accurate forecasts to be
provided (9). Clinical point-of-care data
contains more clinical detail but have
other problems. Missing information and
variations among different study sites cause
problems for clinical data integrity and
interpretation. Clinical data also often target
groups of select patients and are collect at a
specific time point.

Using healthcare administrative data
to predict COPD exacerbations also has
some limitations. First, timeliness of data
availability affects how useful it is for
prediction. There is always a lag time
between when a healthcare encounter
occurs and when information about it is
available for analysis (10). For example, the
availability of data related to healthcare
system use tends to follow billing cycles.
Vital statistics data become available only
after data are regularly processed (entered

and coded). However, this lack of timeliness
affects real-time prediction. Tavakoli and
colleagues aimed to use data in a 6 months
period to predict COPD exacerbations
in the following 2 months. This would be
problematic if the dataset only became
available 3 months after a healthcare
encounter. Second, the accuracy and
reliability of prediction models largely
depend on available predictors. Although
studies have shown that models based on
healthcare administrative data were
comparable with those derived from clinical
databases, clinical specificity for conditions
and laboratory results are more useful in
predicting short-term healthcare outcomes
(11). Developing standardized electronic
medical records and including them in
predictive model development must be a
future direction in this area. Finally,
although machine learning has been
increasingly used in public health research
and has yielded some impressive practical
successes (12), its application is limited in its
ability to “explain” its predictions in an

understandable way (13). Although the
underlying mathematical principles of such
models are understandable, it is difficult and
often impossible to interrogate the inner
workings of models to follow how and
why they made a certain prediction. This
is especially problematic for clinical
professionals who have particular
demand for approaches that are not
only well performing but also biologically
interpretable and explainable.

In sum, the advance of computer
science and health administrative data
analysis has potential to be used to
forecast the real-time adverse health
outcomes of chronic diseases, such as COPD
exacerbations. However, the accuracy of the
prediction is dependent on the timeliness of
data and would be enriched if it included
clinical predictors. More efforts are required
to explain how this approach works to
obtain acceptance by clinicians. n
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