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Body growth is typically thought to be indeterminate in ectothermic ver-
tebrates. Indeed, until recently, this growth pattern was considered to be
ubiquitous in ectotherms. Our recent observations of a complete growth
plate cartilage (GPC) resorption, a reliable indicator of arrested skeletal
growth, in many species of lizards clearly reject the ubiquity of indetermi-
nate growth in reptiles and raise the question about the ancestral state of
the growth pattern. Using X-ray micro-computed tomography (µCT), here
we examined GPCs of long bones in three basally branching clades of squa-
mate reptiles, namely in Gekkota, Scincoidea and Lacertoidea. A complete
loss of GPC, indicating skeletal growth arrest, was the predominant finding.
Using a dataset of 164 species representing all major clades of lizards and the
tuataras, we traced the evolution of determinate growth on the phylogenetic
tree of Lepidosauria. The reconstruction of character states suggests that
determinate growth is ancestral for the squamate reptiles (Squamata) and
remains common in the majority of lizard lineages, while extended (poten-
tially indeterminate) adult growth evolved several times within squamates.
Although traditionally associated with endotherms, determinate growth is
coupled with ectothermy in this lineage. These findings combined with
existing literature suggest that determinate growth predominates in both
extant and extinct amniotes.
1. Introduction
Growth patterns can be classified as either determinate or indeterminate [1].
Determinate growth ceases during the natural lifespan of individuals. Growth
trajectory and adult body size are primarily genetically determined but may, to
some degree, be influenced by the environment [2]. Indeterminate growth, by
contrast, continues throughout the life of an individual. Adult body size is not
genetically determined and growth trajectory, as well as growth rate, retains
the lifelong ability to change with environmental conditions [2]. However,
these general definitions encompassing a wide range of growth types of both
vertebrate and invertebrate animals do categorize extended adult growth of
amniotes, which is commonly referred to as indeterminate growth in the
vertebrate literature, as attenuating determinate rather than indeterminate
growth [2]. Therefore, here we adopt a less stringent definition introduced by
Karkach postulating that ‘growth is determinate if an organism reaches maxi-
mum (asymptotic) size when many individuals of the population are still
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alive, and indeterminate when very few individuals are alive’
[3]. This approach stresses quantitative rather than qualitative
differences between growth patterns.

Although it is often expected that determinate growth
stops at, or soon after, reaching sexual maturity, it may con-
tinue long past this age [3]. To complicate matters further,
indeterminate growers may exhibit asymptotic growth, pro-
vided that the environment imposes energetic constraints on
their growth, and determinate growers do not have to achieve
asymptotic growth due to high mortality in natural popu-
lations. Thus, the practical distinction between these two
types of growth may be difficult on the basis of empirical
growth curves alone, especially in cases when indeterminate
growth greatly decelerates with age and/or determinate
growth persists after sexual maturity and its rate is modulated
by the environment [2,3]. Therefore, it is desirable to validate
long-term growth studies with osteological examinations,
which not only have the potential to reveal irreversible arrest
of skeletal growth and thereby provide conclusive evidence
for determinate growth but also can do so relatively quickly
across large numbers of species representing various clades.

Endothermic tetrapods are traditionally described as
determinate growers [4–6], whereas ectothermic vertebrates
as indeterminate growers [4,7–10]. This paradigm is com-
monly mentioned in textbooks and scientific papers [11–20],
although exceptions abound (e.g. indeterminate body
growth in kangaroos [21], determinate body growth in fishes
[22,23] and reptiles, see below). The notion of indeterminate
growth being prevalent in reptiles remains popular despite
accumulating evidence for determinate growth [24–31]. The
idea that reptiles grow throughout life seems to be perpetuated
by long lifespans of many species [32], slow growth that con-
tinues after sexual maturity [33], and growth rates largely
dependent on environmental conditions [34,35].

Evidence for determinate growth in reptiles comes from
two independent lines of research. First, numerous capture–
recapture field studies (e.g. [25,36–39]), as well as laboratory
experiments (e.g. [40,41]), involving distantly related species
of reptiles suggest that growth is minimal or non-existent in
older individuals. Second, osteological studies show that dis-
tantly related reptiles attain skeletal maturity associated with
the arrest of skeletal growth. Before we review the osteologi-
cal evidence, let us briefly summarize the mechanisms
underlying the growth of long bones in amniotes.

Endochondral and periosteal bone formation underpin
bone growth in length and thickness, respectively [12]. Due
to mechanical reasons and shared molecular regulation,
these two types of bone formation are coupled and synchro-
nized [12,42]. Even mature bones, however, have a capacity
for remodelling, which is often associated with periosteal
apposition of new lamellar bone, even after the cessation of
longitudinal growth [43]. Longitudinal bone growth depends
on growth plate cartilages (GPCs). These are proliferative
zones located in long bones, ribs and vertebrae [7], responsi-
ble for cartilage formation and its subsequent endochondral
ossification [44–46]. When chondrocyte proliferation ceases
and the GPC disappears, longitudinal skeletal growth irrever-
sibly arrests [12,47]. Bone growth in girth is mediated by
synergic activity of the endosteum and the periosteum.
While osteoclasts present in the endosteum resorb the bone
from the inside to prevent it from becoming unnecessarily
thick, osteoblasts present in the periosteum secrete bone
matrix and induce its intramembranous ossification, resulting
in apposition of new layers of lamellar osseous tissue on
the surface of the bone diaphysis [12,43]. Seasonal periods
of slow periosteal growth are discernible on a transverse
bone section as rings of highly mineralized compact bone,
called lines of arrested growth (LAGs). Substantial attenuation
of periosteal growth typically leads to the development
of the external fundamental system (EFS), which is a micro-
structure of closely spaced series of LAGs at the outermost
margin of the bone diaphysis [12]. The presence of the EFS
thus indicates cessation of any significant circumferential
growth of a bone. Synchronous timing of GPC degradation,
EFS development and body growth arrest has been recently
demonstrated [48]. Taken together, both the absence of
the GPCs and presence of the EFS are unambiguous signs
of skeletal maturity and therefore reliable markers of
determinate growth.

Radiographic and histological examinations have demon-
strated the absence of GPCs in long bones of small species of
monitor lizards [26], a finding that we have independently
corroborated using micro-computed tomography (µCT) and
micro-radiography (µRTG) [30]. The EFS has been reported
(or can be recognized in published microphotographs) in
the tuatara [24], the Mosor rock lizard [49], eight species of
iguanas [28], the American alligator [27,50] and the leopard
tortoise [51]. The EFS has also been reported in representa-
tives of fossil archosaurs, including crocodilians [27,52],
pterosaurs [53,54], non-avian dinosaurs [55,56], and in sub-
fossil and recent birds [57,58]. These data provide clear
evidence that at least some reptiles are determinate growers.
More extensive osteological examinations across a broad
array of taxa are needed to determine how widespread
determinate growth is within both extinct and extant reptiles.

To address this issue in squamate reptiles, we have recently
examined the presence/absence of GPCs in the femur of adult
individuals of 85 species from several lizard lineages, namely
monitor lizards and their relatives [30] and iguanians [31],
using µRTG and µCT. These investigations revealed the
absence of GPCs, implying determinate growth, in most of
the examined adult iguanas and small-bodiedmonitor lizards.
By contrast, GPCs were present in most adult agamas, chame-
leons and large-bodied monitor lizards, suggesting they
exhibit extended (potentially indeterminate) growth.

Here, we focus on more basally diverged squamate
lineages: geckos (Gekkota); skinks, plated and girdle-tail
lizards (Scincoidea); wall lizards, whiptails and tegus (Lacer-
toidea). We categorized 85 species from these clades as either
determinate or potentially indeterminate growers, based on
femoral GPC states determined from µCT scans and/or
µRTG. We apply a working definition of determinate
growth, which is very restrictive. We consider determinate
growers only those species, in which adult individuals exhibit
a clear sign of irreversible arrest of longitudinal skeletal
growth, i.e. fully resorbed GPCs. Thus, when animals are
still capable of growth, although the actual growth rates
might be negligible, we consider them potentially indetermi-
nate growers. While this approach may overestimate the
number of species exhibiting indeterminate growth, identifi-
cation of determinate growers is conclusive. Moreover, to
map out the evolution of growth type within Lepidosauria,
we performed ancestral state reconstruction using a dataset
of 164 species representing all major clades of lizards and
the tuataras. The results of our study indicate that determinate
growth is predominant and likely ancestral and that extended
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(potentially indeterminate) adult growth evolved several
times within squamate reptiles.
oyalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20202737
2. Material and methods
Altogether, we examined femoral bones of 194 individuals of 85
lizard species representing three basal clades of Squamata,
namely Gekkota, Scincoidea and Lacertoidea (electronic sup-
plementary material, table S2). We examined mainly adult
individuals, but several subadults were included for reference
as well. To obtain adult individuals of known age, the majority
of samples were taken from captive bred lizards. Specifically,
out of 194 individuals examined, 130 were captive bred and
64 wild animals (the origin of samples is labelled in electronic
supplementary material, table S2 as captive versus wild).
Samples originated mostly from collections of the Charles
University Department of Zoology and Prague Zoo. For the
reconstruction of ancestral states, we added data from previous
studies [26,30,31].

Since body mass is largely dependent on body condition and
significant mass gains can occur even in adults with arrested
skeletal growth, body length was taken as a proxy for body
size. Prior to analysis, we measured the snout–vent length to
the nearest 0.1 mm and expressed it as an absolute (SVL) and
relative (SVLrel) value. The latter represents a per cent ratio of
SVL of the examined specimen to the maximum SVL reported
in the literature for the particular species and sex; i.e. SVLrel

100% means the maximum reported size. The data for absolute
and relative SVLs are summarized in electronic supplementary
material, table S2, SVLmax and references in dataset 1).

We analysed GPC in the proximal part of the femur by µRTG
and µCT. The bone was dissected, mechanically cleaned and
examined using either a Bruker SkyScan 1275 µCT scanner or a
custom-built µCT system designed for small animal imaging
[59,60], following previously described procedures [30,31]. Epi-
physeal senescence and ossification status were evaluated
blindly by two independent observers. The presence of the
GPC was clearly visible on µRTG and µCT scans as fine-grained
cartilage and a suture between the metaphysis and epiphysis; a
relatively dense structure, likely associated with the secondary
ossification centre, was typically recognizable inside the epiphy-
sis. By contrast, trabecular bone typically fills up the entire
metaphysis and epiphysis in bones with a fully resorbed GPC.
The inner structure of the bone was assessed in detail using 3D
visualizations made from µCT scans to rule out the presence of
the cartilage and/or suture remnants between the metaphysis
and the epiphysis. We scored the GPC state in a binary fashion,
as either present (1) or absent (0). In several cases, we detected
the process of GPC degradation. The GPC was less clearly vis-
ible, nearly resorbed, but still present to some extent. This
stage was also coded as GPC present.

Ancestral state reconstruction was performed in R using
the Hidden State Speciation and Extinction (HiSSE) model
implemented in the R package hisse [61], to allow for different
transition rates between states and different diversification rates.
Additionally, we performed the ancestral states reconstruction
using maximum parsimony, as implemented in the R package
castor [62]. The reconstructed stateswere plotted using the R pack-
age phytools [63]. Only species where we had adult individuals
with SVLrel greater than 80% were included in the ancestral state
reconstruction analysis (see Dataset 2) since previous research
on body growth revealed that squamate reptiles typically attain
sexual maturity close to this relative body size [33]. However,
this dataset might still be biased towards indeterminate growth,
since we cannot exclude false-positive results (i.e. the presence
of GPC in animals, which were not fully grown and will stop
their growth later in ontogeny).
Further methodological details and discussion of potential
technical limitations are provided in the electronic supplementary
material.
3. Results
Using high-resolution µRTG and µCT, we determined the
presence/absence of epiphyseal growth plates in the femoral
epiphysis. We analysed femoral bones from 85/194 species/
individuals of lizards (Gekkota (38/100), Scincoidea (26/53)
and Lacertoidea (21/41)). We found both states of GPC, fully
developed (figure 1a,c,e; electronic supplementary material,
video file S1, 2), as well as fully resorbed (figure 1b, d,f; elec-
tronic supplementary material, video file S3, 4), and a few
cases of ongoing GPC degradation. GPCwas present in juven-
iles, subadults and some adults (electronic supplementary
material, table S2). Nevertheless, in most adults, the GPC
was fully resorbed. However, some plasticity exists, and differ-
ent individuals of the same species, sex and size can differ in
GPC state. We took the absence of the GPC in any individual
as evidence of determinate growth in a given species, even if
the GPC was preserved in other adults of that species since
it shows there is a point where growth will eventually stop.
To outline the growth pattern across all Lepidosauria, we
used data gathered in this study, datasets from our previous
studies [30,31] and earlier data showing evidence of determi-
nate growth in the monitor lizards [26] and tuataras
[24,64,65]. We plotted the GPC state (present/absent) on a
phylogenetic tree (figure 2). It is evident that GPC degra-
dation, implying irreversible arrest of growth, is common in
all major clades. Reconstruction of the ancestral states using
both parsimony (electronic supplementary material, figure
S1) and likelihood criteria suggests determinate growth type
in the ancestors of Gekkota, Scincoidea and Lacertoidea
(figure 2; electronic supplementary material, figures S2, S3).
Preserved GPCs, suggesting extended, potentially indetermi-
nate adult growth, appear independently several times, e.g.
in chameleons and agamas, large species of monitor lizards,
and teiids. Furthermore, both parsimony and likelihood
models agree that the squamate ancestor was likely a determi-
nate grower (with 85–88% probability in likelihood models;
see electronic supplementary material for more details).

Although it was not the focus of this study, we also
performed histological examinations on a limited sample to
assess whether the arrest of longitudinal bone growth is
associated with arrest of bone growth in girth and indeed
observed tightly spaced rings of laminar bone depositions in
the outer bone cortex, a clear indication of decelerated or
ceased periosteal growth, in individuals with fully resorbed
GPCs (electronic supplementarymaterial, figure S4; see results
in electronic supplementary material for details).
4. Discussion
The µRTG and µCT examinations performed in this study
revealed that the majority (59 out of 75) of the examined
species representing three basal clades of squamate reptiles,
namely Gekkota, Scincoidea and Lacertoidea, exhibit entirely
resorbed femoral GPCs and are therefore likely determinate
growers. Determinate growth is not only predominant in all
these clades but also probably ancestral. Moreover, the data
gathered here and in previous studies [26,30,31] strongly
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Figure 1. Epiphyseal growth plate cartilage visualization. Longitudinal section of the proximal part of the femur by µCT in three representative species of basal
clades (Gekkota, Scincoidea and Lacertoidea). The epiphyseal growth plate is present in a subadult (a) and absent in an adult of the crested gecko Correlophus
ciliatus (b); present in a subadult (c) and absent in an adult of Karsten’s girdled lizard Zonosaurus karsteni (d ), present in a subadult (e) and absent in an adult of
Moroccan eyed lizard Timon tangitanus ( f ). Asterisks indicate the growth plate cartilages. Abbreviations: Dia, diaphysis; Epi, epiphysis; Met, metaphysis; Sut, suture.
Note the completely different inner structure in the metaphysis in a, c, e and b, d, f. Scale bars, 500 μm.
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suggests that the same applies for all squamate reptiles.
In total, we observed resorbed femoral GPCs in 106 out of
164 lizard species. The reconstruction of character states
shows that determinate growth is likely ancestral for the
entire clade of Squamata and that extended (potentially inde-
terminate) adult body growth probably evolved several times
within squamate reptiles, most notably in chameleons and
agamas, large species of monitor lizards, and teiids. Available
literature data suggest that tuataras, crocodiles, birds and at
least some turtles are determinate growers as well (for details
see below). This is in stark contrast with the long-held view
that indeterminate growth is the ancestral condition and is
predominant in reptiles (reviewed in [16]). As argued in
detail below, determinate body growth has evolved early
and predominates in both sauropsid and synapsid amniotes.
(a) Determinate versus indeterminate body growth
An important, yet unanswered question is whether determi-
nate and indeterminate body growth in amniotes involve
two different regulatory mechanisms or are simply the result
of a difference in timing (heterochrony) of GPC degradation,
as we have suggested earlier [30]. Although some differen-
tial sensitivity of the GPC to steroid hormones is to be
expected, the frequency of evolutionary transitions between
these two growth types observed in squamate reptiles



Scincoidea

Lacertoidea

Anguimorpha

Iguania

Sphenodontida

Gekkota

GPC absent
GPC present

Figure 2. Ancestral state reconstruction of growth type in squamates. A circular tree depicting the growth plate cartilage (GPC) state in whole Squamata as revealed
by µCT examination of the proximal part of femoral bones. Ancestral state reconstruction using maximum-likelihood with hidden state speciation and extinction
models was employed to uncover the evolution of growth type (determinate versus indeterminate) in Squamata. The plotted ancestral states are reconstructed under
the best model based on AIC (HiSSE equal rate, see electronic supplementary material, for more details). Presence and absence of the GPC imply extended ( poten-
tially indeterminate) and determinate body growth, respectively. Tuatara (Sphenodon punctatus), as a sister group of Squamata, was included as an outgroup. The
state of tuatara is according to the presence of an external fundamental system and recapture growth data suggesting the determinate type of body growth [24,64].
Species marked with asterisk were scored according to the GPC state from the literature [26]. Species marked with † were very old individuals ( for details of age
see [30,31]).
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(cf. Figure 2) clearly speaks in favour of a change affecting the-
timing of endochondral ossification. The very fact that the
GPC disappears in extremely senescent individuals (e.g. 24-
year-old Varanus indicus [30]; 30-year-old Uromastyx loricatus
[31]) belonging to reptile groups that otherwise feature
extended (potentially indeterminate) adult growth is also in
line with the hypothesis that it is the timing that sets apart
determinate from indeterminate growth, at least in squamate
reptiles. If true, these growth patterns constitute different
life-history strategies rather than distinctly regulated growth
mechanisms. At one extreme of the determinate–indetermi-
nate growth continuum are determinate growers that
preferentially allocate energy to growth in order to reach a
final size as soon as possible (e.g. [66]), at the other extreme
are species that delay skeletal maturity to such an extent that
longitudinal growth cessation and GPC resorption is
seldom, if ever, observed in natural populations (e.g. [67]).
Such a quantitative distinction between growth types is in
accordance with the definition introduced by Karkach [3].
(b) Determinate growth in reptiles and other amniotes
Long-term studies are the only way to accumulate quantitat-
ive data on individual growth. However, it is challenging to
maintain these studies over sufficiently long time periods to
encompass the natural lifespan of individuals, especially in
large reptiles that tend to be long-lived. Consequently, long-
term growth data are available only for a limited number of
species (e.g. [25,36–39,41,68,69]) and do not allow the recon-
struction of growth type evolution across reptiles. In the
absence of these data, osteological evidence is invaluable.

Epiphyseal senescence and ossification status in reptiles
have received only limited attention, although detailed
studies in mammalian models are available (e.g. [70–72]).
Complete resorption of the GPC has been reported for the
first time in small species of monitor lizards [26]. We have
corroborated these findings [30] and subsequently demon-
strated resorption of the GPC in 106 species distributed
across squamate reptiles, while also consistently finding pre-
served GPCs in chameleons and agamas ([31], present study).
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birds (Aves)

crocodiles (Crocodylia)

tuatara (Rhynchocephalia)

lizards (Squamata)

mammals and their relatives (Synapsida)

determinate growth
extended (potentially indeterminate) growth

Figure 3. Two scenarios for the evolution of body growth type in amniotes. (a) Scenario based on maximum-parsimony predicting that the last common ancestors
of the Lepidosauria (node 5), Archosauria (4), Archelosauria (3) and Sauropsida (2) were determinate growers. (b) More conservative scenario considering the
possibility of multiple evolutionary transitions between determinate and extended ( potentially indeterminate) growth on long branches does not allow conclusive
inferences about the ancestral growth type for the above-mentioned nodes. Importantly, this ambiguity should not be taken as evidence in favour of extended
( potentially indeterminate) growth. Both scenarios are inconclusive as far as the last common ancestor of the Amniota (1) is concerned, due to lack of data on
growth type in the most basal sauropsids and synapsids. Groups were scored according to the presence/absence of growth plate cartilage, external fundamental
system and capture–recapture field studies. See text for details.
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Whereas chameleons are typically short-lived, and it could be
argued that the process of GPC degradation takes longer than
their natural lifespan, agamas can be long-lived and still pre-
serve femoral GPCs well into adulthood (for more details see
[31]). In line with our observations, recent histological studies
have reported complete resorption of the GPC in the gecko
Paroedura picta [73] and the teiid lizard Aspidoscelis tigris
[74], but no sign of GPC degradation in the agama Stellagama
stellio [67]. Moreover, EFS was demonstrated in iguanid
lizards [28]. Together, these results suggest that determinate
growth is widespread among extant lizard species.

The ancestral state reconstruction performed here suggests
that the determinate type of body growth is ancestral for
squamate reptiles. Moreover, there is evidence of determinate
growth in the extant species of tuatara, representing the
sister group of squamate reptiles, Rhynchocephalia. EFS was
demonstrated in adults [24] and some individuals in
capture–recapture studies showed no signs of growth in
30 years [24,64]. Thus, the last common ancestor of Lepido-
sauria might also have been a determinate grower (figure 3).
This hypothesis is supported by the parsimony model (elec-
tronic supplementary material, figure S1), but likelihood
models remain inconclusive (50–59% probability, figure 2; elec-
tronic supplementary material, figures S2 and S3), reflecting
the possibility of multiple evolutionary transitions between
determinate and indeterminate growth on this long branch.

As mentioned above, determinate growth is well estab-
lished in archosaurs (Archosauria), comprising extant
crocodiles, birds and several fossil groups including dinosaurs
(Dinosauria). Radiographic studies demonstrated complete
resorption of the GPC and fusion of the primary and second-
ary ossification centres in long bones of birds [75–77]. The EFS
has been reported in many archosaurs, including subfossil
birds [58], non-avian dinosaurs (e.g. [55,56,78]), pterosaurs
(e.g. [53,54]), crocodilians [27,50] and their fossil relatives
[52,79]. Moreover, determinate growth in the American
alligator has been corroborated by long-term recapture data
[37].

The situation is less clear in turtles (Testudines), the sister
group to Archosauria. Long-term growth studies, compli-
cated by the extreme longevity of these animals, produced
contradictory results. Some species are reported to be indeter-
minate growers (Chelydra serpentina [37]; Chrysemys picta [80]),
while others seem to have determinate body growth (Emydoi-
dea blandingi [25]; Chelonia mydas and Caretta caretta [38]).
A recent study brought evidence of EFS in Stigmochelys
pardalis, supporting determinate body growth in turtles
[51]. The current state of knowledge does not allow inferences
about the ancestral growth type for turtles.

The EFS has been also demonstrated in Triassic reptiles
belonging to the groups Placodontia [81], Allokotosauria
and Phytosauria [82]. However, to our knowledge, almost
nothing is known about more basal sauropsid reptiles. Two
to three closely spaced LAGs have been observed in the
outer cortex of a single humerus of the basal eureptile
Captorhinus that lived during the Permian period [82].

Mammals, the only extant synapsids (Synapsida), consti-
tuting a sister group of the sauropsid reptiles, are determinate
growers as evidenced by both long-term growth studies
[83–85] and osteological data (e.g. [6,48,86]). Until recently,
it was assumed that early synapsids exhibited indeterminate
growth and a mammalian-like growth pattern evolved later
in Therapsida (reviewed in [87]). However, osteological data
gathered over the past decade clearly show that diverse pely-
cosaurs (Pelycosauria, a paraphyletic group of early non-
therapsid synapsids) were also determinate growers—EFS
has been reported in several genera representing at least
three pelycosaur clades [88–91]. Yet, osteological features
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implying determinate growth have not been observed in the
most basal pelycosaurs [92,93]. The same holds true for Dia-
dectes representing Diadectomorpha, a putative sister group
of amniotes [92].

Taken together, the osteological evidence reviewed above
strongly suggests that determinate growth predominates in
both extant and extinct amniotes. However, current knowl-
edge does not permit the ancestral growth pattern for
amniotes to be determined unequivocally (figure 3). Further
comparative scrutiny with osteological and/or modern ima-
ging techniques, especially data on stem mammals, stem
sauropsid reptiles and turtles, is needed to clarify this issue.

(c) Decoupling between endothermy and determinate
body growth

A high and stable body temperature, or homeothermic
endothermy, has convergently evolved in birds and mammals
(e.g. [94,95]). Endothermy is coupled with a high basal meta-
bolic rate and fast growth that typically considerably slows
down or ceases at sexual maturity [96]. Therefore, endotherms
are defined as determinate growers, while ectotherms are
traditionally considered indeterminate growers (see Introduc-
tion). Here, we show that such a clear-cut distinction is not
tenable, because determinate growth is coupled with
ectothermy in many lineages of squamate reptiles.

Timing of the evolutionary origin of endothermy is com-
plicated by the fact that physiological processes do not
fossilize. Nasal turbinates, associated with endothermy, have
been found in members of the synapsid lineage from the
Late Permian and Early Triassic periods (250–200 Ma),
suggesting that synapsids had increased metabolic rates
approximately 30–40 Myr before the emergence of true mam-
mals [94]. Histology of long bones (fibrolamellar bone)
suggests that endothermyand fast skeletal growth has evolved
even earlier, specifically in ophiacodontid pelycosaurs (Ophia-
codontidae) during the Early Permian or perhaps Late
Carboniferous [91,92].

The situation is less clear in the sauropsid lineage. Early
birds and theropod dinosaurs do not seem to have had
nasal turbinates, however, based on structural (fibrolamellar
bone, (proto)feathers), physiological (concentration of O18

deposited in teeth) and behavioural traits (fossil evidence of
egg incubation), the origin of endothermy in this lineage
can be traced to the Jurassic period, before the diversification
of theropod dinosaurs (for review, see [97]). Some authors
suggest that endothermy evolved already in the Triassic
period, at the beginning of the diversification of archosaurs
[98,99]. In any case, the data presented here suggest that
the origin of determinate growth predated the origin of
endothermy in the sauropsid lineage.
5. Conclusion
The absence of the femoral GPC, indicating determinate body
growth, was the predominant pattern found in squamate rep-
tiles. The reconstruction of character states suggests that
determinate growth is ancestral for all squamate reptiles
and that extended (potentially indeterminate) adult body
growth evolved several times within squamates, likely as a
result of heterochrony. If we include data from the literature
demonstrating determinate growth in tuataras and archo-
saurs, it is clear that determinate body growth is common
across sauropsid reptiles (figure 3). Together, these findings
bring strong evidence against the assumption that all
ectothermic vertebrates are indeterminate growers.
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