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    Introduction 
 Dendritic cells (DC) respond to microbial products by engaging 

in an activation program, which results in their progressive 

 “ maturation ”  and transformation from antigen-sampling cells to 

antigen-presenting cells ( Guermonprez et al., 2002 ;  Trombetta 

and Mellman, 2005 ;  Wilson and Villadangos, 2005 ;  Reis e Sousa, 

2006 ). Maturation is typically triggered by ligation of Toll-like 

receptors (TLRs), and is accompanied and for the most part pre-

ceded by a variety of changes in DC morphology and behavior 

( Trombetta and Mellman, 2005 ;  Watts et al., 2007 ). Within 

30 – 60 min of TLR stimulation in vitro, DC redeploy their actin 

cytoskeleton to enhance antigen capture ( West et al., 2004 ) and 

reorganize their vacuolar compartments to direct class II major 

histocompatibility complex (MHC) molecules to the cell surface 

( Kleijmeer et al., 2001 ;  Chow et al., 2002 ;  Boes et al., 2003 ). 

Here, they accumulate because of a cessation of ubiquitination 

and endocytosis of the class II MHC  �  chain ( Shin et al., 2006 ; 

 van Niel et al., 2006 ). Enhanced acidifi cation of the endocytic 

pathway permits processing of the previously captured antigen 

and optimizes class II MHC peptide loading ( Trombetta et al., 

2003 ). In addition, newly synthesized proteins are ubiquitinated 

and accumulated in structures known as DALIs (dendritic cell 

aggresome-like induced structures;  Lelouard et al., 2002 ). 

Location-specifi c TLR signaling, e.g., within phagosomes, leads 

to distinct organelle-autonomous changes, including accelerated 

phagosome maturation and enhanced presentation of antigens 

resident within the phagosome ( Blander and Medzhitov, 2004 ; 

 Blander and Medzhitov, 2006 ). 

 These changes can be viewed as adaptations that boost the 

performance of DC as antigen-capturing, -processing, and -pre-

senting cells. For example, transiently enhanced antigen capture 

at the time and place of microbial product sensing should 

 increase the display of pathogen-derived peptides to T cells. 

Consistent with this, simultaneous exposure of DC to antigen and 

TLR ligand led to enhanced T cell stimulation compared with 

T
oll-like receptor (TLR) signaling induces a rapid re-

organization of the actin cytoskeleton in cultured 

mouse dendritic cells (DC), leading to enhanced an-

tigen endocytosis and a concomitant loss of fi lamentous 

actin – rich podosomes. We show that as podosomes are 

lost, TLR signaling induces prominent focal contacts and 

a transient reduction in DC migratory capacity in vitro. 

We further show that podosomes in mouse DC are foci of 

pronounced gelatinase activity, dependent on the enzyme 

membrane type I matrix metalloprotease (MT1-MMP), 

and that DC transiently lose the ability to degrade the 

 extracellular matrix after TLR signaling. Surprisingly, MMP 

inhibitors block TLR signaling – induced podosome dis-

assembly, although stimulated endocytosis is unaffected, 

which demonstrates that the two phenomena are not ob-

ligatorily coupled. Podosome disassembly caused by TLR 

signaling occurs normally in DC lacking MT1-MMP, and 

instead requires the tumor necrosis factor  �  – converting 

enzyme ADAM17 (a disintegrin and metalloprotease 17), 

which demonstrates a novel role for this  “ sheddase ”  in 

regulating an actin-based structure.

 TLR ligand – induced podosome disassembly in 
dendritic cells is ADAM17 dependent 
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2007 ;  Saltel et al., 2008 ). Podosomes are related to invadopodia 

found in invasive tumor cells, although the cellular and extracel-

lular factors that induce one as opposed to the other structure 

are unclear. Podosomes consist of a core of F-actin and actin-

regulatory proteins typically surrounded by a ring or matrix of 

other proteins, including integrins, paxillin, vinculin, and talin 

( Linder and Aepfelbacher, 2003 ). Many other proteins have 

been localized to podosomes, including, at least in osteoclasts 

and endothelial cells, matrix metalloproteases (MMPs). Several 

different MMPs have been reported to localize to podosomes 

and to invadopodia and, particularly in the latter, are responsible 

for localized degradation of the adjacent matrix ( Linder, 2007 ). 

The F-actin core of podosomes turns over rapidly (t 1/2  =  � 30 s), 

and individual podosomes have short lifetimes of a few minutes 

( Destaing et al., 2003 ;  Evans et al., 2003 ). Podosomes and in-

vadopodia have been suggested to be involved in cell migration 

and invasion ( Linder and Aepfelbacher, 2003 ;  Buccione et al., 

2004 ;  Linder, 2007 ). For this reason, the presence of podosomes 

in DC and their acute regulation by TLR signaling is of consid-

erable interest. 

sequential exposure to fi rst antigen and then TLR ligand ( West 

et al., 2004 ). The possible signifi cance of other rapid morpho-

logical changes triggered by TLR signaling is less obvious, 

however. In particular, we observed that TLR ligand – enhanced 

macropinocytosis was accompanied by a striking loss of F-actin –

 rich podosomes. As the rate of macropinocytosis subsequently fell, 

podosomes were reassembled, which suggested a reciprocal re-

lationship and possibly a redeployment of cytoskeletal resources 

from podosomes to actin-rich ruffl es and macropinosomes ( West 

et al., 2004 ). Podosomes were also lost when human DC were 

stimulated with the TLR4 ligand lipopolysaccharide (LPS), but 

on a longer time scale compared with mouse DC ( Burns et al., 

2004 ;  van Helden et al., 2006 ). 

 The biological signifi cance of TLR ligand – induced podo-

some disassembly and, indeed, the biological functions of po-

dosomes generally, are still uncertain. Podosomes have a striking 

morphology and are found in cells derived from the monocyte 

lineage, including osteoclasts, macrophages, and DC, as well as 

in endothelial cells and Src- and Rsv-transformed fi broblasts 

( Linder and Aepfelbacher, 2003 ;  Buccione et al., 2004 ;  Linder, 

 Figure 1.    TLR-signaling induces an increase 
in cell spreading and a switch from podo-
somes to focal contacts.  SDC were treated with 
50 ng/ml LPS (A) or 100 ng/ml Pam3CSK 
(B) for the times indicated, then stained for 
F-actin (red) and vinculin (green). Arrows indi-
cate focal adhesion – like contacts. The number 
of focal contacts per cell (C), the percentage 
of cells with focal contacts (D), and the ventral 
cell surface area of each cell (E) were quanti-
tated from confocal images of untreated cells 
and cells treated with 100 ng/ml Pam3CSK 
for 30 min. Approximately 50 cells for each 
condition were quantitated for C. At least 450 
cells for D and 120 cells for E for each con-
dition, from three experiments performed on 
independent DC cultures, were scored. Data are 
means  ±  SEM. *, P  <  0.005. Bars: (A) 10  μ m; 
(B) 20  μ m.   
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cytosis response ( West et al., 2004 ). A similar increase in DC 

surface area after LPS treatment has been observed by others 

( Granucci et al., 1999 ), and during revision of this work,  van 

Helden et al. (2008)  found that prostaglandin E 2  (PGE 2 ) induces 

a similar switch from podosomes to focal contacts in human 

monocyte – derived DC. 2 h after LPS stimulation, when podo-

somes reassembled, prominent focal contacts had largely dis-

appeared ( Fig. 1 A ). Thus, in response to TLR stimuli, DC switch 

the type of adhesive structure found at the cell – substrate inter-

face; before and after the phase of acute antigen sampling ( West 

et al., 2004 ), podosomes are prominent, whereas during en-

hanced endocytosis, prominent focal contacts form. 

 DC transiently lose migratory capacity 
in vitro after TLR signaling 
 Although focal contacts are observed in migrating cells, promi-

nent structures of the type we observed in LPS-stimulated DC 

correlate with an inhibitory effect on cell migration ( Ridley et al., 

2003 ). Moreover, because podosomes are proposed to be involved 

in cell migration, we wondered if DC might experience a tran-

sient loss of migratory capacity after TLR signaling. In other 

words, migration might be suppressed during the short phase of 

accelerated antigen capture. To test this, we performed short-term 

DC migration experiments in vitro after LPS challenge. Because 

the phase of DC spreading and the switch from podosomes to 

focal contacts only lasts  � 90 min, we kept the time allowed for 

migration as short as possible. We found that  � 5 – 10% of DC 

migrated through a Transwell chamber in 2 h. We avoided the 

use of chemokine attractants because the expression of chemokine 

receptors changes after TLR signaling ( Sallusto and Lanzavecchia, 

2000 ). To internally control the experiment, we included DC from 

both C3H/HeN and C3H/HeJ mice. The latter do not respond 

acutely to LPS because of a point mutation in TLR4 ( Poltorak 

et al., 1998 ). Consequently, C3H/HeJ DC show no stimulation 

of pinocytosis, nor do they show any podosome loss in response 

to LPS (Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200801022/DC1). We labeled BMDC from C3H/HeJ and 

 Here, we investigate the signifi cance and mechanism of 

reversible TLR ligand – induced disassembly of podosomes in 

mouse DC. Our results are consistent with the idea that DC mi-

gration and antigen sampling may be mutually exclusive activities, 

and they support the proposal that podosomes and specifi c 

podosome-localized MMP activities contribute to DC emigration 

from tissues. Membrane type I MMP (MT1-MMP) and, unexpect-

edly, a disintegrin and metalloprotease 17 (ADAM17) are involved 

in distinct aspects of DC podosome function and regulation. 

 Results 
 TLR signaling induces a switch from 
podosomes to focal contacts in DC 
 DC cultured from mouse bone marrow (BMDC) or spleen (SDC) 

form podosomes within 15 min of cell substrate contact. Podo-

somes are differentiated from other adhesive structures in fi xed 

cells by their characteristic  “ bull ’ s eye ”  appearance when stained 

with phalloidin to reveal the F-actin core and antibodies against 

other components such as vinculin, which are found in the 

 surrounding ring ( Fig. 1 A ;  Linder and Aepfelbacher, 2003 ). 

Exposure of mouse DC to TLR ligands induced the rapid but 

transient disassembly of podosomes ( Fig. 1 A ), and as we showed 

previously, a striking increase in membrane ruffl ing and macropino-

cytosis ( West et al., 2004  and Video 1, available at http://www

.jcb.org/cgi/content/full/jcb.200801022/DC1). Interestingly, vin-

culin (and other components of the podosome ring) became 

localized to focal contacts. These appeared longer and more nu-

merous in LPS- ( Fig. 1 A ) or Pam3CSK- (a TLR2 ligand;  Fig 1 B ) 

treated DC. We quantitated the number of focal contacts for 

Pam3CSK-treated cells and found an approximately twofold 

increase after TLR ligand exposure ( Fig. 1 C ). In addition, the 

number of cells displaying focal contacts was also signifi cantly 

increased ( Fig. 1 D ), and TLR ligand treatment increased the ven-

tral surface area (i.e., footprint) of DC almost twofold ( Fig. 1 E ). 

Thus, TLR signaling induced a cell spreading response in addi-

tion to the previously described membrane ruffl ing and endo-

 Figure 2.    LPS stimulation of DC transiently inhibits migration.  (A) BMDC from C3H/HeN and C3H/HeJ mice were labeled with CFSE or CMTMR, mixed in 
equal numbers with or without 50 ng/ml LPS, and added either into Transwell inserts or directly into control (input) wells. After 2 h at 37 ° C, migrated or input cells 
were recovered from the wells, quantitated by fl ow cytometry, and expressed as ratios of migrated or input HeN/HeJ. (B) DC were pretreated with 100 ng/ml 
LPS for different lengths of time before addition into the Transwell insert. Note that time = 0* data were obtained from cells where LPS was added immediately 
before the cells were placed onto the fi lter. Subsequent migration was for 2 h in all cases. The line indicates the 1:1 ratio achieved where HeN and HeJ 
migrate with equal effi ciency. (C) Data from experiments on three or four independent DC cultures are shown. Bars represent mean data. *, P  <  0.05.   
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 DC podosomes are foci of MMP activity 
 Podosomes are thought to be involved in cell migration and in-

vasiveness because of their highly dynamic behavior and loca-

tion at the leading edge of cells such as macrophages ( Evans 

et al., 2003 ;  Linder and Aepfelbacher, 2003 ;  Buccione et al., 

2004 ). In addition, at least in osteoclasts and endothelial cells, 

MMP activity has been localized to podosomes ( Linder, 2007 ). 

Whether DC podosomes also organize extracellular matrix – 

degrading activity is not known. To address this, we plated DC 

onto thin layers of FITC-labeled gelatin and, after incubation at 

37 ° C, visualized both the location of podosomes and the integ-

rity of the FITC-gelatin layer ( Bowden et al., 2001 ). As shown 

in  Figs. 3 A  and S2 (available at http://www.jcb.org/cgi/content/

full/jcb.200801022/DC1), discrete holes in the gelatin matrix 

were seen in the vicinity of F-actin –  and vinculin-containing 

DC podosome clusters. At higher magnifi cation, xz and yz sec-

tion planes through a confocal z stack revealed that the holes in 

the FITC-gelatin matrix were frequently below F-actin – rich po-

dosomes, which demonstrates that matrix degradation occurred 

specifi cally at podosome sites ( Fig. 3 B ). Holes in the gelatin ma-

trix that did not coincide with F-actin presumably corresponded 

from LPS-responsive C3H/HeN mice with different fl uorescent 

dyes, mixed them in a 1:1 ratio, and placed them in the top half 

of Transwell chambers. The cells were exposed to LPS immedi-

ately before their transfer to the Transwell. After a 2 h period, 

cells that had migrated to the lower chamber were recovered 

(see Materials and materials), quantitated by fl ow cytometry, and 

expressed as a ratio (HeN/HeJ). As shown in  Fig. 2 A , almost 

threefold fewer LPS-sensitive HeN cells migrated compared 

with HeJ cells, which demonstrates that TLR signaling compro-

mised the ability of the cells to migrate. We repeated the experi-

ment over a longer time course of LPS treatment. As before, 

when migration was measured immediately after LPS challenge, 

substantially fewer HeN cells had migrated compared with HeJ 

cells (decreased HeN/HeJ ratio;  Fig. 2, B and C ). However, af-

ter longer LPS exposure, the HeN cells resumed their migratory 

activity, and the migration ratio returned to and in some experi-

ments exceeded 1 ( Fig. 2, B and C ). Collectively, these experi-

ments show that TLR-stimulated DC experience a transient loss 

of migratory capacity in vitro, which coincides with the phase 

of acute stimulation of antigen capture, cell spreading, and po-

dosome loss. 

 Figure 3.    DC podosomes degrade extra-
cellular matrix.  (A) SDC were plated onto thin 
layers of cross-linked FITC-gelatin for 4 h and 
fi xed, then podosomes were stained with TRITC-
phalloidin. (B) xz and yz sections through a 
z series of confocal images revealed precise 
coincidence between individual podosomes 
and holes in the matrix (arrows). (C) BMDC 
infected with a GFP-actin – expressing retrovirus 
were plated onto Alexa 594 – gelatin, and con-
focal images were collected every 2 min over 
a 220-min period. Images from individual time 
points of Video 2 (available at http://www.jcb
.org/cgi/content/full/jcb.200801022/DC1) 
are shown. (D) SDC were treated with 50 ng/ml 
LPS for 10, 60, or 120 min before plating on 
FITC-gelatin for a further 2 h. Bars: (A and C) 
10  μ m; (B) 5  μ m; (D) 20  μ m.   
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podosomes returned ( Fig. 3 D ). Thus, matrix-degrading activity 

can be acutely regulated by TLR signaling in DC through revers-

ible disassembly of podosomes. As expected, matrix degradation 

was caused by MMP activity because the broad-specifi city MMP 

inhibitor GM6001, but not inhibitors of other protease classes or 

an inactive GM6001 analogue, blocked the appearance of degra-

dation patches beneath DC (unpublished data). 

 MT1-MMP is responsible for the in vitro 
matrix-degrading activity of DC podosomes 
 To identify the GM6001-sensitive activity responsible for podo-

some-associated matrix degradation, we investigated which MMPs 

are expressed in cultured mouse DC and tested DC from mice 

lacking selected MMPs. MMPs 8, 9, 12, 13, 14, and 19 were all 

expressed in BMDC as determined by microarray experiments 

(unpublished data). In addition, quantitative PCR data indicated 

that cultured SDC additionally expressed MMPs 2, 3, and 28 

(unpublished data). The presence of TGF �  during cell culture may 

account for the additional MMPs expressed in SDC. MMP2 

or MMP9 are gelatinases, but neither were absolutely required 

to podosomes that had turned over during the time of the experi-

ment. To gain further evidence that podosomes were responsible 

for the matrix-degrading activity of DC, we expressed GFP-actin 

via a retrovirus and followed both the dynamics of podosomes 

and matrix degradation over time.  Fig. 3 C  and Video 2 confi rm 

that podosomes are highly dynamic structures in DC and that deg-

radation occurs at podosome sites. The focused matrix degradation 

observed beneath DC podosomes is striking and more similar to 

what has been observed for invadopodial degradation, e.g., in 

carcinoma cells ( Linder, 2007 ). Focused proteolysis beneath 

DC podosomes was also observed when the DC were plated on 

non-cross-linked gelatin, collagen, and fi bronectin (Fig. S2). 

 Because podosomes are transiently lost after TLR stimula-

tion, we predicted that matrix-degrading activity might be simi-

larly affected. As with the migration studies, we kept the time 

allowed for matrix degradation to the minimum necessary in or-

der to increase the resolution of the experiment. At different times 

after LPS exposure, DC were plated on FITC-gelatin and incu-

bated for 2 h at 37 ° C. As predicted, DC lose the ability to degrade 

the gelatin matrix after LPS challenge but regain this capacity as 

 Figure 4.    MT1-MMP – defi cient DC are unable to degrade matrix.  DC from wild-type or MMP-defi cient mice were plated on cross-linked FITC-gelatin matrix 
for 4 h or for the times indicated, then fi xed and stained with TRITC-phalloidin. (A) Quantitation of matrix degradation by DC from MMP2  � / �   and MMP9  � / �   
mice. (B) Confocal images of MT1-MMP +/+  and MT1-MMP  � / �   SDC plated on matrix. Bars 20  μ m. (C) Quantitation of matrix degradation by MT1-MMP +/+  
and MT1-MMP  � / �   BMDC and SDC. Data are means of experiments performed on DC cultures from two mice of each genotype (error bars indicate the 
data range), and are representative of data from fi ve MT1-MMP  � / �   mice in total. (D) The percentage of MT1-MMP +/+  and MT1-MMP  � / �   BMDC and SDC 
with podosomes when plated on matrix.   
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MMP – defi cient mice alongside DC from wild-type littermates. 

The growth of DC in culture did not seem to be affected by the 

loss of MT1-MMP. However, compared with wild-type DC, 

gelatin matrix – degrading activity in the MT1-MMP – null DC 

was almost completely lost ( Fig. 4 B ). This striking result was 

observed in both BMDC and in SDC. Quantitation of the degra-

dation of the underlying matrix confi rmed that MT1-MMP –

 defi cient DC are profoundly compromised in their ability to 

degrade a gelatin matrix, even over an 8-h time course ( Fig. 4 C ), 

although normal levels of podosomes were observed ( Fig. 4 D ). 

because DC from mice lacking one or other of these MMPs 

showed no obvious defect in matrix degradation ( Fig. 4 A ). 

We also tested DC from mice lacking membrane-anchored MT1-

MMP (MMP14) because this activity has been associated with 

invadopodia in invasive tumor cells ( Nakahara et al., 1997 ). 

MT1-MMP – defi cient mice are severely affected by the loss of 

this key MMP activity. They are not born at the expected Men-

delian ratio, have multiple skeletal and connective tissue abnor-

malities, and die  � 2 wk after birth ( Holmbeck et al., 1999 ; 

 Zhou et al., 2000 ). We set up DC cultures from 10 – 14-d-old MT1-

 Figure 5.    MMP inhibitors block TLR signaling – induced podosome disassembly but not boosted pinocytosis or increased focal contacts.  SDC were pre-
treated with MMP inhibitors TAPI-1, TAPI-2, GM6001, or CT1746 (all at 25  μ M) for 20 min before TLR stimulation for 30 min with 100 ng/ml Pam3CSK, 
then the cells were stained with TRITC-phalloidin to reveal podosomes. Representative confocal images (A) and quantitation of cells with podosomes (B) 
are shown. (C) SDC that had been pretreated with TAP-1 and stimulated with Pam3CSK as before were incubated with 1 mg/ml FITC-dextran for 10 min 
at 37 ° C, then pinocytosed dextran was measured by fl ow cytometry. The stimulated fold changes in dextran uptake are shown. (D) SDC were treated with 
TAPI-1 and Pam3CSK as before and stained for vinculin to reveal focal contacts. (E) Quantitation of cells with focal contacts. (F) The lifetimes of individual 
podosomes in untreated or TAPI-1 – treated BMDC expressing GFP-actin were quantitated from time-lapse sequences, as described in Materials and methods. 
Between 160 and 760 podosome events per cell for 10 cells (from two independent DC cultures) per treatment were measured. (G) The effect of TAPI-1 
pretreatment (as before) on podosomes in SDC stimulated with 100 ng/ml Pam3CSK, 30 ng/ml PMA, or 10  μ g/ml PGE 2  for 30 min was quantitated after 
TRITC-phalloidin staining. Data are means  ±  SEM of experiments performed on DC from three (B, C, and E) or fi ve mice (G). Bars: (A) 10  μ m; (D) 20  μ m.   
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mine the lifetimes of individual podosomes (see Materials and 

methods and Fig. S3, available at http://www.jcb.org/cgi/content/

full/jcb.200801022/DC1). Although there was some variation in 

podosome F-actin core lifetime, even within the same podosome 

cluster (Fig. S3), the distribution of lifetimes and the mean podo-

some lifetime was essentially the same with or without inhibition 

of MMP activity ( Figs. 5 F  and S3). 

 PGE 2  has been reported to rapidly induce podosome dis-

assembly in human DC ( van Helden et al., 2006 ), a fi nding we 

confi rmed in mouse DC ( Fig. 5 G ). However, this response was 

insensitive to MMP inhibitors, demonstrating that TLR ligands 

and PGE 2  destabilize podosomes by distinct mechanisms. PMA 

also triggered podosome disassembly in DC and, similar to 

TLR-driven disassembly, this was also dependent on MMP ac-

tivity ( Fig. 5 G ). 

 TLR-induced podosome disassembly 
requires a distinct MMP activity 
 We asked which MMP activities are required for TLR ligand –

 induced podosome disassembly. Interestingly, LPS induced loss 

of podosomes to the same extent in wild-type and in MT1-

MMP – defi cient DC, which indicates that matrix degradation 

and podosome stability are controlled by different MMP activi-

ties ( Fig. 6 A ). Furthermore, MMP2 and MMP9 were also ruled 

out because DC lacking these enzymes disassembled podosomes 

normally in response to LPS ( Fig. 6 B ). MMP activities might 

destabilize podosomes by proteolytic cleavage or  “ shedding ”  of 

key proteins, e.g., integrins, that mediate substrate attachment at 

podosomes. Such activities could be recruited and/or activated 

after TLR signaling. To further defi ne the MMP activities responsi-

ble and test whether known sheddases such as ADAM17 (also 

known as TNF- �  – converting enzyme [TACE]) and ADAM10 

might be involved, we tested two additional selective inhibitors of 

these enzymes: GW280264X (GW), which blocks both ADAM10 

and ADAM17; and GI254023X (GI), which inhibits ADAM10 

100-fold more effectively than ADAM17 ( Hundhausen et al., 2003 ; 

 MMP inhibitors block TLR signaling – induced 
podosome disassembly 
 While we were testing different protease inhibitors for their effect 

on podosome-organized matrix-degrading activity, we made an 

unexpected observation: the presence of MMP inhibitors com-

pletely blocked TLR ligand – induced podosome disassembly. 

Four different MMP inhibitors (GM6001, TAPI-1, TAPI-2, and 

CT1746) all blocked this response ( Fig. 5, A and B ). Moreover, 

the concentrations of MMP inhibitors required to arrest this re-

sponse were the same as those required to block a second TLR-

induced and MMP-dependent response, the shedding of tumor 

necrosis factor  �  (TNF- � ) from the DC surface (unpublished 

data). This fi nding allowed us to test the hypothesis that TLR li-

gand – stimulated macropinocytosis might be dependent on podo-

some disassembly, e.g., to release additional actin resources. 

Cultured mouse DC were stimulated with Pam3CSK in the pres-

ence or absence of TAPI-1, and macropinocytosis was measured 

by FITC-dextran uptake ( West et al., 2004 ). In fact, blockade of 

podosome disassembly with the MMP inhibitor had little effect 

on LPS-stimulated endocytosis ( Fig. 5 C ). Furthermore, the pres-

ence of an MMP inhibitor had little effect on the TLR ligand – 

induced increase in prominent focal contacts ( Fig. 5, D and E ) or 

ventral cell surface area (not depicted). These results lead to two 

important conclusions. First, neither the stimulated endocytic re-

sponse nor the increase in focal contacts and cell spreading is ob-

ligatorily coupled to the disassembly of podosomes. Second, MMP 

activity is not only organized at podosomes for purposes of ma-

trix degradation but can additionally initiate podosome loss after 

TLR signaling. 

 The unexpected involvement of MMP activity in podo-

some stability in TLR ligand – stimulated cells raised the ques-

tion of whether MMP activity also affected podosome lifetime 

under normal, i.e., non-TLR-stimulated, conditions. DC express-

ing GFP-actin were left untreated or treated with the MMP inhibi-

tor TAPI-1. Podosomes were imaged by time-lapse microscopy, 

and kymographs of podosome clusters were analyzed to deter-

 Figure 6.    TLR-induced podosome disassembly 
requires a distinct metalloprotease activity.  DC 
from MT1-MMP –  (A) and MMP2- or MMP9- (B) 
defi cient mice were fi xed after LPS stimulation 
(50 ng/ml, 30 min) and stained with TRITC-
phalloidin to allow assessment of podosome 
loss. SDC were pretreated for 20 min with 
25  μ M TAPI-1, 3  μ M GW280264X (GW), or 
3  μ M GI254023X (GI), then stimulated with 
100 ng/ml Pam3CSK. TNF- �  shedding into 
the medium measured by ELISA (C) and quan-
titation of cells with podosomes (D) are shown. 
Data are representative of experiments per-
formed on DC from at least two mice.   
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 Figure 7.    ADAM17 is required for TLR-signaling induced podosome disassembly.  BMDC were cultured from ADAM17 +/+ , ADAM17 +/fl  , or ADAM17 fl /fl   
mice. Lysates from these were immunoblotted with antibodies against ADAM17 or actin (loading control). (B) TNF- � , released by BMDC during treatment 
with 50 ng/ml LPS or 100 ng/ml Pam3CSK for 2 h, was measured by ELISA. (C) ADAM17 +/+ , ADAM17 +/fl  , or ADAM17 fl /fl   BMDC were stimulated with 
50 ng/ml LPS or 100 ng/ml Pam3CSK for 30 min, then assessed, after staining with TRITC-phalloidin, for the presence of podosomes. (D) Confocal images 
of the cells quantitated in C confi rm that the LPS- or Pam3CSK-stimulated podosome loss observed in ADAM17 +/+  cells is inhibited in ADAM17 fl /fl   cells. 
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(E) The percent inhibition of podosome loss versus the percent inhibition of TNF- �  shedding (relative to +/+ controls) for experiments performed on BMDC 
(squares) or SDC (circles), which had been treated with LPS (closed symbols) or Pam3CSK (open symbols), as before, from fi ve ADAM17 fl /fl   mice. The 
Pearson coeffi cient for the data is 0.76. (F) Immunoblots of lysates from uninfected BMDC or BMDC infected with retrovirus expressing either GFP marker 
alone or GFP and ADAM17 show that expression of ADAM17 can be restored in ADAM17 fl /fl   cells. ADAM17 +/+  or ADAM17 fl /fl   BMDC infected with GFP 
or ADAM17 retrovirus were left untreated or stimulated with 50 ng/ml LPS for 30 min, then stained with TRITC-phalloidin. GFP +  (infected) cells from each 
condition were scored for the presence of podosomes (G), and representative confocal images of LPS-treated cells are shown (H). Bars, 20  μ m.   

 

 Chalaris et al., 2007 ). TLR signaling is known to stimulate 

TNF- �  release from its membrane-bound precursor form in an 

ADAM17-dependent manner ( Black et al., 1997 ), providing a 

convenient assay for these inhibitors. As before, DC were stimu-

lated with a TLR ligand (Pam3CSK) in the presence or absence of 

these inhibitors, and both TNF- �  release and podosome loss 

were monitored. TNF- �  release from the cells was potently in-

hibited by the GW compound but only slightly by GI, which is 

consistent with the known involvement of ADAM17 but not 

ADAM10 in stimulated TNF- �  release ( Fig. 6 C ). Podosome 

loss closely mirrored this response, being blocked by GW but not 

by GI ( Fig. 6 D ), which is consistent with a possible involve-

ment of ADAM17. 

 To investigate this further, we took advantage of a newly 

derived line of mice carrying two fl oxed alleles of ADAM17, which 

express low levels of the enzyme even in the absence of Cre-

mediated excision, because of an aberrant splicing event. These 

ADAM17 fl /fl   mice, unlike ADAM17-null mice, are viable and will 

be fully described elsewhere (unpublished data). As shown 

in  Fig. 7 A , levels of ADAM17 in BMDC expanded from the 

ADAM17 fl /fl   mice were substantially reduced compared with the 

wild type. As expected, the normal TLR ligand – induced shed-

ding of TNF- �  was also substantially reduced in DC from the 

ADAM17 fl /fl   mice ( Fig. 7 B ), although the actual defi cit was vari-

able among DC cultures generated from different mice. Impor-

tantly, DC from the ADAM17 fl /fl   mice showed a striking inability 

to disassemble podosomes in response to TLR signaling ( Fig. 7, 

C and D ). In DC from different mice, this ranged from virtually 

complete inhibition to  � 50% inhibition of the response. When 

we compared the percentage of inhibition of TLR-induced 

TNF- �  release versus the percentage of inhibition of TLR-

induced podosome loss in BMDC and SDC from fi ve different 

ADAM17 fl /fl   mice, there was a positive correlation between the 

two ( Fig. 7 E ; r = 0.76). To confi rm that ADAM17 activity was 

required for podosome disassembly, we attempted to rescue the 

response by reintroduction of ADAM17 into primary DC from 

the ADAM17 fl /fl   mice. As shown in  Fig. 7 F , retroviral reexpres-

sion of ADAM17 restored protein levels in ADAM17 fl /fl   mouse 

DC. Importantly, when DC infected with the ADAM17 virus 

(GFP+) were stimulated with LPS, the podosome disassembly 

response was largely restored ( Figs. 7, G and H ). In contrast, 

neighboring uninfected (GFP � ) cells retained their podosomes 

( Fig. 7 H ). These data demonstrate, unexpectedly, that the 

TNF- �  and  l- selectin shedding enzyme ADAM17/TACE plays 

a key role in TLR-induced podosome regulation in mouse DC. 

 Discussion 
 When DC encounter innate immune stimuli such as TLR li-

gands, a spectrum of striking cell biological changes occur early 

in the overall maturation response. These include reorganizations 

of the actin cytoskeleton and the vacuolar system, which en-

hance antigen capture, processing, and presentation (for re-

views see  Trombetta and Mellman, 2005 ;  Watts et al., 2007 ). 

We previously described an acute response characterized by two 

striking changes to the actin cytoskeleton: an up-regulation of 

membrane ruffl ing – driven macropinocytosis and a disappear-

ance of F-actin – rich podosomes ( West et al., 2004 ). Both changes 

were transient and occurred with the same kinetics. Fully ma-

ture DC have few podosomes (unpublished data;  Burns et al., 

2001 ), which indicates that they may have a specifi c role in the 

biology of immature DC. Here, we investigated further the TLR 

regulation of podosomes in immature DC. 

 Our data support the idea that DC transiently lose migratory 

capacity during acute antigen sampling. Migration through a tran-

swell barrier was impeded after LPS challenge, as shown by the 

fact that when mixed populations of LPS responsive and non-

responsive DC were monitored, the responsive DC lagged behind. 

This lag phase coincided with a transient switch in the type of ad-

hesive structure expressed by DC from predominantly podosomes 

to focal contacts. We suggest that the loss of migratory capacity is 

due, at least in part, to the loss of actin-rich podosomes and the de-

velopment of more prominent focal contacts and cell spreading. 

The role of podosomes in cell migration on planar substrates as 

opposed to cell invasiveness is still debated. The presence of podo-

somes at the leading edge of macrophages ( Evans et al., 2003 ) and 

DC ( Burns et al., 2004 ;  Svensson et al., 2008 ) suggests that they 

contribute to directed migration, but it is clear that podosomes are 

not essential for migration on 2D substrates. For example, human 

DC matured with LPS for 16 h lost podosomes, but their capacity 

to migrate on 2D surfaces was actually increased ( van Helden 

et al., 2006 ), and macrophages defi cient in Rac2 lacked podo-

somes but still migrated on a coated glass substrate ( Wheeler 

et al., 2006 ). Nonetheless, considerable evidence implicates podo-

somes and invadopodia in cell migration in three dimensions, e.g., 

through an extracellular matrix barrier. MMP activity organized 

by podosomes and invadopodia is thought to be a key element in 

this process ( Linder, 2007 ). Although no defi ned matrix barrier 

was used in our short-term migration experiments, podosomes 

may help the cell to negotiate the fi lter barrier. This may be be-

cause MMPs have additional roles besides pericellular matrix pro-

teolysis that may also aid migration ( Mott and Werb, 2004 ;  Van 

Lint and Libert, 2007 ), e.g., cytokine and chemokine processing 

and shedding of cell surface proteins such as syndecan-1 ( Endo 

et al., 2003 ) and CD44 ( Nakamura et al., 2004 ). These additional 

MMP functions may be most effective when focused at the ad-

vancing cell boundary. We recently found that disruption of nor-

mal ARF6 GTPase activity strongly inhibited both podosome 

formation and immature DC migration in vitro, again linking these 

structures to DC migratory capacity ( Svensson et al., 2008 ). 
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speculate that podosome-organized MMP activity may be im-

portant for DC processing of migratory cues that involve these 

additional substrates. 

 We identifi ed an unexpected and novel relationship between 

MMP activity and podosome genesis and stability. The pres-

ence of MMP inhibitors completely blocked TLR ligand – 

induced loss of podosomes. Interestingly, the relevant MMP 

activity was not MT1-MMP, as podosomes disassembled nor-

mally in LPS-treated DC from MT1-MMP – defi cient mice, but 

rather was the TNF- �  – converting enzyme ADAM17. To our 

knowledge this is the fi rst time that this activity has been impli-

cated in the dynamics of actin-based structures associated with 

cell adhesion and migration. The ADAMs family of proteinases 

contains the major cell surface sheddases known to cleave cyto-

kines, growth factors, and their receptors, as well as adhesion 

molecules ( Seals and Courtneidge, 2003 ). Moreover, shedding 

events such as the release of TNF- �  by ADAM17 is known to 

be activated by TLR ligands in a MAP kinase – dependent fashion 

( Schlondorff and Blobel, 1999 ;  Soond et al., 2005 ;  Rousseau 

et al., 2008 ), which is consistent with our fi nding that TLR-triggered 

podosome disassembly is blocked by MAP kinase inhibitors 

( West et al., 2004 ). 

 The precise mechanistic link between ADAM17 and TLR 

ligand – triggered podosome disassembly remains to be eluci-

dated. Most likely, TLR signaling induces the recruitment to the 

cell surface and/or activation of ADAM17, which then cleaves 

key surface proteins required for cell – substrate contact and po-

dosome formation. The identity of these proteins remains to be 

established. Podosome reappearance may require the repopula-

tion of the cell surface with those proteins. Recently, the intra-

cellular protease calpain has also been implicated in podosome 

stability. Calpain inhibitors increased recruitment of integrins 

and Wiskott-Aldrich syndrome protein (WASp) to podosomes, 

apparently by blocking calpain-mediated cleavage of WASp 

( Calle et al., 2006 ). A follow-up study ( Chou et al., 2006 ) showed 

that DC lacking WASp-interacting protein (WIP) also lack nor-

mal podosomes, as do WASp-defi cient DC ( Burns et al., 2004 ). 

 How might the TLR ligand – induced loss and subsequent 

regain of podosomes be rationalized in the context of DC be-

havior in vivo? Under noninfectious resting conditions, DC are 

known to exit tissues at a basal rate and travel to lymphoid or-

gans ( Huang et al., 2000 ;  Lanzavecchia and Sallusto, 2001 ). 

These constitutively migrating DC are believed to be important 

in the induction of tolerance to self-antigens ( Heath and Carbone, 

2001 ;  Steinman et al., 2003 ). We propose that DC use podo-

somes or related structures as part of the machinery needed for 

DC mobilization and exit from tissues under these conditions 

( Fig. 8 ). Upon detection of an infectious or infl ammatory stimu-

lus, DC would initiate a transient phase of enhanced actin-

dependent capture of local antigens that, we propose, may be 

facilitated by loss of migratory capacity as a result of a switch 

in the dominant adhesive structure, i.e., podosomes to focal 

contacts. At the end of this period of acutely stimulated endocy-

tosis, podosomes may reform, and migration of antigen-loaded 

DC could resume ( Fig. 8 ). The microbial and infl ammatory stimuli 

encountered also serve to switch the DC from a tolerogenic to 

an immunogenic mode ( Lanzavecchia and Sallusto, 2001 ; 

 Reis e Sousa, 2006 ). Though obviously speculative, the model 

implies that DC undergo a transient loss of migratory capacity 

during the phase of acute antigen endocytosis, a prediction that is 

at least consistent with the in vitro experiments described here. 

 Podosomes have now been described in several cell types, 

and although there is abundant information on their composi-

tion, the factors that control their formation, lifetime, and func-

tion are still under investigation ( Buccione et al., 2004 ;  Linder, 

2007 ;  Saltel et al., 2008 ). Their acute response in DC to TLR 

stimuli provides a powerful system to investigate some of these 

questions. We show here that, as in osteoclasts and endothelial 

cells, DC podosomes organize pericellular proteolytic activity, 

and we show that a TLR stimulus transiently ablates this activity. 

This would also fi t with the proposed loss of tissue-emigrating 

ability. Surprisingly, this gelatin matrix – degrading activity was 

caused by a single MMP, MT1-MMP. MT1-MMP is known to 

activate other MMPs such as MMP2. However, MMP2-defi cient 

DC showed normal in vitro matrix degrading capacity, which 

suggests that MT1-MMP may be directly involved in pericellu-

lar proteolytic activity or activate a different MMP. The possible 

link between MT1-MMP and DC migration is intriguing, as 

this membrane-anchored MMP has been frequently associated 

with tumor cell invasiveness and metastasis in vivo ( Sato et al., 

2005 ). Assessing a role for MT1-MMP in DC migration in 

vivo is problematic because of the poor health and very short 

lifespan of the null mice and will require either conditional 

and/or DC-specifi c deletion for full investigation. However, 

DC migration through tissue and matrix barriers in vivo may 

well require more than a single MMP activity. For example, 

Langerhans cell emigration was defi cient in skin explants from 

MMP9-defi cient mice ( Ratzinger et al., 2002 ). In the same 

study, the presence of tissue inhibitor of metalloprotease 2, 

which inhibits MT1-MMP and other MMPs but not MMP9, 

also inhibited Langerhans cell migration. As already noted, 

it has become clear that MMPs also process a variety of non-

matrix substrates including chemokines, cytokines, and their 

receptors ( Van Lint and Libert, 2007 ). It is therefore tempting to 

 Figure 8.    Proposed relevance of TLR-regulated actin changes to DC biol-
ogy in vivo.  DC migrate from peripheral tissues to lymph nodes under 
noninfl ammatory conditions using podosomes and their associated MMP 
activity as part of the migratory apparatus. Upon detection of a micro-
bial stimulus, DC are proposed to enter a transient window of enhanced 
actin-driven antigen endocytosis, loss of podosomes, and appearance of 
prominent focal contacts, thus optimizing local antigen acquisition and 
suppressing migration. As endocytosis subsequently decreases, focal con-
tacts are replaced by reappearing podosomes and migratory capacity 
is restored. Such DC conditioned by a microbial stimulus are potentially 
 “ immunizing ”  rather than  “ tolerizing. ”    
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 Inhibitors, TLR ligands, and stimuli 
 MMP inhibitors TAPI-1 (BIOMOL International, L.P.), TAPI-2 (BIOMOL Inter-
national, L.P.), GM6001 (EMD), and CT1746 (G. Murphy, University of Cam-
bridge, Cambridge, England, UK) were all used at 25  μ M. GW280264X 
and GI254023X were both used at 3  μ M. Stimulation was performed with 
TLR ligands LPS (50 ng/ml; Qbiogene) and Pam3CSK (100 ng/ml; 
EMC Microcollections), or with PMA (30 ng/ml; Sigma-Aldrich) or PGE 2  
(10  μ g/ml; Qbiogene). 

 Light microscopy 
 For visualization and quantitation of cell adhesions, 2  ×  10 5  DC that had 
been plated onto glass coverslips were fi xed with 4% paraformaldehyde in 
PBS, permeabilized with 0.2% Triton X-100, and costained with TRITC-
phalloidin (Sigma-Aldrich) for F-actin and anti-vinculin (hVin-1; Sigma-
Aldrich), followed by Alexa 488 –  or 633 – goat anti – mouse IgG (Invitrogen). 
Single optical sections of 0.7  μ m, taken at the ventral surface of the cells, 
were acquired on a confocal microscope (LSM 510 META) using a 100 ×  
 �  PlanFluar/NA 1.45 objective and LSM 510 software (all from Carl 
Zeiss, Inc.). Time-lapse video microscopy of BMDC expressing GFP-actin 
was performed using a 37 ° C temperature-controlled chamber fl ushed with 
5% CO 2  in air, and images were collected using the microscope and ob-
jective as before. For matrix degradation, z stacks of 10  ×  0.7- μ m sections 
were acquired every 2 min, taken at 0.34- μ m intervals. For each time 
point, the stacks were converted into a single projection using software 
(Carl Zeiss, Inc.), and the time series was converted into a QuickTime 
video (Apple). For analysis of podosome lifetimes, 5  ×  0.7- μ m sections at 
0.34- μ m intervals were acquired every 20 s. Maximum projections for 
each z series, for 50 sequential frames, were imported into the Imaris soft-
ware (Bitplane AG) for analysis as described in the following section. 

 Quantitation 
 Quantitation of the percentage of cells with podosomes or with focal con-
tacts was performed using cells stained with TRITC-phalloidin and anti-
vinculin. 200 – 300 cells per condition per experiment were assessed for 
podosomes and 150 – 200 for focal contacts. 

 For quantitation of the number of focal contacts or of the ventral cell 
surface area, images collected using identical acquisition parameters were 
analyzed using Volocity software (PerkinElmer). Focal contacts were se-
lected by intensity of green fl uorescence (vinculin) and distinguished from 
podosomes based on size. The total number of focal contacts for individual 
complete cells (defi ned by regions of interest) in each image was then cal-
culated. For measurement of the ventral surface areas, all of the cells in 
an image were fi rst identifi ed by fl uorescence in the red channel (TRITC-
phalloidin staining of cortical actin). This selected the precise area of the 
cells. To extract this data for individual cells in the fi eld, each complete cell 
was selected using a simple region of interest. The mean area per cell for 
each condition was then calculated. 

 For measurement of podosome lifetimes, time sequences were ana-
lyzed using Imaris software by a modifi cation of the methods of  Evans 
et al. (2003) . In brief, the time sequences were converted to kymographs 
by swapping time for z and fi ltered to remove background fl uorescence 
and noise. The images were then cut into uniformly sampled yz slices of 
10 pixels, with 5-pixel intervals between the slices, starting at a random 
point (see Fig. S3). All podosome lives in the kymographs slices were mea-
sured regardless of whether they originated outside the time window or 
continued beyond this window. The total lifetime for all podosomes scored 
in these cell slices was then divided by the total number of podosome initia-
tion events to give the mean podosome lifetime for each cell. 

 Transwell migration 
 BMDC from C3H/HeN or C3H/HeJ mice were labeled with 0.2  μ M car-
boxyfl uorescein succinimidyl ester (CFSE) or 2  μ M CMTMR (Invitrogen) for 
15 min at 37 ° C, washed three times, and then reincubated for a further 
15 min at 37 ° C. The two populations of cells were mixed in a 1:1 ratio, and 
10 5  mixed cells were placed in the upper chamber of a Transwell 24-well in-
sert (5- μ m pore fi lter; Costar) or directly into the well without an insert (input 
control). After 2 h at 37 ° C, the cells that had migrated through the fi lter were 
recovered using 10 mM EDTA and stained with an APC-labeled anti-CD11c 
antibody (HL3; BD Biosciences). Then, the ratio of CFSE- to CMTMR-labeled 
CD11c +  cells was assessed by fl ow cytometry using a FACS Calibur (BD 
Biosciences). Where indicated, DC were pretreated with 50 ng/ml LPS be-
fore migration. To normalize the data across a time course, the ratio of mi-
grated HeN/HeJ cells was divided by the input ratio for each time point. 

 Matrix degradation 
 Glass coverslips were coated with matrix proteins: 10  μ g/ml FITC-gelatin 
(Invitrogen), 10  μ g/ml Alexa 594 – gelatin, 50  μ g/ml Oregon green – collagen 

WIP appears to regulate both the location and stability of WASp 

and is localized in podosome actin cores ( Chou et al., 2006 ). 

 Interestingly, WIP  � / �   DC had more pronounced focal contacts 

and membrane ruffl es compared with wild-type DC, which is 

similar to the state transiently induced by TLR signaling. How-

ever, we found that calpain inhibitors did not affect the sensitiv-

ity of DC podosomes to TLR signaling (unpublished data), 

which indicates that perturbation of the calpain – WASp – WIP 

system is not likely to be the primary target of LPS signaling. 

Apparently, both the calpain and MMP systems can infl uence 

podosome stability. 

 Having found a way to selectively inhibit part of the TLR 

ligand – induced cytoskeleton response, we were able to test the 

possibility that podosome disassembly might be necessary to 

fuel increased actin-dependent endocytosis. In fact, macropino-

cytosis was boosted to almost the same extent in the presence of 

MMP inhibitors, which demonstrates that the two phenomena 

are coincident but not obligatorily linked. DC evidently have 

suffi cient actin cytoskeletal resources to maintain signifi cant 

numbers of podosomes and to develop the pronounced ruffl es 

that give rise to macropinosomes. 

 In summary, in spite of the increasing attention that podo-

somes have received, there are few instances where their assem-

bly and disassembly can be triggered over a short time scale and 

the consequences for the cell assessed. Our data support the 

idea that podosomes enhance DC migration through three-

dimensional space and that their TLR ligand-induced loss might 

aid local antigen capture by transiently arresting migration. 

Moreover, we show that MT1-MMP activity is organized by DC 

podosomes for pericellular proteolysis but that a distinct MMP 

activity, ADAM17, is involved in their TLR ligand – triggered 

disassembly. Taken as a whole, these data reveal new features of 

podosomes and suggest they play an important role in the early 

DC response to innate immune stimuli. 

 Materials and methods 
 Dendritic cell culture 
 DC were cultured from mouse bone marrow (BMDC) or spleen (SDC) from 
female C57/Bl6, C3H/HeJ, or C3H/HeN mice, as described previously 
( West et al., 2004 ). In brief, bone marrow was fl ushed from femurs and 
tibia, and cells were cultured in complete RPMI containing 10 ng/ml re-
combinant granulocyte macrophage colony – stimulating factor (GM-CSF; 
PeproTech). The medium was replaced on day three of culture and the 
cells were used between days fi ve and seven. For SDC, disaggregated 
splenocytes were cultured in low-attachment plates (Costar) in complete 
RPMI medium supplemented with 10 ng/ml GM-CSF and 1 ng/ml TGF �  
(R & D Systems). SDC were used between 14 and 21 d of culture. Where 
indicated, DC were derived from MMP2 (provided by C. Libert, Univer-
sity of Ghent, Ghent, Belgium;  Itoh et al., 1997 ), MMP9 (Z. Werb, Uni-
versity of California, San Francisco, San Francisco, California;  Vu et al., 
1998 ), or MT1-MMP ( Zhou et al., 2000 ) knockout mice. ADAM17 fl /fl   
mice were generated by a novel strategy, which induced an aberrant 
splicing event, and show  � 10% of ADAM17 expression and activity as 
compared with wild-type mice. Using a novel strategy, ADAM17 fl /fl   mice 
were generated by introducing into the germ line a new exon between 
exons 11 and 12 so that the new exon started with a translational stop 
codon. Because we used splice donor/acceptor sites that deviated slightly 
from the canonical splice donor/acceptor sequence, the new exon was 
only used in 90 – 95% of the transcripts, leaving 5 – 10% of the ADAM17 
mRNAs with the wild-type sequence. These 5 – 10% were enough for the 
mice to survive. Consequently, ADAM17 fl /fl   mice show a 90 – 95% reduc-
tion in ADAM17 expression. 
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type IV (Invitrogen), or 50  μ g/ml Alexa 488 – fi bronectin and cross-linked 
with 0.5% glutaraldehyde where indicated ( Bowden et al., 2001 ). Label-
ing of gelatin (Sigma-Aldrich) and fi bronectin (EMD) with Alexa 594 and 
488 dyes was performed using the respective protein labeling kits (Invitro-
gen) according to the manufacturer ’ s instructions. 2  ×  10 5  DC were plated 
onto matrix-coated coverslips and incubated at 37 ° C to allow degrada-
tion, then fi xed with 4% paraformaldehyde in PBS and stained with TRITC-
phalloidin. Matrix degradation was quantitated by counting degradation 
patches in 15 fi elds of cells (300 – 500 cells) per condition for each experi-
ment. For time-lapse analysis of matrix degradation, BMDC infected with 
retrovirus expressing GFP-actin were plated into glass-bottomed dishes 
(WillCo; Intracel) coated with cross-linked Alexa 594 – gelatin. 

 FITC-dextran uptake 
 2  ×  10 5  SDC that had been allowed to adhere to glass coverslips for 1 – 2 h 
were pretreated with 25  μ M TAPI-1, then stimulated with 100 ng/ml 
Pam3CSK for 30 min before incubation with 1 mg/ml FITC-dextran (Invit-
rogen) for 10 min at 37 ° C. Cells were detached with PBS containing 5 mM 
EDTA, and pinocytosed dextran was measured by fl ow cytometry ( West 
et al., 2004 ). 

 Retroviral constructs and BMDC retroviral infection 
 Mouse ADAM17 cDNA (Thermo Fisher Scientifi c) was cloned into the 
BamHI and XhoI sites of the Moloney murine leukemia virus – based vector 
pBMN-IRES-GFP (provided by G. Nolan, Stanford University, Stanford, CA). 
LZRS-pBMN EGFP-actin has been described previously ( West et al., 2004 ). 
Virus was produced by transfecting the Phoenix Eco 293T packaging cell 
line with these vectors, and BMDC were infected using viral supernatants 
as described previously ( West et al., 2004 ). 

 TNF- �  shedding 
 10 5  DC were plated into 96-well plates in 100  μ l of complete RPMI and 
stimulated with 50 ng/ml LPS or 100 ng/ml Pam3CSK for 2 h, then 10  μ l 
of the medium was assayed for secreted TNF- �  by ELISA (Peprotech), ac-
cording to the manufacturer ’ s instructions. 

 Cell lysis and immunoblot 
 DC were lysed in SDS sample buffer. Equal amounts of proteins were sepa-
rated by electrophoresis on 4 – 12% NuPage gels (Invitrogen), then transferred 
onto nitrocellulose membrane (GE Healthcare) and probed with antibodies 
against ADAM17 (Spring Bioscience) and actin (AC-40; Sigma-Aldrich). 

 Statistical analysis 
 Error bars represent SEM unless otherwise stated. The unpaired two-tailed 
 t  test was used for statistical analysis. 

 Online supplemental material 
 Fig. S1 shows that DC from C3H/HeJ mice are insensitive to LPS stimula-
tion of FITC-dextran pinocytosis or podosome disassembly. Fig. S2 shows 
podosome-associated degradation of gelatin, collagen type IV, and fi bro-
nectin. Fig. S3 illustrates the method used for measurement of podosome 
lifetimes. Video 1 shows spreading, ruffl ing, and pinocytosis in DC in re-
sponse to LPS treatment. Video 2 shows degradation of gelatin matrix by 
DC expressing GFP-actin. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200801022/DC1. 
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