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Simple Summary: Chromosome instability (CIN) is characterized by an increased accumulation of
numerical and structural changes in chromosomes and is a common feature of solid tumors and some
hematological malignancies. CIN has been extensively linked to tumorigenesis, cancer progression,
and tumor resistance. However, in recent years CIN phenotypes are increasingly being harnessed
for therapeutic purposes. In this review, we describe the origins of structural CIN phenotypes and
highlight novel pathways for their resolution. We also discuss how CIN can be avoided or enhanced
and the implications of these pathways for cell survival and thus, cancer treatments.

Abstract: Chromosomal instability (CIN) refers to an increased rate of acquisition of numerical and
structural changes in chromosomes and is considered an enabling characteristic of tumors. Given its
role as a facilitator of genomic changes, CIN is increasingly being considered as a possible therapeutic
target, raising the question of which variables may convert CIN into an ally instead of an enemy
during cancer treatment. This review discusses the origins of structural chromosome abnormalities
and the cellular mechanisms that prevent and resolve them, as well as how different CIN phenotypes
relate to each other. We discuss the possible fates of cells containing structural CIN, focusing on how
a few cell duplication cycles suffice to induce profound CIN-mediated genome alterations. Because
such alterations can promote tumor adaptation to treatment, we discuss currently proposed strategies
to either avoid CIN or enhance CIN to a level that is no longer compatible with cell survival.

Keywords: chromosome instability; chromosome aberrations; chromosome bridges; lagging chromo-
somes; ultra-fine bridges; micronuclei; DNA damage; DNA repair

1. Introduction

Genomic stability is conserved by the coordinated activity of multiple genome mainte-
nance pathways that ensure faithful DNA replication and equal distribution of duplicated
DNA among daughter cells [1]. These pathways include cell cycle checkpoints, DNA dam-
age detection and its repair, telomere maintenance, and centrosome duplication, to name a
few. Their defects lead to genomic instability, a state with an increased tendency to acquire
genetic alterations. Genomic instability is considered both an early step of tumorigenesis
and an enabling characteristic of tumors, propelling tumor heterogeneity and providing
growth advantages [2]. Mutations in genome maintenance effectors and regulators are not
only sporadic; they also give rise to various genetic syndromes characterized by cancer
predisposition and early cancer onset [3].

The genetic changes associated with genomic instability range from single nucleotide
loss/modification to elimination or gains of whole chromosomes. Chromosome instability
(CIN) is a subtype of genomic instability, which refers to an increased rate of acquisition of
gross numerical or structural changes in chromosomes. CIN is a feature that is remarkably
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frequent in most solid tumors and some hematological malignancies and is associated
with resistance [4]. Intriguingly, however, in certain tumor types (e.g., breast, thyroid, and
colon cancer), CIN is often considered as a possible therapeutic target, raising the question
of which variables may convert CIN into an ally during cancer treatment [5]. Thus, it is
critical to unravel the triggers and consequences of each type of CIN. The easy visualization
of morphological changes in chromosomes, which we will discuss in this review, should
facilitate such a goal. Nevertheless, our understanding of CIN from the perspective of its
molecular triggers, its role in different tumor contexts, and the procedures to prevent or
exacerbate CIN remains very limited and deserves immediate attention.

2. Types of Chromosome Instability (CIN)

CIN refers to an increase in the acquisition rate of chromosome alterations and is
classified into two types: numerical CIN and structural CIN. Numerical CIN refers to the
loss or gain of entire chromosomes and leads to aneuploidy, which is distinct from the gain
of a complete set of chromosomes, referred to as polyploidy. It is thought that a polyploid
state (usually tetraploidy) followed by chromosome gain and loss is a key variable for
building the complex karyotypes of solid tumors [6]. On the other hand, structural CIN
refers to structural changes in chromosomes, including gross chromosome rearrangements,
such as amplifications and deletions of parts of chromosomes, and translocations between
non-homologous chromosomes [7]. An important distinction is that chromosome abnor-
malities may also exist without giving rise to unstable genomes (i.e., CIN), as is the case, for
example, for Down syndrome patients, which are aneuploid for chromosome 21 (trisomy).

Numerical CIN is usually associated with chromosome segregation errors during mi-
tosis, resulting from aberrant mitotic spindles, sister chromatid cohesion defects, improper
microtubule-kinetochore attachments, chromosome condensation defects, or abnormal
cytokinesis [8]. On the other hand, structural CIN is commonly associated with replication
stress (stalled or collapsed replication forks), telomere dysfunction, and errors in the repair
of double-strand breaks (DSBs) [9,10]. Despite their apparently distinct origins, it is worth
mentioning that both numerical and structural CIN tend to coexist in tumors, and each can
be the source of the other [10,11].

3. Cellular Phenotypes Associated with CIN

In cells, CIN manifests as chromosomal phenotypes that can be observed via FISH,
immunofluorescence, and staining of metaphases, among other methods. These chromoso-
mal phenotypes are best visualized during mitosis when chromosome condensation is at
its peak, and it is generally accepted that their quantification is a good predictor of CIN
levels. Their manifestation is also used to infer the roles of proteins involved in genome
maintenance.

3.1. Chromosome Aberrations

Chromosome aberrations include structural changes such as large translocations, dele-
tions, amplifications, chromosome gaps, chromosome breaks, and radial chromosomes,
which can be spotted in stained metaphase spreads. While gaps may reflect single-stranded
DNA (ssDNA) regions, breaks and radial chromosomes derive from the aberrant or incom-
plete processing of DSBs [12] (Figure 1). DSBs can be induced by DNA damaging agents or
occur spontaneously, albeit at a low frequency. Breaks and radial chromosomes abruptly
accumulate in cells incapable of repairing DSBs by homologous recombination (HR) or in
cells that cannot repair inter-strand crosslinks [13]. Radial chromosomes are formed after
the aberrant processing of DSBs by non-homologous end joining (NHEJ) [12]. On the other
hand, breaks may represent unresolved DSBs or be triggered by aberrant resolution of HR
intermediates [14]. Given that these aberrations and their underlying mechanisms have
been thoroughly reviewed in the past, they will not be a subject of this report [9].
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Improper repair of breaks by end-joining mechanisms can create fusions among non-homologous 
chromosomes, giving rise to radial chromosomes. Radial chromosomes form bulky chromosome 
bridges due to multiple centromeres and unequal pulling toward opposite poles. Similarly to UFBs, 
breakage of these bridges can also lead to MN formation. Breaks that are not fixed and lack a cen-
tromere give rise to acentric fragments, while breaks that activate the DNA damage response and 
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and lagging chromosomes are well known sources of MN. (C) Fully duplicated chromosomes 
mostly lead to normal cell division in mitosis and absence of structural CIN. However, under cer-
tain circumstances, they can experience lagging at the metaphase plate during anaphase, usually 
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Figure 1. The multiple origins and tight associations of chromosome instability (CIN) phenotypes.
(A) Under-replicated DNA (UR-DNA) formed during S phase and not resolved before mitosis leads
to ultra-fine bridges (UFBs) when sister chromatids are pulled in opposite directions during anaphase.
Breakage of these bridges can eventually lead to micronuclei (MN) formation in the following cell
cycle. (B) Unrepaired one-ended double-strand breaks (DSBs) formed during S or M phase due to
replication fork collapse can be visualized as chromosome breaks during mitosis. Improper repair of
breaks by end-joining mechanisms can create fusions among non-homologous chromosomes, giving
rise to radial chromosomes. Radial chromosomes form bulky chromosome bridges due to multiple
centromeres and unequal pulling toward opposite poles. Similarly to UFBs, breakage of these bridges
can also lead to MN formation. Breaks that are not fixed and lack a centromere give rise to acentric
fragments, while breaks that activate the DNA damage response and DNA repair during mitosis
(dotted arrow) can form lagging chromosomes. Both acentric fragments and lagging chromosomes
are well known sources of MN. (C) Fully duplicated chromosomes mostly lead to normal cell
division in mitosis and absence of structural CIN. However, under certain circumstances, they can
experience lagging at the metaphase plate during anaphase, usually due to kinetochore-microtubule
attachment problems. These lagging chromosomes can form whole chromosome micronuclei in the
next cell cycle.

3.2. Chromosome Bridges

Chromosome bridges are DNA bridges that form when a chromosome region is
simultaneously pulled to both poles of the mitotic spindle during chromosome segregation
(Figure 1). There are two types of chromosome bridges that are classified based on their
ability to be detected or not after staining with DNA intercalating dyes.

3.2.1. Bulky Chromosome Bridges

Bulky chromosome bridges are visible as DAPI-positive (and other DNA intercalating
dyes) DNA tracks, implying that the bridged DNA is double-stranded and chromatinized.
They are detectable during the anaphase and cytokinesis phases of mitosis. Remark-
ably, their processing is considered a source of rapid and aberrant reorganization of the
genome [15]. The origins of bulky chromosome bridges are diverse. One source is the
loss of the end-capping shelterin complex of telomeres that leads to unprotected DNA
ends, which are mistakenly ligated together by DSB repair mechanisms such as NHEJ [16].
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When non-homologous chromosomes are joined together, they become dicentric, and when
pulled to opposite poles during mitosis, they give rise to bulky chromosome bridges [17].

Replication-associated one-ended DSBs (Figure 1) are another source of these bridges.
Such DSBs, formed after replication fork stalling and nuclease-mediated processing of a
stalled fork, can form bulky chromosome bridges due to aberrant processing by HR [18–21].
HR-mediated repair of one-ended DSBs involves the formation of X-shaped DNA structures
known as Holliday junctions (HJs), which must be adequately dissolved or resolved to
ensure accurate repair. A failure to execute either HJ dissolution or resolution can give
rise to bulky chromosome bridges [22]. Bridges can also form without any DNA damage,
as has been observed during prolonged mitotic arrest in which deregulation of separase
leads to incomplete removal of cohesin from chromosome arms and chromosome non-
disjunction [23].

3.2.2. Ultra-Fine Bridges (UFBs)

UFBs are another type of DNA bridge that differs from bulky chromosome bridges
in their origin and their inability to be stained with conventional DNA dyes due to lack
of histones [24]. However, they can be visualized because of their co-localization with
the Fanconi anemia protein, FANCD2, the PICH translocase, as well as by components
of the BTRR complex such as the BLM helicase [25,26]. UFBs can be further processed in
the following replication cycles. In contrast to bulky chromosome bridges, they may be
involved in a pathway that promotes, rather than restrains, genomic stability [27]. UFBs
are formed as a consequence of the accumulation of under-replicated DNA (UR-DNA)
(Figure 1). Incomplete DNA replication gives rise to UR-DNA regions trapped between
two stalled forks with no internal dormant origin that can fire to complete replication.
Because the S to G2 transition is triggered seemingly by the absence of replication and
not by the finalization of DNA replication [28], cells enter mitosis with such UR-DNA
regions. If they are still not duplicated by the end of M phase, such UR-DNA regions can
lead to non-disjunction (i.e., failure of chromosomes to separate in mitosis), giving rise to
UFBs [29–31].

Intriguingly, UR-DNA accumulation at the end of S phase is potentially frequent
in cells with large genomes. Such a phenomenon is potentiated by the accumulation of
DNA replication barriers or other conditions such as nucleotide depletion [27]. There are
DNA regions poor in replication origins that are more prone to under-replication, such
as common fragile sites. Such regions are rich in A-T and are, therefore, predisposed to
forming secondary DNA structures that halt the replication machinery. Besides increasing
the chances of collisions between the replication and transcription machineries, common
fragile sites code for long genes [32]. The increased frequency of formation of replication
barriers, combined with the poorness in replication origins of these DNA regions, increases
the chances of double fork stalls [33,34].

Other DNA regions prone to under-replication and generation of UFBs include cen-
tromeric and telomeric regions. Similarly to common fragile sites, centromeric regions
replicate late and are also prone to forming secondary DNA structures, while telomeric
regions contain repetitive DNA sequences that can stall or slow the replication machinery.
Lastly, ribosomal loci can also give rise to UFBs. The need to maintain a constant supply of
ribosomal RNA leads to the formation of persistent DNA-RNA hybrids, which cause repli-
cation defects and ultimately result in UR-DNA. UFBs can also arise from double-stranded
DNA catenanes or unresolved HR intermediates [25,35–37].

3.3. Lagging Chromosomes

Lagging chromosomes or laggards are chromosomes that lag in the metaphase plate
during anaphase (Figure 1). Similarly to bulky chromosome bridges, they can be visualized
by DAPI staining and revealed in cells transiting anaphase. They are mainly associated
with defects intrinsic to mitosis such as abnormal microtubule-kinetochore attachments,
centrosome amplification, aberrant spindle assembly checkpoint, and defects in sister chro-
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matid cohesion. One of the most frequent mechanisms involved in lagging chromosome
formation is the presence of merotelic microtubule-kinetochore attachments, in which one
kinetochore is attached to both poles of the mitotic spindle [38]. In tumor cells, another
source of lagging chromosomes is the hyper-stabilization of microtubule-kinetochore at-
tachments, which renders cells unable to correct aberrant attachments, a vital aspect of
proper mitosis [38,39]. Once formed, lagging chromosomes that are not reabsorbed into
daughter nuclei can be lost in future cell divisions or form MN, leading to numerical or
structural CIN [39–41].

Additionally, DNA replication stress can also lead to lagging chromosomes. Recent
work shows that mild replication stress causes mis-segregation due to multipolar mitotic
spindles formed by premature centriole splitting [42]. Replication stress can also increase
microtubule stability, which not only contributes to the premature centriole splitting but
can also have a profound impact on the ability of cells to correct aberrant microtubule-
kinetochore attachments [10,42,43]. Moreover, it has also been proposed that unresolved
replication intermediates that give rise to broken chromosomes and bridges cause pertur-
bations of the spindle, facilitating the formation of laggards [36].

3.4. Micronuclei

Micronuclei (MN) are small peri-nuclear bodies formed by a nuclear-membrane-like
envelope that contains chromosome fragments or whole chromosomes (Figure 1). MN are
easily identified after DAPI staining and accumulate during cancer genesis and treatment
but can also arise due to changes in cellular metabolism during senescence, aging, and the
onset of different diseases [44,45]. MNs are considered markers of genotoxic events and
CIN [46], and their presence is very common in most solid tumors, neoplastic lesions, and
peripheral lymphocytes of patients that develop cancer [47,48]. Interestingly, although the
morphological markers mentioned above (UFBs, bulky chromosome bridges, and acentric
fragments) have different origins and resolution mechanisms (see Section 6 below), it seems
that all of these aberrations sooner or later may end in the formation of MN, which may
explain the widespread presence of MN in tumors and also highlights the tight association
among different CIN phenotypes (Figure 1).

As previously stated, MN largely derive from existing aberrations (Figure 1). Mecha-
nistically, one source of MN is acentric chromosomes or acentric chromosome fragments
that lack a centromere and thus, fail to segregate to daughter nuclei (Figure 1). MN can also
be generated during aberrant DSB repair [49,50], which gives rise to dicentric chromosomes
(i.e., chromosomes with two centromeres), leading to chromosome bridges during the late
stages of mitosis. Such chromosome bridges can be broken by nucleases or mechanical
forces from the cytoskeleton, leading to MN formation (Figure 1) [15,17,51]. Several other
aberrant events lead to MN formation. For example, MN can also be formed by aggregates
of double minutes, which are extrachromosomal bodies composed of circular DNA that
lack centromeres and telomeres [52]. Another origin for MN includes broken, aberrantly, or
incompletely processed UFBs [53], whose multiple origins were discussed above (Figure 1).
Given that common fragile sites are regions prone to accumulate UR-DNA and thus form
UFBs, they are also considered a source of MN in cells [34]. In subsequent cell cycles,
MN can be further incorporated in the genome or get excluded from the cell and lost (see
Section 6 below).

4. The Role of the DNA Damage Response in the Prevention of CIN

Cells have an evolutionarily conserved set of DNA damage response (DDR) mecha-
nisms, in which different proteins are responsible for detecting DNA damage and triggering
multiple cellular responses, including DNA repair [54,55]. The proper and timely activation
of DDR mechanisms, such as DNA repair and DNA damage tolerance, is crucial to prevent
CIN generated after replication stress. Even in optimal DNA repair conditions, the chances
of replication forks running into DNA damage and other replication barriers are high, pos-
ing challenges to completing DNA replication [27]. Because replicative DNA polymerases
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are incapable of using damaged DNA bases as templates for DNA replication, they stall
when encountering damaged DNA. At this stage, the continuity of DNA replication can be
granted by DNA damage tolerance mechanisms that revert the stalling and favor DNA
replication leaving the damaged DNA behind the ongoing fork. One major DNA damage
tolerance pathway, translesion DNA synthesis, is driven by specialized DNA polymerases
that are recruited to the damaged site and can replicate across a lesion [56,57].

Another DDR mechanism that facilitates the replication of damaged DNA is the intra-
S phase cell cycle checkpoint. While this checkpoint does not favor DNA damage tolerance,
it generates a soluble signal (active CHK1 kinase) that orchestrates DNA replication chore-
ography in a manner that reduces the chances of replication stress [58–60]. If DNA damage
tolerance events or checkpoint signaling are not activated, or are inefficient or insufficient,
an increasing number of replication forks may not be able to cope with damaged DNA,
leading to the stalling and eventual collapse of replication forks. The latter events may
trigger the removal of replisome components from the fork and, subsequently, its breakage
into one-ended DSBs. Once collapsed, the proper duplication of such DSBs depends on
replication-coupled DNA repair mechanisms such as HR. HR participation in the repair
of stalled or collapsed forks has been extensively reviewed elsewhere [61]. Despite the
availability of repair mechanisms during replication, on occasion they may not be sufficient
or may fail, generating undesirable processing of DSBs by error-prone pathways, thus
leading to morphological rearrangements such as insertions, deletions, and fusions, or
numerical abnormalities [19].

5. The Crucial Role of Nucleases in CIN Prevention

Among the leading players in the repair of replicative DNA damage are nucleases.
Nucleases are crucial both for DSB formation and for their repair. Persistently stalled
forks need to be converted into one-ended DSBs by endonucleases such as MUS81 and
EXO1 [62]. Exonucleases then play a central role in the generation of HR-proficient DNA
ends [63]. Then, nuclease-independent events drive HR-mediated DNA synthesis with
HJ resolution as the final repair step. HJs are primarily resolved by helicase-mediated
(BTRR complex) resolution [64], but nucleases can also resolve HJ. The dissolution of HJs is
mediated by the structure-specific endonucleases MUS81, SLX1-SLX4 [65], and GEN1 [66],
which cleave DNA structures that would otherwise compromise proper chromosome
segregation [36,67]. By resolving one-ended DSBs, endonucleases prevent DNA replication
intermediates from forming bulky chromosome bridges, UFBs, and micronuclei, among
others [30,65,68,69]. Thus, proper endonuclease activity suppresses genomic instability
associated with replication fork stalling or collapse. Endonucleases also play a crucial role
during mitotic DNA synthesis (MiDAS), a DNA synthesis event that also requires nuclease-
mediated processing of UR-DNA and serves as the last resource available to prevent UFB
formation [70,71]. However, under certain conditions, the same endonucleases can promote
CIN instead of preventing it. For example, in CHK1 depleted samples, MUS81 and its
cofactor EME1 augment bulky chromosome bridges and MN frequency in a manner that is
associated with nucleoside-shortage mediated aberrant processing of UR-DNA [72,73].

6. Resolution of Structural CIN Phenotypes

As mentioned above, replication stress is a common source of DNA damage, and
cells have multiple mechanisms to overcome this burden. When these mechanisms fail,
replication stress gives rise to structural CIN features such as bulky chromosome bridges,
UFBs, lagging chromosomes, broken and radial chromosomes, acentric fragments, and
MN. In recent years, we have begun to understand that cells also have different options to
resolve these complex aberrations. Such structural CIN-processing mechanisms, which can
induce different ranges of genomic instability, will be described below.
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6.1. Chromothripsis

Chromothripsis is a pathological resolution of both bulky chromosome bridges and
MN. It refers to the rearrangement of hundreds of small chromosome fragments in a
single stochastic event [74,75]. MN lack a proper nuclear envelope and are subject to the
action of cytoplasmic nucleases such as 3-prime repair exonuclease 1 (TREX1), which can
shatter the MN into fragments that are later re-organized, and re-incorporated into the
genome [76]. MN can also undergo asynchronous replication in the following cell cycle,
giving rise to unresolved replication intermediates and, thus, DSBs that are randomly
joined by repair mechanisms following mitotic entrance [74,77]. This phenomenon has also
been observed when bulky chromosome bridges break, and their fragments are subject
to local rearrangements or “local jumps”. To generate DSBs, bulky anaphase bridges can
also be cleaved by TREX1 that comes into contact with DNA due to improper nuclear
membrane formation around the bridges [17]. A TREX1-independent model has also
recently been proposed in which chromothripsis of bulky bridges is due to a combination
of actin-dependent mechanical forces (stretching and contractile) and myosin II motor
protein activity [15,78,79].

Multiple studies associate chromothripsis events with alterations in DNA damage
repair pathways such as NHEJ, and at the same time, chromothripsis can also induce
these alterations. As such, chromothripsis can be a cause or consequence of failed re-
pair mechanisms [80] and is tightly associated with cancer progression [81]. Because
chromothripsis-derived breaks can form new MN, it could efficiently propel massive
genome changes and tumor heterogeneity within a minimal number of cell cycles [15].
Supporting such a notion, it was recently shown that MN-derived extrachromosomal
DNA subject to chromothripsis produces double-minutes with gene amplifications. Upon
formation of DNA breaks, such as those formed in chemotherapy treatments, the double
minute fragments can re-integrate to chromosome ends, thus forming chromosome bridges
that suffer from break-fusion-bridge cycles and further chromothripsis, leading up to more
gene amplification and genomic instability [82]. Furthermore, while cell death can be
avoided when resolving bulky chromosome bridges and MNs using chromothripsis, the
alteration of genomic sequences is an inevitable scar that remains in the daughter cells
even when the original chromosome alteration is no longer present.

6.2. Tethering of Broken Chromosomes

As mentioned earlier, unrepaired DSBs give rise to acentric fragments, which form
MN [51,83], triggering chromothripsis and genomic rearrangements, which may no longer
be visualized as structural CIN. However, live imaging studies in several systems such as
Drosophila, plant, and yeast cells show that acentric fragments do not necessarily generate
MN. Instead, three distinct mechanisms capable of driving segregation and successful pole-
ward transport of acentric fragments have been described (i.e., kinetochore-independent
lateral attachments to microtubules, direct attachments to other chromosomes, and long-
range tether-based attachments). The long-range tether-based attachments connect the
broken ends of the centric and acentric fragments allowing reabsorption of the acentric
fragments into the daughter nuclei via a nuclear pore-mediated transport [40,84–87].

Because they are not attached to the spindle, acentric fragments may delay nuclear
membrane assembly, regulated by the mitotic kinase Aurora B. During anaphase, Aurora
B is removed from chromosomes and relocalized to the mitotic spindle midzone, where
acentric fragments also congregate. Finally, Aurora B removal from chromosomes allows for
the dephosphorylation of H3(S10), leading to the recruitment of HP1α, a protein responsible
for reestablishing the nuclear envelope. In contrast, Aurora B remains enriched at chromatin
in acentric fragments facilitating persistent H3(S10) phosphorylation, which prevents HP1α-
dependent nuclear membrane reassembly around the acentric fragments [88]. The delayed
nuclear envelope assembly may facilitate the resolution of this type of structural CIN
as acentric fragments are not separated from their centric chromosome. They remain
tethered by thin DNA threads reminiscent of unresolved DNA replication intermediates
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and contain mitotic proteins, including Polo kinase, Aurora B, INCENP, and BubR1. This
tethering, which may be far more widespread than previously considered, in combination
with the delay in nuclear membrane reassembly around them, forms “channels” through
which these fragments can return to daughter nuclei via a BubR1 and Polo-like kinase
1-dependent mechanism [84,87–90]. According to this model, the chances are that broken
chromosomes that remain attached to the nucleus by DNA threads may avoid genomic
instability when structural CIN is resolved. However, this hypothesis remains to be tested.

A recent study shows that mammalian cells can also use “chromosome tethering”
between DSBs that cannot be repaired in mitosis. During mitosis, the scaffold MDC1
recruits the DDR mediator TOPBP1 to sites of DSBs. The recruitment of TOPBP1 and
its interaction with MDC1 serve to form filamentous assemblies that bridge MDC1 foci
during mitosis and hold the DSB together until it can be repaired in G1, thus preventing
acentric fragments and micronuclei. In this way, chromosome tethering can be used as a
compensatory mechanism to deal with mitotic DSBs until they can be repaired [91].

6.3. Reincorporation of Whole Chromosome-Derived Micronuclei to the Main Nucleus

Live imaging has revealed that lagging chromosomes can, on some occasions, be dis-
tributed to the right side of the spindle, thus giving rise to whole chromosome-containing
MN. These MNs are independent bodies and, during the following cell divisions, can
be re-incorporated into the main nucleus [38,40,92,93]. During cell division and upon
breakage of nuclear membranes (of both the main nucleus and MN), the nucleus loses
track of the MN. The non-nuclear origin of MN DNA is not relevant at that point, and
the spindle can separate all the chromosomes into two daughter nuclei regardless of their
source. One necessary requisite is that MN DNA must duplicate correctly and fully during
S phase. The improper nuclear pore assembly of MN and the challenging recruitment of
replication factors to the MN’s inner side may impose some challenges to such a replication
endeavor [94]. Despite such limitations, these studies collectively suggest those whole
chromosomes that end up being encapsulated in a MN have a chance to return to the main
nucleus, thus avoiding CIN and potential genomic instability altogether.

6.4. Resolution of Ultra-Fine Bridges (UFBs)

In contrast to bulky chromosome bridges, no reports indicate that UFBs undergo
mechanical breakage. Instead, the BLM helicase and PICH translocase recognize and bind
to UFBs, where they recruit factors involved in UFB resolution [25,95]. Such factors may
differ depending on the origin of the UFBs. For example, to resolve UFBs derived from
double-stranded DNA catenanes, TOP2A is the preferred candidate, while UFBs derived
from unresolved replication intermediates can be resolved via TOP3A cleavage with aid
from TOP1, which separates the ssDNA hemi-catenanes that hold DNA together [96,97].
Additionally, these steps can be complemented by a previous excision by structure-specific
endonucleases [98]. Lastly, UFBs that are formed by sister chromatid junctions due to
unfinished HR can be resolved either by BTRR complex-mediated dissolution or by SLX1-4,
MUS81-EME1, and XPF-ERCC1 or GEN1 mediated-resolution [14,36,62,98]. It is unclear if
the resolution of UFBs by any of these methods prevents alterations of the DNA sequence
initially compromised during UFB formation. It must also be highlighted that in all
cases, these types of resolutions imply the inheritance of ssDNA regions to daughter cells.
Such under-replicated ssDNA regions are shielded in 53BP1 bodies during the G1 phase
(described below) and duplicated in the next S phase.

As already described above, UR-DNA regions that enter mitosis, and whose replica-
tion is not finished by MiDAS, give rise to UFBs. Before their separation between daughter
cells, the UR-DNA regions within the UFBs require processing by the BTRR complex and
topoisomerase 2 (TOP2). The resulting ssDNA regions are protected in so-called 53BP1
nuclear bodies in G1 and S phase until the next round of DNA replication [99–101]. These
bodies serve to protect and mark DNA lesions and also provide the cell with a second
opportunity to replicate loci with inherited UR-DNA in the following S phase. RIF1 and
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the shieldin complex direct the repair of these loci and restrict their replication to RAD52-
mediated repair during the late S phase [102]. Whether such a second chance is a good
option from the perspective of cells’ genomic stability is currently under discussion. First,
the formation of 53BP1 nuclear bodies carries DNA damage to the next cell cycle with
no guarantee of DNA repair, especially under conditions of additional replication stress.
Second, this strategy implies that replication needs to “catch up” in the next round. Other-
wise, those DNA regions would always be a cell cycle behind compared to the rest of the
genome. Third, the involvement of RAD52 in the synthesis of UR-DNA at 53BP1 nuclear
bodies increases the chances of DNA duplication by break-induced replication-like DNA
synthesis, which is documented to be very mutagenic [103].

7. CIN-Dependent and Independent Cell Death

As discussed in previous sections, cells have multiple mechanisms to ensure the
proper replication and segregation of the genome into daughter cells. However, in cases
where aberrations are not dealt with, they will accumulate, paving the way for cellular
transformation. CIN is a distinctive feature of solid tumors and the main culprit behind
common tumor phenotypes, such as aneuploidy and intra-tumoral heterogeneity. These
phenotypes directly correlate with cellular transformation, tumor progression and recur-
rence, resistance to chemotherapy, and poor prognosis [104–108]. On the other hand, the
accumulation of CIN can also lead to cell death, which is a desirable scenario in the context
of tumor cells (Figure 2).
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Figure 2. Mechanisms that inhibit or promote chromosome instability (CIN). Top (blue lines): Mechanisms involved in
inhibiting or restraining CIN during the different cell cycle stages. Non-homologous end joining (NHEJ) can be utilized
throughout the cell cycle but is required for double-strand break (DSB) repair in G1 phase due to the absence of homologous
recombination (HR). Translesion synthesis (TLS), HR, and multiple endonuclease-dependent mechanisms, such as the
BTRR complex and structure-specific endonucleases (SSEs), can prevent the accumulation of CIN during mitosis. DNA
bridge resolution and mitotic DNA synthesis (MiDAS) during M phase can resolve multiple types of DNA bridges. Broken
chromosome fragments can be incorporated in M phase via chromosome tethering mechanisms. Replication or mitotic
catastrophe in S or M phase, respectively, when exacerbated, usually leads to cell death, thus preventing the accumulation
of cells with CIN. Bottom (orange arrows): Cells that enter mitosis with chromosome abnormalities due to failed repair
mechanisms present alternative mechanisms of resolution that can potentiate CIN and carcinogenesis, such as micronuclei
(MN) breakage via chromothripsis. Some forms of DNA damage lead to 53BP1 nuclear bodies, whose implications are still
largely unknown. In contrast, some MN or gross mitotic abnormalities, such as multinucleation, can lead to cell death.
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The double role that CIN plays in cancer sets the stage for two opposite strategies
during cancer treatment. One strategy is the very challenging choice of attempting CIN
reduction without affecting the treatment’s ability to induce cell death. This option would
reduce the overall rate of genetic variation and intra-tumor heterogeneity, thus impacting
tumor characteristics such as adaptability, metastasis, and drug resistance. An opposite
strategy is to exacerbate CIN to a level that can only drive cell death. To this end, in the last
years, there have been an increasing number of studies that show that CIN can sensitize
cells to specific treatments and be used as an Achilles’ heel to kill cancer cells. Some of
these strategies are briefly discussed below.

7.1. CIN-Induced Cell Death in M Phase

One of the best examples of an approach in which pushing the limits of CIN induces
cell death is the synthetic lethality observed when cells deficient in Breast Cancer Suscepti-
bility Proteins, BRCA1 and BRCA2, are treated with poly (ADP-ribose) polymerase (PARP)
inhibitors [109–111]. PARP inhibitors (PARPi) trap PARP on the DNA, creating roadblocks
for replication and thus increasing the need for DNA repair mechanisms that deal with
replicative DNA damage, such as HR [112]. Because BRCA cells already lack functional
HR and display many CIN markers, the PARPi-induced lesions create a surplus in the
load of DNA damage that cells can no longer handle. Interestingly, PARPi-mediated cell
death in BRCA-deficient cells requires progression through mitosis, which gives rise to
chromosome bridges derived from the high levels of replicative stress [113].

The above example suggests that a valid strategy to induce cell death is to generate
significant levels of mitotic defects and drive cells to death by mitotic catastrophe [114].
Such a scenario can be propitiated by exacerbating replication defects in S or altering M
phase regulation or its length. An example of such a strategy includes the downregula-
tion of Aurora kinases, which alters the function of critical mitotic components such as
centrosomes and microtubule-kinetochore interactions, and increases chromosome mis-
segregation and multinucleation, ultimately driving cell death in certain types of tumors
such as breast, thyroid, and colon [115–120]. Similar phenotypes were obtained when
S-phase defects were exacerbated. For example, BRCA2-deficient cells exhibit UR-DNA
features, and their survival depends heavily on the expression of MUS81, an endonuclease
required for MiDAS. In the absence of MUS81 activity, BRCA2 cells display increased
CIN phenotypes such as anaphase bridges, whose lack of resolution seemingly leads to
multinucleation and cell death [121]. An intriguing commonality among these studies is
the generation of multinucleated cells through the induction of mitotic defects. In this
sense, multinucleation induction may function as a tumor suppressor phenotype that could
potentiate CIN-inducing therapies (Figure 2). Lastly, MN induction can also tilt the balance
toward apoptosis [93]. Although MN can derive from multiple origins (Figure 1), their
formation requires passage through mitosis (Figure 2), suggesting that inducing mitotic
defects that lead to their expression could also be used to trigger M phase-related cell
death. Ultimately, CIN-mediated genomic instability can only be sustained as long as the
cell does not reach an upper threshold where it will inevitably trigger mitotic cell death
mechanisms [117,122]. Even though mitotic kinase inhibition can be used to push cells
towards this threshold, limitations such as off-target effects, toxicity to normal cells, and
induction of secondary tumors, among others, need to be considered.

7.2. CIN-Independent Cell Death in S Phase

An alternative strategy to cell death by mitotic catastrophe is to induce replication
catastrophe and force cell death during the S phase before cells reach mitosis, thus avoiding
the potential risk of genetically unstable daughter cells [123,124]. Replication catastrophe
refers to a massive disruption of DNA replication, such as that caused by replication
fork collapse across the entire genome. One such example of a replication catastrophe
is observed with ATR inhibition, whose massive effect on replication forks leads to the
exhaustion of RPA. This protein coats ssDNA on stalled or collapsed forks and serves
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as a trigger for DNA repair [125]. When ATR is inhibited, downstream effectors such as
CHK1 cannot rescue stalled replication forks augmenting ssDNA regions and the demand
of ssDNA coating factor, RPA. Usually, RPA levels exist in excess when compared to the
levels of ssDNA. However, under the above conditions, this is no longer the case, and RPA
exhaustion leads to massive amounts of unprotected ssDNA, which can break, causing a
G2/M arrest, senescence, and death by replication catastrophe [125]. Interestingly, RPA
exhaustion may not only be triggered by checkpoint regulation. The downregulation of
translesion synthesis polymerase η, which is overexpressed in cisplatin-resistant tumors,
also triggers a type of cell death that happens in S phase, is regulated by RPA exhaustion,
and it does not augment CIN [126]. Such results suggest that different DDR effectors could
be regulated to tilt the balance toward the induction of cell death in S phase, in a manner
that precludes the generation of CIN.

8. CIN and Cancer Therapies

Radiation and chemotherapy are the staples of traditional cancer therapy approaches.
Mechanistically, their rationale is based on exploiting the faster division of cancer cells com-
pared to healthy cells. As such, these approaches challenge DNA replication (e.g., radiation,
platinum compounds) or mitotic processes such as microtubule dynamics (e.g., paclitaxel)
and induce cytotoxic cell death triggered by excessive CIN [127–129]. Although their
success cannot be understated, these therapies are non-selective, generate resistant tumor
populations, and target rapidly dividing healthy cells such as those found in the intestinal
epithelium, hair follicles, and bone marrow, among others [130,131]. The death of the
non-tumor is responsible for the significant side effects associated with chemotherapy,
such as hair loss, pain, nausea, diarrhea, cardiotoxicity, and immune suppression [132,133].
Because these therapies are widely reviewed in the literature, in this section, we will focus
on targeted therapies that take advantage of different aspects of CIN.

As can be inferred from its name, targeted therapy aims to kill tumor cells by dis-
rupting the specific molecular players that allow their growth, progression, spread, and
survival [134]. Approaches for targeted therapy are diverse and include hormone therapies,
signal transduction inhibitors, angiogenesis inhibitors, apoptosis inducers, monoclonal
antibodies that deliver toxic molecules, gene expression modulators, and immunother-
apy [134]. Although it was initially expected that side effects and resistance could be mostly
avoided when choosing these strategies, targeted therapies also face their own challenges.

Decades of cancer research have shown that a central issue is the emergence of residual
populations that develop resistance to treatments that were initially effective. Resistance
mechanisms may vary (e.g., alterations of the pumps that control the entrance of chemicals
into cells or the specific pathways targeted by such chemicals), but they are all triggered
by the mutagenesis capacity of cancer cells. Below we will discuss the strategies aimed to
push mutagenesis to a level that guarantees cell killing with no survival of the mutagenized
population (Figure 3). Alternatives such as keeping the mutagenesis burden in check or
using acute CIN as a trigger to facilitate immunotherapy will also be discussed below.
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under circumstances directly or indirectly associated with the induction of replication stress (yellow shade). At that point,
tumor cells commonly present a low level of chromosome instability (CIN), which can serve as a fuel for early steps of
cellular transformation and thus enable the carcinogenic process (yellow shade). As the tumor progresses (orange shade),
cells become increasingly genetically unstable. Under these conditions, CIN can promote the fast acquisition of multiple
tumor characteristics such as drug resistance and metastasis. Eventually, if CIN levels are very high, cells can reach a
threshold in which they are no longer viable (red shade). Surviving cells in these stages are highly genetically unstable, with
an increased probability of being multinucleated after subsequent cycles of aberrant mitosis finalization. Such a scenario has
good chances of triggering cell death due either to improper gene expression or to sub-optimal S and M phase finalization.

8.1. Increased CIN as a Tool to Kill Cancer Cells

Synthetic lethality is a term coined from developmental biology in which the combined
deficiency of two gene products leads to cell death, while a single deficiency does not. In
the context of cancer, one gene deficiency is intrinsic to tumor cells and is a consequence of
a genetic deletion or mutation, while the second deficiency is achieved via pharmacological
inhibition using small molecule inhibitors. Because non-tumor cells lack the genetic changes
present in the tumor cells, synthetic lethality therapy approaches are intrinsically designed
to only target tumor cells.

The best example of a synthetic lethal approach is the use of PARPi in tumors with
defective homologous recombination proteins BRCA1 and BRCA2 [109,110]. PARPi are
among the most successful examples of precision medicine approaches and were also the
first DDR inhibitors approved for clinical use by the U.S. Food and Drug Administration
(FDA). The mechanisms for the synthetic lethality between PARPi and BRCA proteins
have been reviewed elsewhere [135] but as mentioned above (Section 7.1.), it relies on the
generation of DNA replication barriers, due to PARP trapping [112], that induce DSBs
from collapsed forks that require HR for their resolution. Additionally, cell death by
PARPi requires progression through mitosis, highlighting the connection between repli-
cation defects and proper mitosis [113,136]. Just like with classical chemotherapy, tumor
resistance has also been observed with PARPi [135]. The recovery of the BRCA function
has been reported to be the primary mechanism observed in the clinic. To circumvent
resistance, therapies that include PARPi as an adjuvant to conventional chemotherapies
have been tested and have sometimes cast promising results [129,137]. PARPi have also
been combined with inhibitors for cell cycle checkpoint kinases such as ATR, CHK1, and
WEE1 [138,139]; MUS81 nuclease inhibitors [140]; or signaling molecule inhibitors such
as PI3K, AKT, or mTOR [141]. Inhibitors of alternative end-joining (Alt-EJ) polymerase
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theta are also under development as that appears to be the predominant repair choice for
one-ended DSBs in HR-deficient cells [142].

In the context of PARPi, another therapeutic strategy being considered is to generate
death in S phase through poly (ADP-ribose) glycohydrolase (PARG) inhibitors. PARG is
the primary enzyme responsible for the catabolism of PARP-derived PARylation and, as
such, has critical roles in maintaining the stability of replication forks under conditions
of replication stress [143,144]. However, unlike PARPi, whose mechanism of death is via
mitotic catastrophe [136], PARGi treatment induces an S/G2 arrest, and ssDNA accumula-
tion and RPA depletion followed by an increase of DSBs, ultimately leading to death by
replication catastrophe [145,146]. More importantly, it has also been observed that PARGi
can kill PARPi-resistant breast and ovarian tumor cells, suggesting that co-treatment with
PARPi and PARGi could be beneficial [147].

Besides PARPi, other small molecule inhibitors that target apical kinases of the DDR or
mitosis, such as ATR, ATM, PLK1, and AKT, which may target HR-deficient tumors either
alone or in combination with chemotherapies, are already in clinical trials for their use in
cancer treatments [148–150]. However, more research is needed to overcome limitations to
small molecules, such as resistance, low specificity, and short lifespan.

8.2. CIN-Independent Cell Death

Because CIN is considered a catalyzer of tumor adaptation to treatment, a very
challenging and under-explored option is to design protocols that induce cell death without
generating abrupt and acute changes in CIN levels. In this regard, a recent report shows
that BRCA1-deficient cells are killed when treated with the PLK1 inhibitor volasertib [150].
Interestingly, this cell death does not require DNA damaging agents and selectively affects
the BRCA1-deficient background with a much more modest effect in BRCA2-deficient cells.
These observations, along with the fact that PLK1 is a mitotic kinase, indicate that cell death
is triggered outside S phase. Moreover, while PARP inhibition causes acute accumulation
of replication stress and CIN markers, PLK1 inhibition does not. Whereas the mechanism
of BRCA1-deficient cell killing by PLK1 is still obscure, a retrospective analysis reveals
that BRCA1-deficient human tumors may frequently become addicted to PLK1 [150].
Acute CIN could be prevented by employing novel treatments or by adapting treatments
involving agents that induce acute CIN. For example, CHK1 inhibitors induce cell death
and accumulation of both bulky chromosome bridges and MN. A mitosis-specific pathway
involving MUS81 endonuclease, its partner EME1, and MiDAS components RAD52 and
POLD3 promote the accumulation of such CIN markers, with no effect on the extent of cell
death [72]. While it is still unclear whether precluding acute CIN during cancer treatments
suffices to prevent the acquisition of genome instability, it is tempting to speculate that the
limitation of acute CIN could benefit the outcome of cancer treatments.

8.3. CIN as a Facilitator of Immunotherapy

Immunotherapy is a targeted therapy that boosts or modifies the immune system
to improve its capacity to detect and kill cancer cells. Immunotherapy includes the use
of monoclonal antibodies, cancer vaccines, immunomodulators, cytokines, CAR T-cell
therapies, and immune checkpoint blockers [151]. For this review, we will briefly discuss
some recent connections between immune checkpoint blockades and CIN.

Immune checkpoint inhibitors such as anti-Programmed Cell Death Protein (PD1),
anti-Programmed Death-Ligand 1 (PD-L1), and anti-Cytotoxic T-Lymphocyte Protein
4 (CTLA-4) have recently been approved for cancer treatment use due to their potent
antitumor effects. These inhibitors release the breaks of the immune system by inhibiting
signals that are otherwise inhibitory of T cell responses, thus reducing the threshold for
immune recognition of the tumor [152]. Currently, immune checkpoint blockers are being
used as neoadjuvant or adjuvants to other therapies, including PARPi [153,154], which has
been shown to modulate the tumor immune microenvironment through the generation of
damaged DNA and via its PARP-trapping activities [155–158]. MN and bulky chromosome
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bridges can give rise to cytosolic DNA, which can activate the cyclic GMP-AMP synthase
(cGAS)-stimulator of interferon genes (STING) pathway, a pathogenic and cytoplasmic
DNA surveillance pathway. c-GAS binds double-stranded DNA in the cytosol, triggering
cytokine production, and promoting T cell immune response against tumors [159–162].

Additionally, this response can also increase the expression of PD-L1, which could
potentially make tumors more sensitive to PD-L1 blockers [159,160]. Interestingly, cytosolic
DNA derived from ruptured MN is also subject to attack by the TREX1 nuclease, which
can prevent their immunomodulatory effects, and c-GAS has been shown to reduce MN
abundance via autophagy-mediated clearance, suggesting a tight regulation of the cGAS-
STING pathway [6,7]. c-GAS-STING can also sense mitotic chromosomes, which lack a
nuclear envelope, and promote cell death upon prolonged mitotic arrest triggered by a
wide array of DNA damage besides MN [163]. Altogether, the research indicates that
CIN is not only sensed at multiple levels but can be tightly regulated, and these novel
intricate mechanisms could be modulated to potentiate immunotherapy (Figure 4). It has
also been reported that other molecules that target the DDR and related pathways have
shown additive or synergistic effects when combined with immune checkpoint blockers.
Among these are alisertib, an aurora A kinase inhibitor [164], PLK1 inhibitors [165], the
ATR inhibitor AZD6738 [166], and the CHK1 inhibitor SRA737 [167].
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Figure 4. The potent combination of chemotherapy and immunotherapy. (A) Breast Cancer Susceptibility Protein (BRCA)-
deficient tumor cells treated with Poly(ADP ribose) Polymerase inhibitor (PARPi) exhibit under-replicated DNA and
unrepaired double strand breaks in S phase, which trigger bulky chromosome bridges and micronuclei formation, eventually
causing cell death. Micronuclei also trigger the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING)
immune pathway, which activates dendritic (DC) and T cells, which are recruited to the tumor. However, their anti-
tumor activity is blocked due to Programmed Death-Ligand 1 (PD-L1) expression. (B) PARPi treatment combined with
immunotherapy such as anti-PD-L1 antibodies also leads to bulky chromosome bridges, micronuclei and cGAS-STING
pathway activation. However, under these conditions, the PD-L1 antibodies can block PD-L1, leading to an increased
anti-tumor cell response mediated by T-cells.
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Radiation therapy, which also induces CIN and CIN-mediated cell death, has also
shown promising results in combination with immunotherapies. As a localized therapy,
radiation-induced cell death activates the immune system locally, inducing neoantigen
expression and increasing antigen-presenting cells capable of exhibiting tumor neoanti-
gens on their surface. Additionally, radiation promotes the release of pro-inflammatory
cytokines, which serve to increase tumor T-cell infiltration. Given that these immunostimu-
lating events can be counteracted by PD-L1 expression in tumor cells, it is not surprising
that inhibiting PD-L1 by immunotherapy approaches such as PD1 antibodies (i.e., pem-
brolizumab) shows favorable results in combination with radiation [168,169].

Given the advancements in immunotherapy, understanding the mechanisms by which
DNA damage regulates the immune responses will be crucial for developing new therapies.
Such research will be of particular relevance in designing treatments for solid tumors in
which CIN undoubtedly plays a role in tumor progression and resistance.

9. Concluding Remarks

As discussed above, structural CIN is a common feature of solid tumors, and the last
decades have yielded a great understanding of the molecular mechanisms that give rise to
these complex aberrations. It is currently accepted that structural CIN parameters have
outstanding importance in the clinic. Not only is CIN a hallmark of tumors, but it is also a
tool for prognosis. More importantly, it can be exploited to better inform treatment options.
However, information relevant to defining which CIN markers are better indicators of
tumor prognosis and response is limited. The usefulness of micronuclei to distinguish
malignant lesions from benign lesions using cytological specimens is well established [170].
Interestingly, many of the structural CIN aberrations can eventually lead to micronuclei
formation (Figure 1), and additionally, micronuclei have been shown to trigger apoptosis
and mediate immune responses (Figure 4). This poses the question of whether this specific
type of aberration could serve as a staple marker to analyze in CIN research studies and
predict long-term treatment outcomes. In the same direction, the use of structural CIN
profiles as predictors of thresholds that promote cell death but not tumor aggressiveness
or heterogeneity would be of utmost importance for the design of precision medicine
approaches (Figure 3).

From the perspective of understanding CIN in the experimental laboratories, live-cell
microscopy has been the method of choice when attempting to understand both the origin
and dynamics of different aberrations. Moreover, cell recording is the ultimate and only
tool that unequivocally reveals the fate of cells that present CIN. 3-D organoid tissue culture,
such as tumor patient-derived organoids, is the model that most resembles human tumors
in tissue cultures, and is a crucial tool that must be used for high temporal resolution
analysis of cellular events, including CIN. Complementing such technologies with other
parameters such as histology, single-cell DNA and RNA sequencing, OMICS approaches,
and drug screenings will shed rapid light on the advantages/disadvantages resulting from
CIN accumulation after each treatment.

In conclusion, while more research is still needed to fully profit from structural CIN
studies in clinical settings, progress has been outstanding in the last decade. It has long
been known that cancer cells are enriched in altered chromosomes, but only recently have
researchers managed to establish an association between these gross DNA alterations and
the molecular pathways that have triggered them. Such discoveries have paved the way to
use such markers to design more effective and precise cancer treatments, an opportunity
that is just beginning to be exploited and from which cancer treatments are expected to
benefit significantly.
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