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How dopamine signaling regulates biological rhythms is an area of

emerging interest. Here we review experiments focused on delineating

dopamine signaling in the suprachiasmatic nucleus, nucleus accumbens,

and dorsal striatum to mediate a range of biological rhythms including

photoentrainment, activity cycles, rest phase eating of palatable food, diet-

induced obesity, and food anticipatory activity. Enthusiasm for causal roles for

dopamine in the regulation of circadian rhythms, particularly those associated

with food and other rewarding events, is warranted. However, determining

that there is rhythmic gene expression in dopamine neurons and target

structures does not mean that they are bona fide circadian pacemakers. Given

that dopamine has such a profound role in promoting voluntary movements,

interpretation of circadian phenotypes associated with locomotor activity

must be differentiated at the molecular and behavioral levels. Here we review

our current understanding of dopamine signaling in relation to biological

rhythms and suggest future experiments that are aimed at teasing apart

the roles of dopamine subpopulations and dopamine receptor expressing

neurons in causally mediating biological rhythms, particularly in relation to

feeding, reward, and activity.

KEYWORDS

dopamine, food entrainment, food entrained oscillator (FEO), diet-induced obesity
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Introduction

Eating disorders affect a wide range of ages and impact both men and women. In the
United States, over a third of the population is obese, which is the greatest risk factor
for chronic disorders such as diabetes, cardiovascular disease and kidney diseases (Guh
et al., 2009; Hurt et al., 2010; Eckel et al., 2011; de Mutsert et al., 2014; Flegal et al.,
2016; CDC, 2019; Milken Institute, 2019); meanwhile, anorexia nervosa remains the
most fatal of all psychiatric diseases (Attia, 2010; Treasure et al., 2015). Therefore, it is
imperative to invest in research to determine the molecular underpinnings of disorders
associated with over- and under-eating. Recently, increasing attention has focused on
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intermittent fasting and how the timing of food intake can
have a profound impact on health measures and body weight
homeostasis (Hatori et al., 2012; Garaulet et al., 2013; Sutton
et al., 2018; Acosta-Rodríguez et al., 2022). A relatively
unexplored aspect of feeding behavior relates to how the timing
of food intake is governed, especially when food is available
ad libitum (Turek et al., 2005; Acosta-Rodríguez et al., 2017;
Challet, 2019).

A wide range of behaviors and physiological processes are
adapted to have a rhythmic pattern that are synchronized with
the light-dark cycle. Daily exposure to light sets the activity
of the suprachiasmatic nucleus (SCN) of the hypothalamus,
serving as the body’s central pacemaker for a variety of
physiological, psychological, and behavioral processes (Abe
et al., 1979; Bass and Takahashi, 2010; Patton and Mistlberger,
2013). Lesion and transplant studies (Meyer-Bernstein and
Morin, 1999) have demonstrated that the SCN is the principal
regulator of all light entrained rhythms (Stephan and Zucker,
1972; Abe et al., 1979; Edgar et al., 1993), but there are some
exceptions such as photoreceptors in skin cells that can drive
local circadian rhythms in subpopulations of tissues (Buhr et al.,
2019). Remarkably, the SCN maintains rhythmic activity even
when explanted from a rodent’s brain and maintained in vitro
(Abe et al., 2002; Yoo et al., 2004).

The SCN is able to control these internal biological rhythms
through a transcription-translation feedback loop (TTFL)
dictated by main core-clock proteins, Clock and Bmal1, which
dimerize and trigger a downstream cascade of transcriptional-
translational feedback loops with proteins including Cry, Per,
and Rev-Erb (Patke et al., 2020). This process is cell-autonomous
and maintains a period of approximately 24-h in the absence
of external time cues (Panda et al., 2002; Takahashi, 2017).
Light and other external factors (e.g., food availability) called
“zeitgebers,” or time-givers, modulate the expression of clock
genes to reset and entrain the timing of the circadian clock
in the SCN, other brain regions or peripheral tissues (Challet,
2019; Mendoza, 2019a). Interestingly, mice with SCN lesions
still maintain circadian rhythms in their peripheral tissues but
the rhythms between tissues are desynchronized, showing that
the SCN is vital for synchronization (Yoo et al., 2004). There is
emerging interest in elucidating biological clocks outside of the
SCN and determining how non-photic stimuli such as exercise,
mating, fear and feeding compete, and collaborate with the SCN
to regulate circadian cycles (Richter, 1922; Edgar and Dement,
1991; Landry et al., 2012).

Food as a zeitgeber

Several brain regions and many peripheral tissues can be
entrained by daily cycles of feeding (Mistlberger, 2011; Piggins
and Bechtold, 2015). In rodents, this is readily demonstrated
by restricting food access to the middle of the light period

when nocturnal rodents normally eat little and are inactive
(Pendergast and Yamazaki, 2018). Food restriction induces a
pronounced shift of organ physiology and animal behavior to
align with the new daily feeding time, while the activity of the
SCN remains coupled to light cycles (Stokkan et al., 2001). This
is also associated with the emergence of a daily burst of motor
activity that anticipates mealtime by 1–3 h and an increase
in core body temperature (Figure 1) (Mistlberger and Antle,
2011). Remarkably, this “food anticipatory activity” (FAA)
persists robustly after removal of the SCN (Davidson, 2009).
The underlying neuronal systems and/or circuitry responsible
for mediating FAA have been contested, with very few studies
showing reproducible effects of genetic mutations or lesions
to the brain (Figure 1) (Davidson, 2009; Gunapala et al.,
2011). At present, nuclei as diverse as the cerebellum (Mendoza
et al., 2010a) hypothalamic areas including dorsomedial
hypothalamus (DMH) (Mieda et al., 2006; Acosta-Galvan et al.,
2011) and arcuate nucleus (Podyma et al., 2020); and striatum
(Liu et al., 2012; Gallardo et al., 2014), have been implicated
in promoting FAA. The only area of consistent agreement is
that the SCN is not required for FAA (Krieger et al., 1977;
Stephan et al., 1979; Davidson, 2009; Takasu et al., 2012;
Mistlberger, 2020), although it might modulate the amplitude of
food rhythms in some contexts (Angeles-Castellanos et al., 2010;
Fernandez et al., 2020). Since there has been so much difficulty in
isolating the neural constituent(s) of FAA, it has been suggested
that such a region, referred to as a food entrainable oscillator
(FEO), may not exist as a singular entity; therefore lesioning
studies may be too narrow of an approach, and the molecular
tagging or systems based approaches may offer higher potential
in locating multiple FEOs distributed across the brain and body
(Davidson, 2009; Mistlberger, 2011, 2020; Nishide et al., 2021).
The ability of rodents to have multiple bouts of FAA entrained
to multiple food deliveries with same or different cycle period
further provided evidence that food entrainment is regulated by
a multi-core network (Petersen et al., 2022).

By analogy to studies of light entrainment, researchers
initially focused on using mouse mutants in known molecular
components of the core clock TTFL to map the brain region(s)
responsible for FAA, yet these experiments have yielded mixed
results. For example, mutations of Bmal1 and double/triple
deletions of Per genes did not reveal effects on FAA in mice
(Storch and Weitz, 2009; Pendergast et al., 2017). However, this
is not to say that clock genes are completely uninvolved in food
entrainment, for example, Bmal1 and Cry knock out (KO) mice
could be entrained to shorter feeding cycles that are outside
of circadian range and cannot entrain WT animals (Takasu
et al., 2012). Moreover, Mendoza and colleagues report several
studies of Per and Cry mutants also had diminished/unstable
FAA and desynchronized expectations of mealtimes (Mendoza
et al., 2010a). Interestingly, mice with global and brain-specific
deletion of Nr1d1, which encodes for Rev-Erbα, an inhibitor of
Bmal1 transcription, showed neither light nor food entrainment
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FIGURE 1

Food timing, particularly when restricted temporally, is a potent
zeitgeber entraining an oscillatory system in the brain, relaying
rhythmic behavior outputs. DA signaling is required in SN
neurons projecting to the dorsal striatum but not the NAc or
PFC to mediate food anticipatory activity. Peripheral oscillators,
like the liver, may contribute to food entrainment via ketone
bodies secretion to unknown brain target(s). Hypothalamic areas
are also suggested to be involved in food entrainment
regulation. Ambient light pathway via IGL influences the proper
development of SCN structure which is necessary for proper
food entrainment. SN, substantia nigra; VTA, ventral tegmental
area; ARC, arcuate nucleus; DMH, dorsomedial hypothalamus;
SCN, suprachiasmatic nucleus; IGL, intergeniculate leaflet; Drd1,
D1 dopamine receptor; dST, dorsal striatum; NAc, nucleus
accumbens; PFC, prefrontal cortex; FEO, food entrainable
oscillator; MASCO, methamphetamine-sensitive circadian
oscillator; DUO, dopaminergic ultradian oscillator.

(Delezie et al., 2016). A surprising experiment demonstrated
that conditional deletion of Per2 in the liver nearly abolished
FAA, whereas, deletion of Per2 brain deletion had no impact,
leading the authors to conclude that the liver is the long
sought after FEO (Figure 1) (Chavan et al., 2016). Interestingly,
mice with liver-specific deletion of Per2 were observed to
have a reduction in enzymes associated with β-oxidation,
suggesting that ketone body production was important for
mediating FAA. In support of this, time-specific application
of β-hydroxybutyrate in the Per2 liver conditional KO mice
rescued FAA modestly (Chavan et al., 2016). It is important
to note that these results have not yet been replicated and it
would be of interest to test feeding schedules with mealtimes
shorter than 8 h. In summary, exploring the requirement of
clock genes on FAA has borne some fruit and determining which
brain region(s) responds to the liver-derived ketones released
in fasting or where in the brain Rev-Erbα is required for FAA
would be valuable in mapping the neural circuitry that supports
food entrainment.

Dopamine rhythms and their influence
on circadian behaviors

Dopamine (DA), an important part of a family of
catecholamine neuromodulators contributing to a number of
behaviors, is most intensely studied in the context of motivation,

reward, and addiction (Wise, 2004; Gerfen and Surmeier, 2011;
Steele and Mistlberger, 2015). DA is required for both feeding
and locomotor behavior (Szczypka et al., 2001), which makes
it an obvious potential agent of circadian activity rhythm
entrainment by scheduled feeding or other rewarding stimuli
(Verwey et al., 2016; Korshunov et al., 2017). A contentious
issue is whether DA populations respond to circadian oscillators,
like the SCN, or are able to harbor autonomous rhythms that
respond to reward-related zeitgebers.

Some of the critical evidence that the DA system is under
circadian control comes from studies of canonical clock proteins
that directly affect DA expression and regulation. For example,
Rev-Erbα (nuclear receptor subfamily 1 group D member 1),
a circadian nuclear receptor involved with negative regulation
of the TTFL targeting Bmal1 mRNA, has been shown to
impact midbrain DA production by suppression of tyrosine
hydroxylase (TH) mRNA production (Chung et al., 2014). TH
levels were found to be highest at night while Rev-Erbα levels
were lowest, suggesting an inverse relationship. In addition,
mice with Rev-Erbα gene deleted have higher DA release in
the nucleus accumbens (NAc) (Chung et al., 2014). It appears
that Nurr1 competes with Rev-Erbα to promote TH expression;
consistent with this mice heterozygous for Nurr1 deletion
have altered circadian phenotypes (Partington et al., 2021).
In rodents, extracellular DA levels, i.e., “dopamine tone,” in
the striatum is at their highest during the night and lowest
during the day; this is mediated by the activity of the dopamine
transporter (DAT or Slc6a3), which is responsible for reuptake
of DA at synapse–a primary means of terminating DA signals
(Ferris et al., 2014). Interestingly, the firing of VTA neurons is
highest early in the light cycle and early on in the dark cycle,
following 12-h rhythms; both times VTA neurons are equally
sensitive to suppression of firing induced by methamphetamine
(Domínguez-López et al., 2014). In a separate study, higher
firing rates of VTA neurons were observed at night with no
changes reported for substantia nigra (SN) neurons across
circadian time (Domínguez-López et al., 2014). Luo et al. (2008)
identified a small subset of VTA neurons that appear to be
night active, highlighting the need for approaches that allow for
characterizing individual populations of DA neurons.

On the other hand, DA acts to drive circadian gene
expression of core circadian clock genes at downstream targets.
For example, depleting DA release using 6-OHDA to lesion
DA neurons projecting to the dorsal striatum (DS) causes a
loss of rhythmicity of the Per2 gene in striatum (Hood et al.,
2010). Intraventricular infusion of 6-OHDA disrupted circadian
rhythms of activity in adult rats markedly in constant darkness,
suggesting that DA signaling is required to maintain rhythmicity
(total activity levels were also suppressed but not eliminated)
(Gravotta et al., 2011). Thus, the question arises as to whether
feeding rodents out of synchrony with the normal rise and
fall of DA levels can shift this DA rhythm to increase DA in
anticipation of scheduled feeding. This shift was speculated by
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de Lartigue and McDougle in a review article, but it has never
been demonstrated experimentally (de Lartigue and McDougle,
2019). These authors assert that the DS is the long-sought FEO,
but the evidence in support of this hypothesis is just beginning
to be assembled. Some hints at the involvement of DA circuitry
and food entrainment come from pharmacological studies. For
example, Liu and colleagues administered a DA type 1 receptor
(Drd1) antagonist in ICR mice after 2 weeks of food restriction
and noted a small decrease (∼20%) in total activity 2 h prior
to scheduled mealtimes (Liu et al., 2012). Similarly, treatment
with a Drd2 antagonist also decreased total activity in mice by
∼40% prior to scheduled mealtimes (Liu et al., 2012; Smit et al.,
2013). Small effects of dopaminergic drugs were also observed in
food entrained rats: Drd2 agonist (quinpirole) or DA synthesis
antagonist AMPT shifted FAA onset and lowered its amplitude
while Drd1 agonist had no effect (Liu et al., 2012; Smit et al.,
2013). While these experiments implicate both Drd1 and Drd2
in modulating FAA, such pharmacological experiments are
complicated in their interpretation given that Drd2 is expressed
on DA neurons, Drd1 is expressed in the SCN (Grippo et al.,
2017), and there are many other target sites expressing DA
receptors as well (Martel and Gatti McArthur, 2020).

There is accumulating evidence for the involvement of
the DA system in regulating circadian entrainment to feeding
(de Lartigue and McDougle, 2019). Of the nine regions in
the adult mammalian brain harboring DA neurons (Björklund
and Dunnett, 2007), those in the ventral midbrain appear
critical to linking circadian rhythms associated with feeding or
other rewarding stimuli (Schultz, 2016). The VTA DA neurons
are known to be important for driving rest phase feeding
behavior, and the VTA-NAc pathway has been implicated
to be an extra-SCN oscillator that is probably responsible
for circadian rhythm disruption related drug abuse (Becker-
Krail et al., 2022) (discussed further below). However, the
entrainment to scheduled feeding has been linked to a different
population of DA neurons: those in the lateral portion of the
midbrain, termed the substantia nigra (SN), which project to
the DS and are best known for their demise during Parkinson’s
disease (Björklund and Dunnett, 2007). Global deletion of Drd1
markedly attenuates FAA, whereas, Drd2 deletion does not
(Gallardo et al., 2014). Viral reintroduction of DA production
in the DS of dopamine-deficient mice was permissive for FAA,
suggesting that the only location DA is needed for FAA is in
the nigrostriatal pathway, but, importantly, not establishing the
DS as an FEO (Gallardo et al., 2014). Daily pharmacological
activation of Drd1 neurons via systemic injection is sufficient
to entrain circadian activity rhythms even without manipulating
feeding (Gallardo et al., 2014). Taken together, these results
indicated that Drd1 is required for stable entrainment of
circadian activity (but not body temperature entrainment) to
scheduled feeding (Gallardo et al., 2014; Assali et al., 2021).
However, in a followup study, the defect in FAA in three
different strains of Drd1 KO mice was much less than initially

reported, suggesting that other DA receptors also promote
FAA (Assali et al., 2021). A potentially interesting result was
obtained in transgenic mice overexpressing Drd2, as these
mice had normal FAA during a short temporal restriction
(i.e., severe calorie restriction) but were impaired under longer
time windows of feeding (4 vs. 8 h) (LeSauter et al., 2020).
However, in this study the authors do not control for the effect
of repeated testing, using the same mice for short, medium
and long duration time-restricted feeding and the effect they
observed was marginal. In summary, a large body of work
implicates the participation of DA in regulating FAA. However,
more investigation is needed to delineate the specific DA circuits
and their necessity and/or sufficiency in food entrainment.

Taken together, these studies suggest that the FEO may
be the result of SN-DS DA pathway or that this pathway
modulates an essential motor output of the FEO. However,
the specific DA-receptor circuitry of FAA is yet to be fully
resolved and further fine-mapping is necessary to understand
the mechanisms of this interaction. Along this line, we recently
determined that a minimal subset of DA neurons present in
Pitx3ak mutant mice were sufficient for entrainment of behavior
to timed CR feeding (Scarpa et al., 2022). These hypomorphic
mutant mice lack lenses and photoentrainment (Del Río-Martín
et al., 2019), so we studied their behavior over long durations
to visualize the free-running and food-entrained components
of their behavior.

Neuronal circuits of feeding regulation
interface with the dopamine system

Two complementary and interacting neuronal circuits
govern food-seeking: the homeostatic and hedonic pathways
(Figure 2; Saper et al., 2002; Ferrario et al., 2016; Liu and
Kanoski, 2018). Homeostatic feeding is driven by deficits in
energy stores (Saper et al., 2002; Ferrario et al., 2016; Liu
and Kanoski, 2018). The arcuate nucleus of the hypothalamus
(Arc) is the principal regulator of the homeostatic pathway
and contains neuronal subtypes that provide input to the brain
centers that promote foraging, consumption, and digestion
(Fenselau et al., 2017; Sternson and Eiselt, 2017; Li et al.,
2019). In response to orexigenic endocrine and sensory signals,
agouti-related peptide (AgRP)-expressing and some non-
AgRP GABAergic Arc-neuron populations promote feeding
while pro-opiomelanocortin (Pomc)-expressing neurons and
a distinct glutamatergic cell group oppose it. The integrated
output from the Arc controls the activity of downstream targets
including the paraventricular hypothalamus (PVN), the lateral
hypothalamus (LH), the anterior subdivisions of the bed nucleus
of the stria terminalis (aBNST), and paraventricular thalamic
nucleus (PVT), which in turn coordinate circuits governing
energy homeostasis and feeding behavior (Atasoy et al., 2012;
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FIGURE 2

Schematic diagram of hedonic and homeostatic feeding
pathways, and the second-order brain areas integrating both
inputs. Notably, the DA in the SCN causes an inhibitory effect
(Grippo et al., 2020), although Drd1 is a Gq coupled receptor
which normally excites the neuron, potentially due to the
GABAergic local projection within the SCN. VTA, ventral
tegmental area; AgRP, agouti-related peptide; POMC,
pro-opiomelanocortin; NAc, nucleus accumbens; BNST, bed
nucleus of the stria terminalis; LH, lateral hypothalamus; PVN,
paraventricular nucleus of hypothalamus; SCN, suprachiasmatic
nucleus; Drd1, D1 dopamine receptor; Th, tyrosine hydroxylase.

Betley et al., 2013; Garfield et al., 2016; Stuber and Wise, 2016;
Fenselau et al., 2017; Li et al., 2019; Figure 2).

Hedonic feeding, or reward-based feeding, occurs when
highly palatable foods are consumed even during periods of
energy surplus (Saper et al., 2002; Ferrario et al., 2016; Liu and
Kanoski, 2018). The hedonic pathway is mainly regulated by the
VTA DA neurons that project to the NAc (Brown et al., 2011;
McCutcheon et al., 2012; Cone et al., 2015; Han et al., 2016;
Tellez et al., 2016; Coccurello and Maccarrone, 2018). Upon
activation, these neurons release DA in proportion to the reward
value of food, which encodes the appropriate level of motivation
for its consumption (Saper et al., 2002; Mohebi et al., 2019).
It has been demonstrated that DA-neurons support feeding
in the absence of AgRP-neurons, emphasizing the hedonic
pathway’s ability to override homeostatic neural circuits of
consummatory behaviors (Güler et al., 2012; Denis et al., 2015).
Indeed, new evidence suggests that Arc-VTA communication
is integral to the crosstalk between homeostatic and hedonic
feeding pathways. Arc POMC (ArcPOMC)-neurons send direct
projections to the VTA and the NAc (King and Hentges, 2011;
Lim et al., 2012), while the activity of Arc AgRP (ArcAgRP)-
neurons and DA VTA neurons are reciprocally regulated during
feeding (Figure 2; Alhadeff et al., 2019). Similarly, the elevated
activity of ArcAgRP-neurons during hunger is inhibited in
response to food availability (Betley et al., 2015; Chen et al.,
2015; Mandelblat-Cerf et al., 2015) as VTA DA neurons increase
their activity and release DA (Hernandez and Hoebel, 1988;

Volkow et al., 2002; Wise, 2006; Berridge et al., 2010; Brown
et al., 2011; Cone et al., 2015; Tellez et al., 2016; Alhadeff et al.,
2019). Recent work has demonstrated that activating ArcAgRP

neurons is able to potentiate VTA neuronal response to food
delivery (Mazzone et al., 2020). Although the LH has been
proposed to provide a functional link between the ArcAgRP-
and VTA DA neurons (Alhadeff et al., 2019), the precise
neurocircuitry between the homeostatic and hedonic feeding
pathways, and their downstream convergence points have not
been fully elucidated (Saper et al., 2002; Stuber and Wise, 2016;
Rossi and Stuber, 2018).

While dopamine signaling is mostly recognized as a
regulator of hedonic feeding, dopaminergic neurons are also
located across the hypothalamus, suggesting that they may
be directly involved in homeostatic feeding regulation (Baik,
2021). Known as the A12 group, dopaminergic neurons located
in the Arc were reported to promote feeding by inhibiting
ArcPOMC neurons via GABAergic synapses, and PVN via both
DA and GABAergic synapses (Zhang and van den Pol, 2016).
DA was shown to excite ArcAgRP neurons and suppress ArcPOMC

neurons in vitro (Zhang and van den Pol, 2016), but the
anatomical location of DA efferent to the Arc and its functional
role in vivo are not yet clear. In addition to Arc, A13, and
A14 DA neuron groups are located in the Zona Incerta (ZI)
and PVN, respectively, both of these nuclei are known to
regulate food intake (Hill, 2012; Zhang and van den Pol, 2017).
A more complex hypothalamic pathway involves the medial
preoptic area (mPOA). This area receives dopaminergic input
from its neighboring specialized anteroventral and preoptic
periventricular DA neurons in the hypothalamus (Zhang et al.,
2021). Although only reported for a role in mating behavior
(Zhang et al., 2021), this dopaminergic pathway may contribute
to feeding regulation due to the known role of mPOA in
modulating cold-evoked eating behavior via connections to
ArcAgRP neurons (Yang et al., 2021).

Timing of food consumption: Influence
on metabolism, circadian rhythms, and
dopamine signaling

Mounting evidence demonstrates that circadian rhythms
are an integral part of the behavior and physiology related to
energy homeostasis. These key findings include: (1) feeding,
like many other rewarding behaviors such as sex and addictive
drugs, exhibit circadian rhythmicity in animals and humans
(Webb et al., 2009; Hsu et al., 2010; Landry et al., 2012;
Webb, 2017). (2) In rodents, ablation of the SCN or
core molecular clock components within these cells disrupts
circadian rhythms including those of food consumption
(Schwartz and Zimmerman, 1991; Panda et al., 2002; Liu et al.,
2007; Welsh et al., 2010). A genetic mutation of the circadian
core gene Clock that disrupts feeding rhythms also potentiates
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DA signaling and leads to metabolic disease (Turek et al., 2005;
Grippo and Güler, 2019). (3) In humans, circadian disruption
or even reduction of sleep duration increases daily energy
intake, mainly from intermeal snacking causing weight gain
(Nedeltcheva et al., 2009; Markwald et al., 2013). (4) In addition
to controlling timing of feeding, circadian rhythms governed by
the central nervous system control vital aspects of metabolism
(Hastings et al., 2018). (5) Even during conditions of daily
isocaloric intake and expenditure, mistimed energy-rich food
consumption causes weight gain due to increased energy storage
in rodent models (Arble et al., 2009; Hatori et al., 2012; Chaix
et al., 2019). (6) In humans, acute perturbation of circadian
rhythmicity increases body weight and blood glucose levels
while extended periods of shift work is associated with increased
risk of type 2 diabetes (Di Lorenzo et al., 2003; Pan et al.,
2011). (7) Most recent work also indicates that intermittent
fasting at a particular time of day will not only prevent
obesity, but also greatly extend lifespan (Acosta-Rodríguez
et al., 2022). Additionally, nighttime eaters have reduced success
during weight-loss therapy (Garaulet et al., 2013). Therefore,
coordinated oscillations in the activity of metabolic regulators
and food consumption is essential to maintain proper energy
homeostasis, while the perturbation of these rhythms leads to
metabolic syndrome. In accordance with these findings, the
health benefits of time-restricted eating (intermittent fasting) is
a focal point in weight-loss therapy clinical trials (LeCheminant
et al., 2013; Gill and Panda, 2015; Tinsley et al., 2017; Antoni
et al., 2018; Gabel et al., 2018; Lowe et al., 2020; Wilkinson
et al., 2020). Therapeutic strategies against obesity and its
comorbidities, including type 2 diabetes, must consider not
only the caloric content of foods but also the timing of their
consumption of food (Arble et al., 2009; Gill and Panda, 2015;
Longo and Panda, 2016).

Several hypothalamic nuclei are downstream targets of
the SCN: the DMH, LH, and PVN, have been implicated in
the circadian regulation of feeding (Mendoza, 2019b). The
DMH, a nucleus that halts feeding by inhibiting ArcAgRP-
neurons, receives direct and indirect inputs from the SCN
and its lesion abolishes rhythms of food intake (Chou et al.,
2003; Garfield et al., 2016). The SCN, via indirect inputs to
the LH, drives circadian activity and orexin release associated
with arousal and feeding, which may explain why the SCN
appears to modulate the amplitude of food rhythms while
not directly driving them. The LH lies at the interface of
feeding and reward processing (Vansteensel et al., 2003; Deboer
et al., 2004; Jennings et al., 2013, 2015; Inutsuka et al., 2014;
Sakurai, 2014; Garfield et al., 2015; Nieh et al., 2015, 2016; Wu
et al., 2015; Navarro et al., 2016; Stamatakis et al., 2016). The
SCN also signals to the PVN, the primary target of ArcAgRP

neurons, via diffusible factors (i.e., arginine vasopressin; AVP)
and direct projections, to entrain the circadian oscillations of
various metabolically relevant hormones (e.g., corticotropin-
releasing hormone and oxytocin) (Kalsbeek et al., 2008;

Girotti et al., 2009; Atasoy et al., 2012; Betley et al., 2013; Wu
et al., 2018; Li et al., 2019). Notably, the Arc contains a
circadian clock and makes reciprocal connections with the
SCN and its targets to ensure coordinated daily metabolic
synchrony (Saeb-Parsy et al., 2000; Guilding et al., 2009;
Guzmán-Ruiz et al., 2015; Buijs et al., 2017; Padilla et al.,
2019). Although a wealth of communication between the
SCN and centers that control food intake and metabolism
has been discovered, the circuits that control meal timing
and the underlying neurophysiological mechanisms have not
been characterized.

It is well-established that the sight, smell, or ingestion of
food triggers DA release. Independent of cue-induced changes
in DA, extracellular DA levels oscillate in a circadian fashion
as described above. Regularly timed daily access to rewarding
foods can entrain SCN-dependent behavioral rhythms by
increasing midbrain dopaminergic neuron activity and DA
content in the forebrain (Mendoza et al., 2010b). Interestingly,
ad libitum access to energy-dense rewarding foods triggers
disorganization of circadian feeding behavior, going from
an intermittent meal-based schedule to continuous snacking
(Blancas-Velazquez et al., 2017; Espinosa-Carrasco et al., 2018).
VTA specific knockdown of circadian gene Bmal1 can rescue
the hedonic overconsumption of rewarding food (Koch et al.,
2020). The energy-rich foods also lengthen the period of
behavioral circadian rhythms, impair photic resetting, reduce
light mediated induction of c-fos within the SCN and abolish
dopaminergic circadian rhythms around the SCN (Kohsaka
et al., 2007; Mendoza et al., 2008; Luo et al., 2018; Grippo et al.,
2020). Restoration of DA rhythmicity by DA infusion into the
SCN is sufficient to correct significant metabolic dysregulation
caused by diet-induced obesity (DIO) (Luo et al., 2018). A direct
projection from VTA DA neurons to the SCN was recently
described, and was shown to govern the rate of reentrainment
to light shift (Grippo et al., 2017), as well as to be required for
energy-dense diet-induced disruption of circadian meal timing
and weight gain in mice (Grippo et al., 2020). These findings
demonstrate the involvement of DA input to the SCN for
circadian rhythm synchronization. A future challenge will be
to define the precise DA neural circuitry feeding into these
behavioral and physiological responses.

Methamphetamine-sensitive rhythms

The other major association of DA with biological rhythms
comes from studies of chronic methamphetamine exposure,
leading to the terms “methamphetamine-sensitive oscillator”
(MASCO), and more recently, the “dopamine ultradian
oscillator” (DUO) (Mohawk et al., 2009; Blum et al., 2014;
Bourguignon and Storch, 2017; Freyberg and McCarthy, 2017).
Behaviorally, the MASCO can be observed when the animals are
exposed to chronic methamphetamine access via the drinking
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water. Both control and core clock gene deficit animals have
lengthened free running period on methamphetamine; SCN
lesioned animals regain rhythmicity under methamphetamine
treatment and show robust food entrainment (Tataroglu et al.,
2006; Mohawk et al., 2009). Meanwhile, the DUO was reported
as a 4–6 h rhythmic behavioral activity rhythm present in SCN
lesioned or Bmal1 KO mice that depends on the expression of
DAT (Blum et al., 2014). Deletion of DAT more than doubles
the period of this ultradian oscillation, whereas, non-selective
DA receptor antagonist, haloperidol, has the opposite effect
(Blum et al., 2014). Wild-type, SCN lesioned or Bmal1 KO mice
maintained on high levels of methamphetamine extend their
period length to between 36–48 h (Blum et al., 2014). However,
the natural stimuli capable of entraining the MASCO/DUO
remain largely unknown. Furthermore, the precise location
of the MASCO/DUO neurons is unknown, but chemogenetic
manipulation experiments suggest that they are localized to the
midbrain (Blum et al., 2014).

Given that the DA system is involved in food entrainment,
it has been questioned whether the FEO and MASCO/DUO
relate to each other (Pendergast et al., 2012; Mendoza
and Challet, 2014). Interestingly, in the SCN lesioned rats,
methamphetamine exposure rescues the rhythmicity of
locomotor activity, and these animals entrain to daily scheduled
feeding (Honma et al., 1989). When treated with a non-selective
DA receptor antagonist, haloperidol, the rhythmicity of MASCO
can be phase shifted (Honma and Honma, 1995). Moreover,
in addition to the DA-regulated biological rhythm, neurons in
the DS display rhythmic firing patterns in both SCN-dependent
or methamphetamine-dependent/SCN-independent manner
(Miyazaki et al., 2021). Chronic methamphetamine treatment
did not alter clock gene expression in the SCN or NAc, but
changed it dramatically in the DS, highlighting the importance
of pacemakers outside the SCN controlling activity (Masubuchi
et al., 2000; Nikaido et al., 2001; Iijima et al., 2002; Natsubori
et al., 2014). It appears likely but has not been demonstrated
experimentally that the MASCO/DUO are separable from the
FEO(s) and it is exciting to speculate that there may be several
independent DA-regulated biological rhythm centers in the
adult brain: (1) the FEO, which depends on DA signaling or
could be a dopaminergic clock (2) the DUO/MASCO, which
depends on DAT and most likely the striatum (dorsal and
ventral), and (3) the SCN, which receives DA input via Drd1
expressing neurons.

Charting a way forward

In summary, we have discussed evidence of bidirectional
input between the dopaminergic and circadian control
systems at the levels of genes and neural structures. The
evidence for the importance of these connections in driving
rhythms on ultradian, circadian and infradian rhythms

ranges from correlative to causative. The experimental
setups required to unravel cause and effect are intensive
and we expect it to take the participation of many
laboratories to address these questions. Here we suggest
several ideas for experiments that will be important for
proving or disproving that the midbrain or other DA
circuitry is acting to regulate behaviors such as rest-
activity cycles, food entrainment, hedonic day-eating, and
methamphetamine responses in regions such as the SCN,
DS, NAc, or others.

• The diurnal rhythm of DA tone and specific responses
to potential zeitgebers have not been well-characterized.
The new tools to examine neuromodulator levels
in vivo, such as GRAB-DA and dLight (Patriarchi et al.,
2018; Sun et al., 2018), will be a great asset in visualizing
DA release at target sites. One potential difficulty with
these approaches is that DA levels are much lower in
the SCN compared to the DS or NAc; despite this,
we know that DA plays a significant role in the SCN
in terms of regulating both light-entrainment and rest
phase feeding that leads to DIO (Grippo et al., 2017,
2020).
• With respect to the DS, we are still lacking an

experimental demonstration that DA levels increase
in the DS prior to expected mealtime. Given the
convincing demonstration that DA rhythms in the
DS drive Per2 oscillations (Hood et al., 2010), it
would be of great interest to monitor the rhythmicity
of circadian genes or neuronal activity in the DS
in vivo using the recently developed tools such as
PER2:VENUS for circadian gene and GCaMP for
neuronal calcium signaling (Jones et al., 2018; Mei et al.,
2018). Monitoring these rhythms in various DA-mutant
mice and/or upon environmental stimuli will provide
insight into the effect of DA on circadian rhythmicity
at different downstream targets.
• Using conditional genetics to selectively delete TH

to parse through which DA populations constitute
the minimal circuit required for DIO and FAA are
admirable goals. Unfortunately, many mutations to
DA or its receptors have pleiotropic phenotypes. The
use of more refined genetic markers and/or targeting
with AAVs using conditional genetic approaches will
allow for deciphering minimal DA circuits required for
specific circadian behaviors.
• Disrupting the molecular clock in different genetically

defined DA populations or their targets by deletion of
Bmal1, Nr1d1, or Per genes to test for alterations in the
MASCO/DUO or other feeding related phenotypes is
worthy of investigation and could help clarify whether
these DA neurons are functioning as clocks or as
required relays.
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• While the DA-Drd1 signaling in the SCN has been
shown to enable energy-dense DIO (Grippo et al., 2017),
the detailed neuron mechanism in the SCN associated
with DA signaling is still waiting to be further explored.
Approximately 60% SCN neurons express Drd1, and
are located across the entire SCN including both core
and shell, in a fraction of both VIP (∼80%) and AVP
(∼60%) (Smyllie et al., 2016). Despite this dispersed
expression profile, it is still possible that these two
subpopulations of neurons would exhibit differential
responses to dopaminergic input, and hence contribute
to DIO differently. Therefore, it is worthy to use
conditional genetics to knock out Drd1 only in selective
SCN subpopulations (VIP, AVP, etc.), and study the
effect on circadian feeding behavior and metabolic
consequences under different diet conditions.

Conclusion

As discussed in this review, the DA system falls into
a critical integrating position, serving to regulate circadian
feeding, metabolic homeostasis, locomotor activity, and reward
responsiveness for drugs of abuse and natural rewards. Future
experiments must address whether the DA system is causally
regulating biological rhythms or is serving as a necessary motor
relay for other bona fide circadian pacemakers. Unraveling these
intersecting systems is well worth the challenge due to the
profound implications this could have for human health. To
that end, it will be imperative to build the circuits outwards
and identify not only the DA subtypes responsible for these
behaviors but also the identity and connectivity of their targets.
Further delineation of these pathways and understanding the
individual contributions of the SCN, DUO/MASCO, and any
FEO(s) will be essential for proper identification, treatment, and
prevention of eating disorders and drug abuse. Determining the
role of DA signaling for coherent biological rhythm expression
will be the linchpin of these efforts.
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