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Abstract

Magnitudes or quantities of the different dimensions that define a stimulus (e.g., space,

speed or numerosity) influence the perceived duration of that stimulus, a phenomenon

known as (temporal) interference effects. This complicates studying the neurobiological

foundation of the perception of time, as any signatures of temporal processing are tainted by

interfering dimensions. In earlier work, in which judgements on either time or numerosity

were made while EEG was recorded, we used Maximum Likelihood Estimation (MLE) to

estimate, for each participant separately, the influence of temporal and numerical informa-

tion on making duration or numerosity judgements. We found large individual differences in

the estimated magnitudes, but ML-estimates allowed us to partial out interference effects.

However, for such analyses, it is essential that estimates are meaningful and stable. There-

fore, in the current study, we examined the reliability of the MLE procedure by comparing

the interference magnitudes estimated in two sessions, spread a week apart. In addition to

the standard paradigm, we also presented task variants in which the interfering dimension

was manipulated, to assess which aspects of the numerosity dimension exert the largest

influence on temporal processing. The results indicate that individual interference magni-

tudes are stable, both between sessions and over tasks. Further, the ML-estimates of the

time-numerosity judgement tasks were predictive of performance in a standard temporal

judgement task. Thus, how much temporal information participants use in time estimations

tasks seems to be a stable trait that can be captured with the MLE procedure. ML-estimates

are, however, not predictive of performance in other interference-tasks, here operationa-

lized by a numerical Stroop task. Taken together, the MLE procedure is a reliable tool to

quantify individual differences in magnitude interference effects and can therefore reliably

inform the analysis of neuroimaging data when contrasts are needed between the accumu-

lation of a temporal and an interfering dimension.

Introduction

Our subjective experience of the duration of an event is influenced by concurrent magnitude

information of the very same event or stimulus. Examples of these temporal magnitude
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interference effects on time are the effect of space [1–4], numerosity [3,5–7], or numerical

magnitudes [3,8–10]. Usually ‘more’ in the non-time dimension leads to an increased likeli-

hood of ‘longer’ judgements in the time dimension. While such interference effects on dura-

tion judgements may be instrumental to understanding the links between temporal cognition

and other psychological processes [11], they represent a significant problem or nuisance in

research that seeks to elucidate the neural underpinnings of duration estimation. That is, in

these tasks participants are often asked to either estimate the duration of a stimulus and ignore

the other magnitude, or, vice versa, to estimate the other magnitude and ignore the duration.

By means of comparing the differences in neural signatures of both estimations, researchers

aim to identify which neural signals are specific to timing. Thus, these interference effects

work against the primary goal and rationale of the methods employed in such research: to iso-

late the neural systems and mechanisms involved in duration estimation by using suitable

tasks and appropriate control conditions.

Several considerations or desiderata pertain to a proper design of a neuroimaging study of

duration estimation. First, the process at issue can be conceptualized as one in which informa-

tion about a quantity (here time) accumulates from stimulus onset to offset, with the accumu-

lated total corresponding to the duration judgment. While accumulation of information over

time is inherent to temporal judgements, it is not for other stimulus dimensions. To establish

specificity with respect to temporal magnitude, a matching task is required in which partici-

pants estimate and report the accumulated total with regard to another stimulus dimension,

such as dominant color (e.g., [12,13]) or the total distance a dot travelled (e.g., [14]). To ensure

similarity to the timing task and sustained attention to the stimulus, the non-temporal dimen-

sion should also be presented dynamically over time, so that information has to be accumu-

lated from stimulus onset to offset. Second, to equate the two tasks in terms of sensory input,

stimuli in both tasks should contain both the temporal and the non-temporal dimension, thus

conveying both relevant and irrelevant magnitude information in both tasks or conditions. A

clear contrast between the two tasks would be obtained only if participants were able to selec-

tively attend and process only the relevant stimulus dimension. However, as the behaviorally

well-established magnitude interference effects demonstrate, participants tend to process both

relevant and irrelevant magnitude information in both conditions, rendering a comparison

between the two tasks inferentially problematic and less informative.

In this paper, we describe and test the reliability of a Maximum Likelihood Estimation

(MLE) procedure that can potentially disentangle the processing of temporal and other magni-

tudes at the level of individual participants. Its results suggest that there are strong and seem-

ingly stable individual differences in the size of temporal magnitude interference effects, with a

sizable subset of participants apparently being quite capable of selectively attending to relevant

magnitude information only. We will discuss how such results can significantly inform and

strengthen analyses in neuroimaging studies of duration estimation.

In a recent EEG, study we investigated neural signatures of duration estimation compared

to numerosity estimation [15]. On each trial, participants saw two consecutive stimuli con-

sisting of a series of blue dots dynamically appearing and disappearing on a black screen,

together forming a cloud of dots. Each stimulus was characterized by its duration and the total

number of dots it contained (see Fig 1A for a schematic depiction). Because of its visual

appearance, we refer to this task as the Dynamic Raindrops task. Participants were asked to

judge whether the second stimulus appeared for a shorter or longer duration (time condition)

or consisted of fewer or more dots (numerosity condition). Replicating previous findings (see

[11] for a review), the behavioral data indicated that judgements on time were significantly

affected by numerosity, whereas numerosity judgements were relatively resilient to interfer-

ence effects. Upon closer inspection, we found large individual differences in the extent to
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which participants showed interference effects, that is, how strongly irrelevant magnitude

information affected their decisions. In order to quantify individual strength of interference

effects we used a MLE procedure to estimate, per participant and condition (i.e., time and

numerosity), how much each dimension was taken into account when making a decision. The

output of the procedure are two parameters or weights, ωtime and ωnumber, which represent the

weights by which time and number information contribute to the overall evidence in favor of

one or the other response alternative. For example, a good ‘timing’ participant (i.e., a
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Fig 1. Schematic depiction of task designs. (A, B) In a comparison task participants had to judge whether the second

stimulus was longer or shorter (time dimension) or consisted of fewer or more dots (number dimension) than the first

stimulus. Participants were cued before blocks of eight trials which dimension would be the target dimension for the

next trials. Stimuli consisted of clouds of small blue dots which appeared and disappeared dynamically on the screen

(Dynamic Raindrops, panel A) or stayed on screen for the whole interval (Static Raindrops, panel B). Either the first or

second stimulus was always the standard stimulus, lasting for 1800 ms and consisting of 30 dots in total, while the

other stimulus could take on one of six comparison magnitudes in both dimensions. (C) Here, participants only had to

make a judgement based on time. Intervals were marked by a grey circle changing color to blue and back to grey. The

same durations as in the Raindrops tasks were used in the temporal comparison task. (D) In the numerical Stroop task

participants had to report how many items were on the screen. Three conditions were employed: 1) congruent (digit

magnitude corresponded to number of items), 2) incongruent (digit magnitude did not correspond to number of

items), and 3) control (letters). All tasks were self-paced, that is, the next trial only started after a response was given.

https://doi.org/10.1371/journal.pone.0202345.g001
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participant who shows little or no interfering effect of numerosity on time) would have a high

ωtime and a low ωnumber in the time condition. Based on the estimated weights, we categorized

participants into a group showing only little or no interference effects and a group showing

stronger interference effects to guide analysis of the EEG data, with the idea that it is in partic-

ular the data of the first group, whose members were apparently quite capable of following

instructions to selective attend only the relevant magnitude dimension, that would be more

likely to reveal dimension-specific neural differences. In fact, inclusion of the second group, as

in more traditional analyses across all participants, might dilute and potentially even obscure

such differences. Note that the weights are estimates of the true underlying weights, that is,

they are subject to noise because of, for example, limitations in experimental design (e.g., num-

ber of trials).

Thus, for a performance-based procedure as described above to yield meaningful and reli-

able results, the ML-estimated weights should provide reasonably accurate and reliable esti-

mates of the true underlying weights for each individual participant. This can, for example, be

attained by including a sufficient number of trials [16]. More interestingly, the procedure

would be most generally useful and powerful if true underlying weights, and their empirical

estimates, are stable over time. From a conceptual perspective, individual differences in the

size of temporal magnitude interference effects would seem most interesting if these repre-

sented a relatively stable trait. From a practical perspective, such stability is necessary when

aggregating data over multiple sessions or when selecting participants for subsequent neuro-

imaging studies based on the results of behavioral screening sessions. Such stability of test

results over time is typically referred to as test-retest reliability. Recently, several authors have

drawn attention to the fact that test-retest reliabilities of many popular and well-established

cognitive tasks in psychology and neuroscience are surprisingly low, given their common use.

Hedge, Powell, and Sumner [17] describe the statistical issues associated with well-established

tasks often having poor reliabilities as the reliability paradox: The very reason that such tasks

produce robust and easily replicable effects–low between-individual variability–also tends to

cause low reliabilities of these effects, making their use as correlational tools problematic.

These authors also suggested that these statistical issues, while having a long history in psychol-

ogy, tend to be widely overlooked in cognitive psychology and neuroscience today (for related

concerns, results, and possible remedies, see [16,18,19]). Thus, the first aim of the present

study was therefore to empirically establish the test-retest reliability of the ML-estimated

weights for time and number information in the Dynamic Raindrop task, using two sessions

separated by six to eight days.

The second aim of the present study was to shed more light on the nature of the use of tem-

poral and numerical information when making comparative temporal judgments in the

Dynamic Raindrops task. As explained earlier, to allow for a properly matched task, evidence

for the non-temporal magnitude should also accumulate over time. However, this introduces

an emergent and highly salient visual feature, the rate of appearance/disappearance of rain-

drops. Even though rate is not necessarily constant over the presentation of one stimulus due

to the raindrops’ random onsets, here we will focus on the average rate during stimulus dura-

tion. Given the short life time of individual drops and their randomized onsets, this average

rate is closely associated with the average number of raindrops visible during stimulus dura-

tion. Note that the average rate for a stimulus also corresponds to the total number of rain-

drops divided by stimulus duration. This means that interference effects on temporal

judgments might be based on numerosity, on average rate, or on a combination of these two

potential factors. In the experiments reported here, stimulus numerosity and duration were

quasi-randomly combined so as to keep the negative and positive correlation of average rate

with duration and numerosity close to -.5 and .5 respectively (but at a cost of thereby
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introducing a .5 correlation between duration and numerosity; see [15] and Methods for

details). Because of the simple mathematical relationship between duration, numerosity and

average rate the MLE procedure is not able to differentiate between these three factors and

models exhibit mimicry behavior. However, strong reliance on rate information in the

Dynamic task version will have marked effects on the estimated weights for temporal and

numerical information: For instance, suppose that in the Dynamic Raindrops task numerosity

has an interfering effect on temporal judgments (i.e., ‘more’ leads to an increased likelihood of

‘longer’ judgments); and suppose further that also average rate has an effect on temporal judg-

ments (as average rate will be strongly negatively correlated with duration across trials and

positively correlated with numerosity, higher average rate can be expected to lead to a

decreased likelihood of ‘longer’ judgments). As rate is positively correlated with numerosity,

but these factors have opposite interfering effects on temporal judgment, their combined

effects tend to cancel out and could mask interference effects.

In the present study, we used two different versions of a Static version of the Raindrops task

(Fig 1B) to assess the possible usage of rate information in temporal judgments in the Dynamic

Raindrops version, based on the following rationale: When rate information is taken away, as

in the Static Raindrops task, this should give rise to marked changes in these estimated weights,

resulting in relatively low correlations between Dynamic and Static tasks. Therefore, in the

first session, we included a Static version of the Raindrops task with the .5 correlation between

numerosity and duration left intact. In the second session, we included a Static version but

now with the correlation between numerosity and duration removed–to the extent that this

correlation affected performance in the Dynamic Raindrops task, its removal should be

expected to yield even lower correlations. The comparison of the two versions of the Static

Raindrops task will shed additional light on whether the artificially introduced correlations

between time and numerosity affected participants markedly in the way they incorporate task-

relevant and task-irrelevant information.

Additionally, we were interested in the generalizability to other, non-magnitude tasks. For

this purpose, we tested the relation between ωtime estimates in the Raindrops tasks and level of

performance in a timing task without any interfering dimension (Fig 1C). Further, we tested

the relation between temporal magnitude interference effects to other well-established inter-

ference effects, here Stroop interference in a numerical Stroop task (Fig 1D). We chose the

numerical Stroop task because it produces relatively stable Stroop effects compared to the col-

our-word Stroop task [20–22].

All results reported and discussed here are based on data from the time condition, which is

the condition of main interest in the literature discussed earlier, and the focus of our earlier

work. Moreover, we observe more pronounced interference effects in this condition. However,

all scripts to run the experiments and analyses, all data, as well as analyses and results based on

the number condition can be found online at osf.io/b73u2.

Materials and methods

Ethics statement

The research was conducted in accordance with the Declaration of Helsinki; the Ethical Commit-

tee Psychology of the University of Groningen approved the experiments and procedures (identi-

fication number 16218-S-NE). Participants gave written informed consent prior to testing.

Participants

Fifty-six participants enrolled in the Bachelor program Psychology at the University of Gro-

ningen participated in the experiment in exchange for course credits. Due to technical
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problems, data of seven participants was not saved correctly, and thus discarded. A further

eight participants were excluded from the analysis because of too varying or suboptimal per-

formance suggesting non-compliance with instructions. Specifically, exclusion was based on

four performance measures, derived from a logistic function fitted to each participants data

using the Psignifit toolbox version 3.0 for Matlab [23]: participants were excluded 1) if their

Weber Ratio (computed as half the distance between values that support 25 and 75% of "lon-

ger" ("more") responses normalized by the Point of Subjective Equality), averaged over all

tasks, was larger than 0.5, 2) if the standard deviation of the Weber Ratios over all tasks was

larger than 0.4 (hinting at a large variability in performance), 3) if the difference between the

highest and lowest Weber Ratio was larger than 1, and 4) if the proportion of correct responses

in relatively easy trials was lower than in relatively difficult trials in more than one task. The

final sample comprised data of 41 participants (25 female) aged between 18 and 26 years

(M = 20.27 years).

Stimuli and tasks

All stimuli and tasks were created using Matlab 7.13 (The MathWorks) and the Psychophysics

toolbox version 3.0.12 [24] running under Windows 7 (version 6.1) and displayed on a

1280 × 1024 CRT-monitor screen with a refresh rate of 100 Hz.

Dynamic Raindrops task

In a comparison task participants had to judge whether the second stimulus (S2) presented in

a trial was shorter or longer (time dimension) or consisted of fewer or more dots (number
dimension) than the first stimulus (S1), whereby either S1 or S2 was always the standard stim-

ulus (Fig 1). Participants were cued in advance whether they had to make a judgement on time
or on number.

Clouds of blue dots served as stimuli (RGB: 0, 0, 255). Each cloud consisted of single dots

that appeared and disappeared dynamically on a black screen. The duration of each stimulus

was marked by the appearance of the first dot (onset) and disappearance of the last dot (offset).

The number of dots was determined by the total number of dots presented. Each stimulus

could vary simultaneously and independently in time and number.

The lifetime of each dot (i.e., the interval between appearance and disappearance of the dot)

was sampled from a uniform distribution between 400 and 800 ms. Multiple dots could be visi-

ble at the same time, and it was ensured that at least one dot would be on screen during the

interval. Dots had a radius of 2.5 px and appeared within a virtual ring with an outer radius of

150 px and an inner radius of 50 px around the fixation cross. Positions of single dots within

one trial were chosen randomly, with the constraint that dots could not overlap in space (i.e.,

they were separated by at least 10 px). The standard stimulus was set to a duration of 1800 ms

and to consist of 30 dots in both time and number trials. The probe stimuli in both dimensions

took six possible magnitude values defined as 1.1−4, 1.1−2, 1.1−1, 1.11, 1.12 and 1.14 times the

standard magnitude (to ensure precise presentations timing, durations were rounded to the

second and number of dots was rounded to the nearest integer), resulting in durations of 1230,

1490, 1630, 1980, 2180 and 2640 ms, and 20, 25, 27, 33, 36, and 44 dots. Probe stimuli can be

further categorized as congruent (i.e., both dimensions vary in the same direction, e.g., shorter

and fewer dots) and incongruent (i.e., dimensions vary in different directions, e.g., shorter and

more dots).

A consequence of the dynamic nature of this experimental design is that both the task-irrel-

evant dimension (i.e., number in time-trials and time in number-trials) as well as the rate of

drop appearance (i.e., how quickly drops appear and disappear) can be predictive of the task-
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relevant dimension. For example, during the presentation of T1N6 the maximum number of

dots would appear during the shortest duration so that the rate of dots appearing would be

very fast. To limit predictiveness of the task-irrelevant dimension and the rate of dot appear-

ance on the dimension to be judged, the task-irrelevant magnitude was chosen randomly from

a weighted uniform distribution. Weights were 0.8 for the same magnitude as the task-relevant

magnitude, and 0.75, 0.55, 0.25, 0.05 and 0 for magnitudes with increasing distance from the

task-relevant magnitude (hence, the shortest duration will not be paired with the largest num-

ber of dots). Using these weights, we simulated 10,000 stimuli and found a correlation between

time and numerosity of r = .51 (i.e., how well does one magnitude predict the other magni-

tude), and a correlation of r = .50 between time/numerosity (r = -.47 for time) and rate of drop

appearance (i.e., how well does drop appearance rate predict the other magnitudes). These cor-

relations show that with the selected weights we can ensure that the task-irrelevant dimension

and rate of drop appearance are equally predictive of the task-relevant dimension. A major

problem in trying to eliminate one of the correlations (e.g., between time and numerosity) is

that the other factor (following the example, rate) becomes highly predictive of the attended

dimension. For example, randomly sampling the task-irrelevant magnitude without any

weights results in a very low correlation of r < .01 between time and numerosity, but rate

becomes predictive of both time (r = -.66) and number (r = .70). Thus, as described above, we

determined the task-irrelevant magnitude using weighted random sampling to make both the

task-irrelevant and rate of drop appearance equally predictive of the task-relevant magnitude.

The script running this simulation and additional ones using different ways to combine task-

relevant and task-irrelevant magnitudes can be found online at osf.io/b73u2. The task design is

identical to the task previously used in an EEG experiment (see [15]).

The experiment was divided into two blocks, each block consisting of 80 trials. Within each

block, time and number trials were alternating in sub-blocks of eight trials each. The order of

these sub-blocks was counterbalanced between participants. Before each sub-block, partici-

pants were cued whether they had to make a judgement on time or on number. In each block,

in half of the time-trials the standard stimulus was presented as S1, in the other half it was pre-

sented as S2. The probe stimulus in each of the two conditions (standard stimulus as S1 or S2)

was longer than the standard duration in half of the trials, and shorter in the other half. Out of

the 40 time trials in each block, the two most extreme probe durations (1230 and 2640 ms)

were presented four times each, while all other probe durations were presented eight times

each. The same logic was true for number-trials.

Each trial started with the presentation of a grey fixation cross for a duration sampled from

a uniform distribution between 800 and 1200 ms. Then, S1 and S2 were presented consecu-

tively with an inter-stimulus-interval sampled from a uniform distribution between 1200 and

1600 ms. The fixation cross remained on screen for another 800–1200 ms before the response

screen appeared and stayed until a response was given. Participants were instructed to press ‘S’

on a conventional US-Qwerty keyboard if they perceived S2 as shorter or consisting of fewer

dots than S1, and ‘L’ if they perceived S2 as longer or consisting of more dots than S1. A blank

screen appeared for 800–1200 ms before the next trial started (see Fig 1 for a visual depiction

of an experimental trial). After half of the trials, participants could take a self-timed break. Par-

ticipants received feedback on their performance (percentage correct trials) during the break

and after completion.

Static Raindrops tasks

The static versions of the Raindrops task are essentially like the Dynamic Raindrops task. The

only and crucial difference was that the drops did not appear dynamically on the screen, but
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all dots appeared at stimulus onset and disappeared at stimulus offset (see Fig 1). We designed

two versions of the Static Raindrops task, differing in how the task-irrelevant dimension was

sampled with respect to the task-relevant dimension. We used a correlated version, which used

the same constraints as the Dynamic Raindrops task, and an uncorrelated version, in which

the task-irrelevant dimension was sampled randomly without any constraints. The latter

resulted in a correlation between time and number magnitudes of r < .01, meaning that the

task-irrelevant dimension is not at all predictive of the task-relevant dimension.

Temporal comparison task

In the temporal comparison task participants only had to make a judgement based on time.

Again, the same durations and response formats as in the Raindrops tasks were used. Instead

of showing multiple small dots, participants saw one bigger dot with a fixed size (radius = 25

px). The first interval (S1) was marked by the dot changing its color from grey to blue (onset)

and back to grey (offset), the second interval (S2) was presented in the same way (see Fig 1).

After half of the trials, participants could take a self-timed break. As for the Raindrops tasks,

participants received feedback on their performance (percentage correct trials) during the

break and after completion.

Numerical Stroop task

Three to six white colored digits (i.e., the same digit, ranging from 3 to 6) or letters (A, F, K or

P) appeared within a circle (radius = 120 px) around the center of the black screen. Characters

had a size of 15 × 24 px and had a minimum distance of 50 px to other characters. Participant’s

task was to report how many items appeared on the screen by pressing the appropriate digit-

key. Participants were instructed to place their left middle and index finger on the keys ‘3’ and

‘4’, and their right index and middle finger on keys ‘5’ and ‘6’ at all times. The numerical

Stroop experiment had three conditions: 1) congruent (i.e., the digit magnitude corresponded

to the number of items), 2) incongruent (i.e., the digit magnitude did not correspond to the

number of items), and 3) control condition (letters instead of digits). In total, participants

completed 304 trials: 108 incongruent trials (each digit appeared nine times in each number of

items condition), 100 congruent trials (each digit appeared 25 times in its number of items

condition), and 96 control trials (each letter appeared 6 times in each number of items condi-

tion). Trials of all conditions were presented in randomized order. The next trial started after a

response was given. The inter-trial-interval was sampled from a uniform distribution ranging

from 600 to 1000 ms. After half of the trials, participants could take a break for as long as they

liked. No feedback on performance was given to the participants.

Procedure

Participants were tested in two sessions separated by six to eight days. In session one, partici-

pants completed the Dynamical Raindrops task (Dynamic I), followed by the numerical Stroop

task, and, at the end of session one, the correlated version of the Static Raindrops task (Static

I). During session two, participants again started with the Dynamic Raindrops task (Dynamic

II), followed by the temporal comparison task, and ended with the uncorrelated version of the

Static Raindrops task (Static II). Each session took approximately 75 minutes.

Data analysis

MLE procedure. To quantify how strongly participants took numerical and temporal evi-

dence into account when making a judgement on either dimension in the Raindrops tasks, we
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estimated these two parameters using a Maximum-Likelihood Estimation (MLE) procedure

(for another example of the application of this MLE procedure, see [15]). The underlying

model used the weighted sum of temporal and numerical evidence for each trial (evidencetotal,

see Eq 1), that is, parameter estimation was stimulus driven. Temporal and numerical evidence

(evidencetime and evidencenumber, respectively) was determined by subtracting the magnitudes

of the standard stimulus from the magnitudes of the non-standard stimulus and subsequently

dividing by the maximal evidence possible, so that the estimate was scaled from -1 to 1 (i.e.,

the more different the non-standard stimulus magnitudes were from the standard stimulus

magnitudes, the more evidence was available in a given trial, see Eqs 2 and 3 for an example of

the time condition).

evidencetotal ¼ otime � evidencetime þ onumber � evidencenumber ð1Þ

evidencetime ¼
Tcomparison � Ts

maximum evidence possible
ð2Þ

maximum evidence possibletime ¼

(
TS � T1 ¼ 0:57; if Tcomparison < Ts

T6 � TS ¼ 0:84; if Tcomparison > Ts

ð3Þ

Evidencenumber and maximum evidence possible based on numerosity were calculated

according to the same principles. The weights ωtime and ωnumber were estimated in the MLE

procedure. Evidencetotal was then used to compute the probability of a response (shorter/fewer

or longer/more) based on a standard normal cumulative distribution (see Fig 2, grey curves).

The final weights were those for which the sum of the logarithms of the probability of a specific

response were maximal (i.e., the weights that best predicted behavioral data on a trial by trial

basis). For a visual depiction and a numerical example see Fig 2. Using this procedure, we

participant response = "longer" participant response = "shorter" example 'time' trial: 
Tcomparison = 1.49s
→ evidencetime = -0.54
Ncomparison = 36 dots
→ evidencenumber = 0.43 
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ωtime = 0.5, ωnumber = 1.5
→ evidencetotal     = 0.38

Fig 2. Graphical illustration and numerical example of the MLE procedure. For each of the 80 trials evidencetotal was calculated

based on the stimulus parameters and the weights selected during each iteration of the MLE procedure (Formula 1). Evidencetotal was

then used to compute the cumulative probability of a response (“longer”, grey curve left panel; “shorter”, grey curve right panel). In

each iteration of the MLE procedure and for each trial the logarithm of the probability of the participant’s actual response (response

“longer”, black curve left panel; response “shorter”, black curve right panel) given was computed with the current weights. The final

weights were those for which the sum of the log-values over all trials was maximal. Dashed and dotted lines show two examples of

different sets of weights and their effects on the weight-selection process on one specific incongruent trial. In the dotted line, more

numerosity information was used, thus this set of weights would be superior if participant’s response was “longer” (i.e., influenced by

the incongruent numerosity information and reflected in a higher log-value). On the contrary, the dashed line is an example of a set of

weights in which temporal information is taken into account more than numerosity information. Here, if the participant correctly

responds “shorter”, this set of weights will be favoured (higher log-value). Note however, that the weights selection was based on all

trials.

https://doi.org/10.1371/journal.pone.0202345.g002
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obtained a weight for time and a weight for number for each Raindrops task, condition and

participant. The reported model, including both time and number information, outperformed

models including only time or only number information (comparisons can be found online at

osf.io/b73u2).

To obtain a comparable estimate of how much temporal evidence was used in the non-mag-

nitude temporal comparison task, we estimated ωtime for the temporal comparison task in a

model using only temporal evidence.

Vector correlations. In order to investigate the robustness of individual differences in the

usage of time versus numerosity information in timing performance, as represented by ωtime

and ωnumber respectively, we combined the two estimates into a vector (i.e., ωtime is treated as

the x-component and ωnumber as the y-component) and calculated vector correlations between

all different versions and sessions of the Raindrops task. Vector correlations convey informa-

tion about the relatedness of two vector fields [25–27]. The output of this vector correlation

comprises the correlation coefficient p ranging from 0 (no correlation) to 1 (perfect correla-

tion), a rotation angle θ and a scaling factor β, describing the amount of rotation and scaling

needed to best align the two vector fields (for more detailed information and formulas, see

[25]). Hanson et al. [25] distinguish between rotational and reflectional correlations, however,

because we do not expect to find a reflectional relationship between vector fields, we decided

a-priori to only calculate vector correlations based on rotational dependencies. Notably, if the

variance of the two vector fields is very similar, scale factor β is very similar to p. In the current

data set, we found similar variance in all tasks (i.e., β values provide no additional informa-

tion). Further, we found little evidence for a systematic rotation of vector fields between tasks

(i.e., rotation angle θ of around zero). Thus, we will only report the correlation coefficients p.

Values of rotation angle θ and scale factor β can be found online at osf.io/b73u2. For all empir-

ical correlations 95% confidence intervals were calculated using nonparametric bootstrapping

[28].

Relation to temporal comparison and Stroop task. In order to test whether being a

‘timer’ in the Raindrops task (i.e., having a comparably high ωtime) is related to performance in

the non-magnitude temporal comparison task, ωtime parameters obtained from the different

Raindrops tasks were correlated with ωtime parameters obtained from the temporal compari-

son task.

The Stroop effect is calculated for each participant and is defined as the median reaction

time in the incongruent condition subtracted by the median reaction time in the congruent

condition. This score was correlated with ωnumber obtained in each version of the Raindrops

task, because ωnumber reflects the amount of interference in the time condition of the Rain-

drops tasks.

For all empirical correlations 95% confidence intervals were calculated using nonparamet-

ric bootstrapping.

Results

Stability of magnitude interference effects over time

For each condition in each of the Raindrops tasks we obtained ωtime and ωnumber as output of

the MLE procedure. These weights are estimates of how much temporal and numerical evi-

dence participants took into account when making a judgement on time (as reported here).

The estimated weights of each task can be regarded as vectors, with ωtime treated as the x-com-

ponent and ωnumber as the y-component. This way, a unique field of vectors is obtained for

each task (i.e., one vector for each participant in each task, see also Figs 3 and 4). We calculated

vector correlations to assess the relatedness of vector fields between Raindrops tasks performed

Robustness of individual differences in temporal interference effects
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in session one and in session two (i.e., Dynamic I versus Dynamic II and Static I/correlated

versus Static II/uncorrelated). We employed a vector correlation method advanced by Hanson,

Klink, Matsuura, Robeson, and Willmott [25], which was initially developed for the analysis of

geographic data, but has been applied to neuroscientific data, too (e.g., [26]). The output of

this vector correlation method comprises, among other parameters, the correlation coefficient

p, ranging from 0 (no correlation) to 1 (perfect correlation). Nonparametric bootstrapping

[28] was used to calculate 95% confidence intervals.

The empirical correlations between the Dynamic Raindrops task performed in session one

and two (p = .50, 95% CI [.29 .66]) and between the Static Raindrops task performed in session

one and two (p = .40, 95% CI [.22 .57]) are shown in Fig 3. In both tasks, a positive correlation

is found, suggesting relative stability of the ω-estimates over sessions.

Stability of magnitude interference effects over task

To test the stability of interference effects (quantified by the ω-estimates) over different tasks

vector correlations as described above were calculated. Here, we correlated ω-estimates

obtained from the Dynamic Raindrops tasks with those obtained from Static Raindrops tasks.

Notably, two of the correlations are based on tasks performed in the same session (i.e., Dynamic

I versus Static I and Dynamic II versus Static II), while the other two are based on tasks per-

formed in different sessions (i.e., Dynamic I versus Static II and Dynamic II versus Static I).

Results of empirical correlations are summarized in Fig 4. Tasks that were run in the same ses-

sion are correlated highly (Dynamic I—Static I: p = .57, 95% CI [.35 .75]; Dynamic II—Static II:

p = .68, 95% CI [.52 .80]). For tasks that were performed in different sessions, empirical correla-

tions are numerically lower, however, 95% confidence intervals are still far removed from zero

(Dynamic I—Static II: p = .49, 95% CI [.27 .68]; Dynamic II—Static I: p = .52, 95% CI [.36 .67]).

Comparison to performance in temporal comparison task

In order to have a similar performance measure in the temporal comparison task compared to

the Raindrops tasks, we calculated ωtime also for the temporal comparison task. For this
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Fig 3. Vector correlations assessing stability of interference effects over time. Vector fields show the composed ω-vectors (ωtime as x-

component and ωnumber as y-component) for each participant (i.e., each square, distribution is constant over all panels) and the grand

average (grey highlighted square). Correlations were computed between ω-vectors of session I and session II in the Dynamic Raindrops

task (left hand side) and in the Static Raindrops tasks (right hand side).

https://doi.org/10.1371/journal.pone.0202345.g003
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purpose, the model underlying the MLE procedure incorporated only ωtime. The ωtime parame-

ters obtained from the different Raindrops tasks were then correlated with ωtime parameters

obtained from the temporal comparison task. 95% confidence intervals were calculated for all

correlation coefficients by using nonparametric bootstrapping [28]. Fig 5 shows that all tested

pairs yield a high correlation (Dynamic I: r = .45, 95% CI [.13 .70]; Dynamic II: r = .66, 95% CI

[.45 .81]; Static I: r = .45, 95% CI [.15 .69]; Static II: r = .57, 95% CI [.36 .74]). Further, as all

95% confidence intervals do not contain zero, being a ‘timer’ in a magnitude interference tasks

(i.e., having a high ωtime), likely means being a ‘timer’ in other timing tasks without interfering

influences.

Comparison to performance in numerical Stroop task

The Stroop effect was calculated for each participant as the median reaction time in the incon-

gruent condition subtracted by the median reaction time in the congruent condition
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Fig 4. Vector correlations assessing stability of interference effects over tasks (and time). Vector fields show the composed ω-vectors

(ωtime as x-component and ωnumber as y-component) for each participant (i.e., each square, distribution is constant over all panels) and the

grand average (grey highlighted square). Correlations were computed between ω-vectors of different versions of the Raindrops task.

https://doi.org/10.1371/journal.pone.0202345.g004
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(M = 68.96 ms, 95% CI [54.17 83.76] ms). This score was then correlated with ωnumber as an

index of interference in the time condition of the Raindrops tasks. 95% confidence intervals

were calculated for all correlation coefficients by using nonparametric bootstrapping [28].

Results, visually summarized in Fig 6, show that correlations are very low and all 95% confi-

dence intervals contain zero (Dynamic I: r = -.05, 95% CI [-.30 .21]; Dynamic II: r = -.05, 95%

CI [-.30 .17]; Static I: r = .11, 95% CI [-.16 .38]; Static II: r = -.08, 95% CI [-.29 .14]). Thus, we

failed to find any evidence for, on the one hand, a relation between the degree to which inter-

fering information is incorporated in the Raindrops magnitude tasks, and the magnitude of

the numerical Stroop effect on the other.

Discussion

In the current study, we tested the reliability and stability of a MLE procedure that can poten-

tially serve as a tool to quantify the magnitude of interference effects between time and numer-

osity at the level of individual participants. Our results replicated earlier work in which we

found large individual differences in the magnitude of interference effects. That is, when asked

to make a judgement on the time dimension, some participants are influenced by task-irrele-

vant numerosity information more than others. Extending previous findings, we showed that

these individual differences are stable and robust over time and over similar, yet different task
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versions. This suggests that the ability to ignore or inhibit task-irrelevant information in mag-

nitude comparison tasks could be seen as a ‘stable trait’ or ‘psychological bias’ [29] within

participants.

To facilitate interpretation of our findings, we first want to explain in more detail how vec-

tor correlations can be interpreted and which possible advantages this procedure brings to the

field of cognitive neuroscience, before we discuss the results in more detail.

Interpretation of vector correlations

The calculation of vector correlations enables researchers to assess associations between sets of

two-dimensional data (i.e., vector fields). Vector correlations are rarely used in the field of neu-

roscience or cognitive psychology (but, see [26,27]). Yet, alternative measures of association

between multiple two-dimensional data-sets are suboptimal. For example, one could calculate

Pearson product-moment correlations or cross-correlations for each dimension separately.

However, in direct comparison vector correlations are superior to other correlation analyses

because they provide one unified correlation coefficient [27]. Alternatively, one could trans-

form the data to reduce two-dimensional to one-dimensional data. Critically, any such trans-

formation will result in information loss. For example, calculating vector length (or

magnitude) does not capture information about vector orientation (i.e., the angle between the

vector and the x-axis), and vice versa. Vector correlations, on the other hand, allow for one

unified correlation coefficient encapsulating all information available in the data. Fig 7 sum-

marizes the vector correlations (shown in black) observed in the current study.

Importantly, empirically determined correlations are known to be attenuated due to mea-

surement error [17]. Results of Monte Carlo simulations showed that the combination of the

number of trials per task (here 80) and the correlation between duration and numerosity

resulted in relatively high measurement error, and thus variability in the MLE-determined

weights for temporal and numerical information. In other words, the correlations between

MLE-determined weights, including test-retest reliabilities, are likely to be markedly weakened

by the diluting effects of measurement error. For this reason we have employed standard tech-

niques to correct these empirically estimated correlations for attenuation (e.g., [18,30,31]). In

short, we used estimated split-half reliabilities followed by application of the Spearman-Brown

prophecy formula to obtain empirical estimated reliabilities of individual parameters. These
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Fig 7. Summary of the main results. Empirical (black) and disattenuated (grey, where relevant) correlations between

sessions and versions of the Raindrops task, as well as the Numerical Stroop and Temporal Comparison task. (See

main text for additional details).
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estimated reliabilities were then used to compute disattenuated estimates of the various corre-

lations, shown in grey in Fig 7. Details of the computational procedure and relevant results are

available at osf.io/b73u2. Note that the two correlations with the numerical Stroop task could

not be corrected for attenuation because the estimated reliabilities of the two parameters

involved–the weight for numerosity information, ωnumber, and the size of the Stroop effect–

were too small to warrant such a correction. For the remaining correlations, the effect of the

correction for attenuation can be seen to be quite substantial. Because these corrected values

are more likely to reflect the “true” strength of associations, we will focus on these values in the

following discussion of the results.

Stability of magnitude interference effects over time

When re-tested after seven days in both the Dynamic and the Static version of the Raindrops

task (Dynamic I–Dynamic II and Static I–Static II), ML-estimates exhibited considerable test-

retest reliability (see Fig 7). It should be noted that the two versions of the Static Raindrops

task differed in the way the magnitude of the task-irrelevant dimension was sampled (using

restricted random sampling or random sampling): While during the first session the task-irrel-

evant magnitude was a limited predictor of the task-relevant magnitude (restricted random

sampling), it was not predictive during the second session (random sampling). That is, in the

Static Raindrops I task participants could have based their temporal judgements on numeros-

ity information and still perform reasonably well in the task. Importantly, irrespective of the

nature of the numerosity dimension (i.e., static/dynamic or correlated/uncorrelated), robust

test-retest correlations were observed.

Stability of magnitude interference effects over task versions

ML-estimates were also robust with regard to the different versions of the Raindrops task, irre-

spective of whether they were performed during the same or different sessions. ML-estimates

of tasks that were performed within the same session (Dynamic I–Static I and Dynamic II–

Static II) in fact yielded very high correlations, as shown in Fig 7. In light of previous findings,

the commonality between Dynamic and Static versions of the Raindrops tasks with regard to

the magnitude of interference as captured by ML-estimates is noteworthy for two reasons:

First, an often reported finding when using static numerosity-time comparison tasks is that

temporal judgements are influenced by task-irrelevant numerosity information, but not vice

versa ([3,7]; but see Javadi & Aichelburg [32], who found bidirectional interference effects). In

contrast, Lambrechts, Walsh and van Wassenhove [33] and Martin, Wiener and van Wassen-

hove [34] found that when time, space and number information are presented dynamically,

duration judgments are resilient to spatial and numerical interference, while time influences

judgments of the other two dimensions. In the current and in a previous study [15], we found

that direction and magnitude of interference effects in static and dynamic setups vary greatly

between participants, but are stable over task versions within participants. Given that both

findings have been replicated in independent studies, it is unlikely that these contrasting

results are driven by participant sampling even though the observed variability of ML-esti-

mates suggests that sampling effects might influence the outcomes of interference studies.

Even though the paradigms used are similar, drawing decisive conclusions is precluded by

small differences in the task setup. To resolve this paradox, future work should present both

paradigms in a within-subject design.

Second, it has been argued that experimentally testing interference effects is complicated by

the fact that manipulating one dimension will alter other stimulus dimensions, too (e.g., see

[35] for an extensive discussion for the case of automatically co-varying space, density, and/or
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surface when manipulating numerosity). In the case of time and numerosity, presenting

numerosity information dynamically over time introduces the additional dimension rate of

change or rate of sensory evidence accumulation [33,34], which can, if not controlled for, be

highly predictive of the task-relevant dimension. In the current study, we controlled the pre-

dictiveness of rate information by restricting which values or magnitude levels the task-rele-

vant and -irrelevant dimension could take on. However, theoretically, stimuli in the dynamic

version of the Raindrops task contain more predictive information than stimuli in the static

versions: both the task-irrelevant dimension as well as rate information is, to a certain degree,

predictive of the dimension to be judged. The current results show that ML-estimates captur-

ing interference effects are stable over dynamic and static versions of the Raindrops task, again

suggesting that mechanisms underlying interference effects may be considered as a stable trait,

and suggesting that rate did not influence participants’ judgements strongly.

In a way, the temporal comparison task can be regarded as a control task for time trials in

the Raindrops tasks, because stimuli contain no interfering numerosity information. The way

participants utilized temporal information in the most straight forward task (temporal com-

parison task) is predictive of how temporal information are utilized in the presence of interfer-

ing information (Raindrops tasks). It may seem striking that for some participants the ML-

estimate was close to zero, however, timing is a very noisy process in comparison to other mag-

nitude tasks (e.g., compared to number and length judgements [36]).

Generalizability to Stroop interference task

The ability to ignore or inhibit task-irrelevant information in any version of the Raindrops

task was not predictive of performance in a numerical Stroop task. An interpretation of these

“null” results is that magnitude interference effects adhere to different inhibitory control

mechanisms than Stroop-like interference effects: Interference effects in magnitude compari-

son tasks could be governed by bottom-up or stimulus-driven processes, while interference in

Stroop task could be driven more by top-down processes, given that the interfering informa-

tion first needs to be semantically parsed (i.e., the meaning of a digit or a color-word, see also

van Maanen, van Rijn and Borst [37], who argue that semantic interference effects are caused

by the same interference mechanism). Furthermore, Stroop-type interference has been found

to yield only moderate test-retest correlations and very limited parallel-test stability [17,21,22],

meaning that scores in Stroop task are relatively noisy and unstable, again indicating that one

should be careful drawing firm conclusions.

Conclusion

Especially for neuroimaging studies relying on task-setups that include a well matched com-

parison task (similar to the Raindrops tasks tested here), it is crucial to take into account that

1) participants exhibit interference effects and apparently do not only process task-relevant

information, and that 2) the magnitude of how much of the task-irrelevant information is used

in making a judgement differs between participants. Also for theoretical and computational

models explaining the processing of magnitudes (e.g., A Theory Of Magnitudes [38,39]; or

Bayesian approaches to quantify magnitude interference effects [34,40]) it is important to

know whether the magnitude of interference is a stable trait within participants, or whether it

can change over time or due to modified task designs. The here described MLE procedure

allows to account for these individual differences in behavior. We showed that the MLE proce-

dure is a reliable tool to quantify individual differences in temporal interference effects in

terms of test-retest and parallel-test reliability. How well participants can estimate time

and how much task-irrelevant information they take into account seems to be a stable
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characteristic within individuals. As patterns of individual differences in temporal magnitude

interference effects, here captured by vector correlations which take into account all available

information, are stable over time and over task versions, the methods presented here provide a

valuable addition to the toolkit of cognitive neuroscientists interested in studying the process-

ing of different stimulus dimensions.

While the here proposed MLE procedure is designed for quite specific experiments in

which stimuli vary in magnitude in two or more dimensions, we argue that, more generally,

our results emphasize the potential information gain from quantifying inter-individual differ-

ences [29,41] and highlight the importance of establishing reliability of parameters derived

from individual behavior or behavioral performance before their subsequent use in neuroim-

aging analyses.
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