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A B S T R A C T   

Background: Thalamic volume loss is a key marker of neurodegeneration in multiple sclerosis (MS). T2-FLAIR 
MRI is a common denominator in clinical routine MS imaging, but current methods for thalamic volumetry 
are not applicable to it. 
Objective: To develop and validate a robust algorithm to measure thalamic volume using clinical routine T2- 
FLAIR MRI. 
Methods: A dual-stage deep learning approach based on 3D U-net (DeepGRAI – Deep Gray Rating via Artificial 
Intelligence) was created and trained/validated/tested on 4,590 MRI exams (4288 2D-FLAIR, 302 3D-FLAIR) 
from 59 centers (80/10/10 train/validation/test split). As training/test targets, FIRST was used to generate 
thalamic masks from 3D T1 images. Masks were reviewed, corrected, and aligned into T2-FLAIR space. Addi
tional validation was performed to assess inter-scanner reliability (177 subjects at 1.5 T and 3 T within one week) 
and scan-rescan-reliability (5 subjects scanned, repositioned, and then re-scanned). A longitudinal dataset 
including assessment of disability and cognition was used to evaluate the predictive value of the approach. 
Results: DeepGRAI automatically quantified thalamic volume in approximately 7 s per case, and has been made 
publicly available. Accuracy on T2-FLAIR relative to 3D T1 FIRST was 99.4% (r = 0.94, p < 0.001,TPR = 93.0%, 
FPR = 0.3%). Inter-scanner error was 3.21%. Scan-rescan error with repositioning was 0.43%. DeepGRAI- 
derived thalamic volume was associated with disability (r = -0.427,p < 0.001) and cognition (r = -0.537,p <
0.001), and was a significant predictor of longitudinal cognitive decline (R2 

= 0.081, p = 0.024; comparatively, 
FIRST-derived volume was R2 = 0.080, p = 0.025). 
Conclusions: DeepGRAI provides fast, reliable, and clinically relevant thalamic volume measurement on multi
center clinical-quality T2-FLAIR images. This indicates potential for real-world thalamic volumetry, as well as 
quantification on legacy datasets without 3D T1 imaging.   

1. Introduction 

Multiple sclerosis (MS) is a chronic, autoimmune disease of the 
central nervous system (CNS) characterized by focal and diffuse 
inflammation and axonal loss. (Frohman et al., 2006). Over the past two 

decades, imaging biomarkers of lesion burden and longitudinal lesion 
activity have been a vital part of MS clinical management and clinical 
trials, and in the last decade, measurement of brain atrophy has been 
recognized as an equally important biomarker. 

More recently, the measurement of thalamic atrophy has emerged as 
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a potentially sensitive and specific means to measure neuro
degeneration, and has been shown to be highly related to both disability 
and cognition. (Houtchens et al., 2007; Batista et al., 2012; Minagar 
et al., 2013; Zivadinov et al., 2013b; Bergsland et al., 2016; Azevedo 
et al., 2018; Bisecco et al., 2019) Thalamic pathology has been shown in 
all MS disease types and has been suggested as an outcome in MS clinical 
trials because of its meaningful change, clinical relevance, early 
detectability, and clear delineation along its inner border. (Minagar 
et al., 2013; Zivadinov et al., 2016) A recent large multi-center study 
corroborated the clinical importance and neurodegenerative vulnera
bility of the thalamus in patients with MS (Eshaghi et al., 2018). Addi
tionally, the thalamic atrophy rate is consistent throughout the entire 
disease duration, making it a convenient MRI biomarker to be used in 
clinical and research monitoring of MS patients. (Minagar et al., 2013; 
Azevedo et al., 2018) 

However, despite its established value, quantitative assessment of 
thalamic atrophy is not part of standard clinical routine monitoring of 
MS patients, (Rovira et al., 2015; Zivadinov et al., 2016; Rocca et al., 
2017), nor is it widely applied to large, real-world clinical datasets. 
(Zivadinov et al., 2017, 2018) This is at least in part due to technical 
limitations. Although precise and reliable tools like FIRST (Patenaude 
et al., 2011), FreeSurfer (Fischl, 2012), and others are available to 
measure the thalamus, they are primarily applicable to 3D T1-weighted 
scans on stable scanners and protocols without hardware, software, or 
coil changes. Such image sets are common in research, but in many cases 
are not part of clinical routine, where scans often lack standardization of 
MRI parameters like repetition time, echo time, and acquisition matrix, 
and where frequent uncontrolled scanner upgrades further compound 
the problem. (Wattjes et al., 2015; Zivadinov et al., 2016, 2018; Rocca 
et al., 2017). Therefore, although thalamic atrophy measurement re
mains valuable and feasible for academic centers and clinics with tight 
control of their MRI acquisition, it leaves behind many other clinical 
centers and their datasets. 

This need is underscored by recent results from the Multiple Sclerosis 
and clinical outcome and MRI in the US (MS-MRIUS) study, a multi
center, observational, real-world investigation to assess brain MRI 
changes and disease progression in MS clinical that included ~ 600 
relapsing-remitting MS patients across 33 participating sites. The results 
confirmed that that nearly every clinical routine MRI exam (99.8%) 
included T2-fluid attenuated inversion recovery (FLAIR), but<80% of 
exams had two dimensional (2D)-T1, and<40% of exams had the type of 
three dimensional (3D)-T1 required for standard thalamic atrophy 
analysis. (Zivadinov et al., 2018) Furthermore, the MS-MRIUS study 
found that imaging hardware or software changed in 50% of longitu
dinal scans pairs, remained consistent in only 30%, and was unknown in 
15%. Based on this, a quantitative thalamic volume measurement tool 
capable of working on T2-FLAIR alone and robust to changes would 
greatly help the translation of thalamic volumetry to broader clinical 
research. Such a tool could potentially be provided by deep learning, 
using a domain transfer approach. 

Deep convolutional neural networks (CNNs), which operate hierar
chically like the human visual system and replace ad-hoc feature engi
neering with self-learning approaches, have enjoyed dramatic success 
when large amounts of training data are available, and have been 
transformative in the field of computer vision. (Rawat and Wang, 2017) 
These methods work by training a set of kernels, or filters, to respond to 
specific features in their input (much like the human visual system in
cludes separate set of neurons responding to horizontal or vertical lines). 
Conceptually, these kernels are then scanned across input images to 
create a set of filter-specific response maps (one for each filter). Initial 
filters’ inputs are connected directly to the input image, and later 
(hidden layer) kernels’ inputs are connected to the response maps from 
prior levels, allowing for a hierarchy of semantic understanding building 
from simple features up to complex object recognition roughly analo
gous to the ventral pathway in human vision. At each transition to the 
next kernel set (increasing depth, similar to higher-order neurons), the 

spatial resolution is generally traded away for better semantic under
standing. At earlier levels, the network “knows” relatively basic aspects 
about very specific points in space (e.g., “there is a horizontal edge at 
this specific voxel). At later levels, the network “knows” many more 
aspects (“features”) about broader areas of the input image (e.g., “there 
is a structure here with multiple vertical edges surrounded by a series of 
dark regions”). At the deepest levels, the network can recognize specific 
objects, with particular kernels responding to individual objects (such as 
thalami). 

Again like the human visual system, the correct functioning of these 
networks depends on the proper tuning of input weights (like synaptic 
potentiation) to ensure that filters (neurons) only respond when they 
ought to. Unlike the human brain, though, these networks can be trained 
in a direct, relatively straightforward manner via the method of back
propagation. In this process, many examples of input images are run 
through the network, and the actual network outputs are compared to 
known correct outputs. Deviations from correct output are computed, 
and the sources of these deviations are propagated back through the 
network to adjust individual filter input weightings in the direction (up 
or down) that improves the output. This is a slow process, usually 
requiring many training examples to avoid overfitting and very small 
adjustment steps (learning rate) to ensure convergence. Once trained, 
though, such networks are capable of making predictions on previously 
unseen input images. 

Going beyond just object recognition, CNNs with some modifica
tions, such as U-Net, are also capable of segmentation (or delineation) of 
image regions/objects, which can in turn be used for quantitative 
volumetry. These “semantic segmentation” approaches have demon
strated high performance in many medical imaging applications, in 
many cases improving accuracy or precision beyond the prior state of 
the art, or substantially improve speed. (Henschel et al., 2020) However, 
it is important to note that deep learning tools can have another appli
cation: allowing domain transfer of existing tools to new datasets. By 
training a deep learning system to replicate the output of an existing 
system while using only partial or inferior data, the current state of the 
art can potentially be transferred to this new input domain. 

Against this background, we sought to develop a semantic segmen
tation CNN architecture to transfer the current widely used and broadly 
validated FIRST thalamic segmentation on high-resolution 3D T1 scans 
to clinical routine T2-FLAIR MRI scans. The resulting tool, called 
DeepGRAI (Deep Gray Rating via Artificial Intelligence), can be readily 
used for real-world thalamic volume monitoring, as well as for quanti
fication on large legacy datasets lacking research-quality MRI. In 
particular, we targeted the method to be suitable for widespread use on 
heterogeneous datasets from multiple sites, scanners, and protocols by: 
1) developing a robust algorithm architecture, 2) training the classifier 
on a diverse dataset, 3) validating the results with independent test, 
clinical, scan-rescan, and inters-canner datasets, and 4) providing the 
classifier as an open and easily usable tool. Directly deployable docker 
images are available on DockerHub: https://hub.docker.com/r/buffalo 
neuroimaging/deepgrai. 

2. Methods 

2.1. Deep learning model architecture – DeepGRAI CNN 

Based on preliminary experiments and established performance, we 
adopted a 3D U-Net semantic segmentation architecture for DeepGRAI. 
(Çiçek et al., 2016) The U-Net architecture is composed of two sym
metric pathways – a descending contraction/encoding pathway which 
moves from low level voxel intensities at very high spatial resolution to 
abstract high-level features at coarse spatial resolution, and an 
ascending expansion/decoding pathway which moves from less local
ized high-level features to specific voxel classifications. Additionally, U- 
Net includes direct “skip” connections from the descending pathway 
into the ascending pathway, to provide the ascending pathway with low- 
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level image feature information. In the current context, the descending 
pathway is essentially responsible for localizing the thalamus, and the 
ascending pathway is responsible for determining its precise borders. 

One major issue with 3D U-Net processing is that it is computa
tionally expensive for biomedical imaging. Brain MRI images in partic
ular are generally on the order of 256x256x128 voxels. This leads to 
substantial limitations in GPU memory and potentially results in the 
need for training batch sizes of one. This has been addressed in many 
systems via a “pseudo-3D” approach, in which 3 2D classifiers are 
trained to separately segment axial, coronal, and sagittal slices. (Hen
schel et al., 2020) However, because the thalamus is a relatively small 
structure and because we sought to solve a single-label rather than 
multi-label problem, we sought to retain the benefits of a fully 3D 
approach. To accomplish this, we implemented a dual-stage architecture 
with a low-resolution stage and a high-resolution stage. The initial stage 
is designed to be responsible only for localizing the thalamus in order to 
provide a bounding box for the second stage and can therefore be trained 
independently to maximize resources and batch size. 

The precise architecture employed is illustrated in Fig. 1. Each of 
stages 1 and 2 are implemented as a 3D U-Net CNN in the PyTorch deep 
learning platform for tensor computation and automated gradient dif
ferentiation (https://pytorch.org), with an input size of 128x128x64. 
For stage 1, convolutional kernels are 3x3x3 in the spatial dimension, 
with the number of filters doubling at each network layer from 16 initial 
features to 256 features at 8x8x4 spatial resolution over 4 tiers of 
downsampling/upsampling operations. Stage 2 is identical except for 
the number of filters, which increase from 32 to 512. Non-linearities 
between layers are introduced via parametric rectified linear units 
(PReLUs), which are similar to traditional ReLUs but incorporate a 
small, trainable gradient in the non-active state to avoid “dying ReLUs” 
during training. (He et al., 2015) For the initial stage, the input image is 
downsampled to 2 mm isotropic voxels covering a physical volume of 
256x256x128 mm, and the network is used to identify the center of mass 
of the resulting low-resolution thalamic probability map. This output is 
used to confidently isolate and resample a 0.5 mm isotropic 
64x64x32mm volume of the original image centered on the thalamus, 
which is then fed into the final segmentation stage. This stage (stage 2) 
produces a probabilistic segmentation map of the thalamus that can be 
directly used for volumetry and/or additional analysis. The medical 
open network for AI (MONAI) framework was used for implementation 
to improve reproducibility and extendibility (https://monai.io/). 

2.2. Model training 

2.2.1. Training data augmentation 
Because we sought to use a fully 3D architecture, each source image 

could only contribute one training case (in contrast to patch-based or 

slice-based methods, which can contribute many semi-independent 
training samples per subject). Therefore, to improve the robustness of 
the training described below, a number of data augmentation steps were 
employed to procedurally expand the training set. (Shorten and 
Khoshgoftaar, 2019) The specific transformations we applied were: 
random lateral flips along the left–right axis, small random translations 
along all three axes, small random rotations around all three axes, small 
random gamma and logarithmic intensity transforms, minor corruption 
with independent Gaussian noise. For stage two, in order to reduce the 
dependence on the exact field of view localized from stage one, we also 
included an additional intermediate augmentation randomizing the 
cropping location by approximately 1.5 cm in each direction. 

2.2.2. Training procedure 
Training was performed on an in-house AI GPU server machine with 

dual NVidia Titan XP GPUs (3,840 parallel CUDA cores and 16 GB on- 
board RAM per GPU), 128 GB RAM, and dual 10-core Intel Core i9 
3.3 GHz CPUs. Each model stage was trained for 500 epochs on the 
training dataset (described below). Xavier initialization (Glorot and 
Bengio, 2010) was used to set random initial model weights based on 
number of inputs/outputs, in order to avoid early saturation. Weights 
were updated using the Adam optimizer (Kingma and Ba, 2017), which 
tracks the first and second moments of each individual parameter, and 
adapts the global learning rate to that specific parameter. An initial 
learning rate of 1.0e-4 was used, with exponential weight decay 
parameter of 1.0e-7. Additionally, to prevent stagnation, an adaptive 
method to reduce the learning rate by a factor of two on learning pla
teaus was employed (PyTorch’s ReduceLROnPlateau). For all stages, a 
batch size of 16 was used. As described above, each stage was trained 
independently. The loss function used was soft Dice. This computes the 
loss as the intersection of the proposed and target volumes over their 
union, while preserving smooth gradients to allow differentiability and 
backpropagation learning during the training phase. (Fidon et al., 2018). 
During training, the validation set (described below) was used to opti
mize training hyperparameters and to refine the model architecture. 

2.2.3. Datasets and analyses 
For this study, a number of de-identified, retrospective datasets were 

used. Demographic and clinical characteristics of the different datasets 
used in the study are reported in Table 1, while the MRI acquisition 
characteristics of these datasets are reported in the Table 2. The Insti
tutional Review Board of the University of Buffalo approved the use of 
all multi-center de-identified datasets. 

2.2.4. Training/validation/testing with target segmentations/volumes 
As the goal of this work was to produce a robust segmentation tool, 

the primary dataset we used for training, validation, and testing of the 

Fig. 1. Proposed 3D U-Net DeepGRAI architecture. Our final model employed two semi-independent convolutional neural network (CNN) stages, each based on the 
3D U-Net architecture shown here. Each of the two stages differs only in number of filters, with stage 2 having twice the filters of stage 1 (e.g., 16 / 32 in the figure 
incidates 16 filters in stage 1 and 32 filters in stage 2. 
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DeepGRAI model was assembled from multiple centers, scanner field 
strengths, and imaging protocols. This was a multi-spectral dataset 
consisting of 3D T1w images and 2D low-resolution T2-FLAIR images 
from 54 MRI scanners, 1,463 subjects, and 4,288 MRI exams. Because 
3D-FLAIR is becoming more widely used (including as a recommenda
tion of the MAGNIMS group - (Rovira et al., 2015)), we also included an 

additional 302 exams with 3D-FLAIR from 209 subjects across 5 scan
ners, bringing the total to 59 MRI scanners, 1,672 subjects, and 4,590 
MRI exams. The included cases covered a broad range of acquisition 
types from different acquisition protocols, anatomical variants, and 
thalamic atrophy levels, as shown in Tables 1-2 and Fig. 2. Fig. 3 dis
plays a representative sample of the diversity of image contrasts and 

Table 1 
Demographic and clinical characteristics of four different datasets used for the various analyses.  

Demographic and clinical 
characteristics 

Training/validation/testing MS datasets (n =
1,672) 

Scan rescan dataset MS 
HC (n = 3) (n = 2) 

Inter-scanner dataset MS 
HC (n = 125) (n = 52) 

Clinical MS dataset (n =
49) 

Number of females, n (%) 1174 (71) 2 (66.7) 2 (100) 90 (72) 36 (69.2) 37 (77.8) 
Age in years, mean (SD) 41.2 (13.8) 32 (9.2) 30 (1.8) 42.9 (11.5) 39.5 

(9.4) 
30.7 (7.9) 

Disease duration in years, mean (SD) 12.3 (13.2) 6.8 (9.3) NA 11.4 (9.8) NA 4.9 (5.2) 
EDSS, median (IQR) 2.5 (1.0–6.0) 1.5 (0) NA 2.5 

(2.0–4.5) 
NA 2.0 (1.5–5.0) 

Disease subtype, mean (SD) 
RR 
SP 
PP  

923 (55.2) 
507 (30.3) 
242 (14.5)  

3 (100)  NA  77 (61.6) 
35 (28) 
13 (10.4)  

NA  36 (73.4) 
13 (26.6) 
0 (0) 

T2 lesion volume, mean (SD) 14.1 (17.5) 7.2 (2.1) 0 (0) 12.3 (12.5) 0.2 (0) 14.4 (17.2) 
DeepGRAI volume, mean (SD) 14.0 (1.6) 15.6 

(1.5) 
16.9 
(1.2) 

13.2 (2.1) 15.9 
(1.5) 

14.1 (2) 

FIRST volume, mean (SD) 14.4 (1.8) 15.7 
(1.4) 

17.1 (1) 13.0 (2) 16.0 
(1.4) 

14 (2.1) 

Legend: MS – multiple sclerosis; HC – healthy controls; SD – standard deviation; NA – not available; EDSS – Expanded Disability Status Scale; IQR-interquartile range; 
RR – relapsing-remitting; SP – secondary progressive; PP – primary progressive. 
The volumes are expressed in milliliters. 

Table 2 
T2-FLAIR MRI characteristics of the datasets used for analyses.  

Number of scanners Training/validation/testing MS dataset (n 
= 4,590) 

Scan rescan dataset (n 
= 5) 

Inter-scanner dataset (n = 177) Clinical MS dataset (n 
= 49) 

2D FLAIR (n =
4288) 

3D FLAIR (n =
302) 

54 5 1 2 1 

TR, mean (SD) ms 8631.5 (2336.3) 4825.0 (1733.6) 8500.0 (0.0) 8002.0 (0.0) 8500.0 (0.0) 11000.0(0.0) 
TE, mean (SD) ms 124.9 (68.5) 368.2 (93.5) 122.0 (0.15) 61.0 (0.12) 122.0 (0.15) 140.0 (0.0) 
TI, mean (SD), ms 2167.9 (432.6) 1682.3 (337.8) 2100.0 (0) 2000.0 (0) 2100.0 (0) 2600.0 (0.0) 
Slice thickness mean (SD), [min 

max], mm 
3.3 (1.12) [1.0 
6.0] 

1.28 (0.8) [1.0 2.0] 3.0 (0.0) [3.0 3.0] 3.0 (0.0) [3.0 3.0] 3.0 (0.0) [3.0 3.0] 3.0 (0.0) [3.0 3.0] 

Axial n (%) / Sagittal n (%) 89 (82%) / 20 
(18%) 

236 (78%) / 66 
(22%) 

12 (100%) / 0 (0%) 201 (100%) / 
0 (0%) 

201 (100%) / 
0 (0%) 

1725 (100%) / 0 (0%) 

Legend: MS – multiple sclerosis; SD – standard deviation; TR-repetition time; TE-echo time; TI-inversion time; mm-millimeters; ms-milliseconds. 

Fig. 2. Histogram of thalamic volumes (in ml) from the training and testing dataset.  
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thalamic atrophy levels. To determine ground truth for both training and 
testing, we began by applying FMRIB’s Integrated Registration and 
Segmentation Tool (FIRST) deep GM segmentation tool (Patenaude 
et al., 2011) to create thalamic initial maps on inpainted 3D T1w images. 
Inpainting was performed based on co-registration of previously created 
T2 lesion maps, and used an in-house tool similar to that in FSL’s toolkit 
(Zivadinov et al., 2013a; Popescu et al., 2014). Because FIRST itself can 
result in segmentation errors on broad subsets of images, despite its 
common application in the field, we also conducted manual correction 
of cases by trained operators. This involved correction of common errors 
such as third ventricular inclusion, fornix, cavum septum pellucidum, 
lateral ventricles, and corpus callosum, as recently reported. (Lyman 
et al., 2020) After correction, we co-registered the 3D T1w images to the 
individual subjects’ T2-FLAIR images. This was performed using 6 de
gree of freedom (rigid body) alignment with FSL’s FLIRT tool. The 
resulting transform matrices were then used to bring the thalamic seg
mentation maps into the T2-FLAIR space. 

After creation, this dataset was split into training (approx. 80%), 
validation (approx. 10%), and testing (approx. 10%) sets. Splitting was 
stratified at the site level, such that training, validation, and test sets did 
not have overlapping site data. Actual training was conducted on the 
training set. Model performance was regularly checked against the 
validation set, and the results used to inform selection of 

hyperparameters. The final testing dataset was held out entirely and 
used to assess the performance of the final model, as described below. 

2.3. Statistical analyses and validation measures 

2.3.1. Accuracy and agreement with manually corrected FIRST-derived 
volumes 

Accuracy with respect to “ground truth” segmentation (FIRST with 
potential corrections) was assessed on the 10% of the main dataset that 
was fully withheld (459 exams from 13 scanners) (Tables 1 and 2). 
DeepGRAI was run independently on the corresponding T2-FLAIR im
ages of this validation dataset, and the resulting automated volumes 
were compared to the manually corrected volumes obtained using FIRST 
on 3D T1w images. Association between DeepGRAI and FIRST was 
assessed by accuracy, true positive rate (TPR), false positive rate (FPR), 
coefficient of variation (CoV), pairwise correlation, Dice coefficient, 
Hausdorff distance (maximum shortest distance between the two seg
mentation borders), and symmetric surface distance (average shortest 
distance between the two segmentation borders). We also employed 
Bland-Altmann plotting to identify and correct systematic or data- 
specific biases. For test cases with multiple timepoints (n = 131), cor
relation between the two methods’ longitudinal change measures was 
assessed via Pearson correlation. 

Fig. 3. Representative samples of the wide variety of underlying T2-FLAIR contrasts in real-world MRI acquisitions, as well as the broad range of thalamic atrophy 
levels in multiple sclerosis. Aligned FIRST segmentations derived from 3D T1-weighted images overlaid in red outlines. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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2.3.2. Precision via scan-rescan 
To assess precision, we used a previously collected dataset of scan 

and rescan sessions on the same 3.0 T GE Signa Excite HD 12.0 Twin 
Speed 8-channel scanner. An internal dataset of MS (n = 3) and healthy 
control (n = 2) subjects scanned, repositioned, and then re-scanned over 
one week was employed. (Di Perri et al., 2009; Dwyer et al., 2017) These 
subjects had substantial positional changes between imaging sessions, 
reflecting real-world levels of consistency in positioning for clinical 
scans. Both 3D T1w images and 2D low-resolution T2-FLAIR images 
were acquired in each scanning session. For this scan-rescan dataset, 
DeepGRAI was run on each scan for each subject. The relationship was 
assessed by pairwise correlation and by coefficient of variation (CoV) 
analysis. 

2.3.3. Interscanner stability 
To assess inter-scanner stability, a previously collected dataset con

sisting of 125 MS patients and 52 healthy controls scanned at both 1.5 T 
and 3 T was used. (Di Perri et al., 2009; Dwyer et al., 2017) All subjects 
were examined on both scanners within one week, and the order in 
which subjects were scanned was randomized. The scanners used were a 
1.5 T GE Signa Excite HD 12.0 8-channel scanner and a 3 T GE Signa 
Excite HD 12.0 Twin Speed 8-channel scanner (General Electric Mil
waukee, WI). 3D T1w images and 2D low-resolution T2-FLAIR images 
were acquired in each scanning session. Sequences were not identical 
between the two scanners, but rather reflected optimizations for the 
specific field strengths as would be seen in clinical practice. As with the 
scan-rescan dataset, DeepGRAI was run on both scans for each subject, 
and association was again assessed by pairwise correlation and by CoV. 

2.3.4. Clinical relevance 
Finally, because we were interested in clinical relevance in terms of 

both disability and cognition, as well as predictive value of DeepGRAI, a 
longitudinal dataset including Expanded Disability Status Scale (EDSS) 
and cognitive processing speed (Symbol Digit Modalities Test, SDMT) 
(Smith, 1982) at baseline and 5-year follow-up was employed in 49 MS 
patients. (Fuchs et al., 2019) High-resolution 3D T1w images and 2D 

low-resolution T2-FLAIR images were acquired in each scanning session. 
FIRST and DeepGRAI were run on each scan (on 3D T1w and T2-FLAIR, 
respectively) for each subject and the correlations between clinical and 
MRI measures were explored with Pearson correlation. Associations 
with clinical and MRI measures over time were tested via age- and sex- 
adjusted linear regression. 

2.3.5. Statistics 
All statistical analyses were carried out either directly in Python/ 

PyTorch or in R version 4.0.3. (R Development Core Team, 2019). Direct 
imaging measures (accuracy, TPR, FPR, Dice, Hausdorff distance, and 
symmetric surface distance) were assessed using the relevant Python 
functions provided by the scikit-learn package (https://scikit-learn.org, 
version 0.24) or the metrics sub-package of the MONAI toolkit (https:// 
monai.io/, version 0.4.0). Correlations, CoVs, and linear regression 
models were undertaken in R. Results were considered significant at p <
0.05. 

2.4. Packaging of the classifier as an easily usable tool for real-world data 

We undertook a number of steps to remove barriers to the use of the 
proposed DeepGRAI software. Commonly, implementation of advanced 
machine learning software requires a highly specialized physical envi
ronment, specific software libraries, and complex pre-processing and 
processing pipelines. To address this, we took advantage of modern 
containerization approaches to develop a deployable Docker image. 
Specifically, we built a container image that includes an entire python 
platform, CUDA runtime for both CPU and GPU, and can be easily and 
transparently implemented on different underlying hardware solutions 
(Linux/MacOS/Windows), as diagramed in Fig. 4. Instructions for use of 
the tool are available at https://hub.docker.com/r/buffaloneuroimag 
ing/deepgrai. 

Fig. 4. DeepGRAI containerized architecture. The DeepGRAI application software is placed into a system-agnostic container image that includes all needed version of 
all libraries and supporting software. This dramatically improves deployability. 
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3. Results 

3.1. Accuracy on independent testing dataset 

The DeepGRAI algorithm trained successfully, rapidly learning to 
recognize the thalamus in the first 50 epochs and then refining the 
delineation during later epochs. It successfully delineated the thalamus 
on a wide variety of cases and no visual failures were assessed (Table 1). 
The algorithm performed well even in cases with extreme lesion load, 
levels of atrophy or corruption by MRI artifacts (Fig. 6). On the com
bined independent testing dataset (both 2D and 3D FLAIR), no cases 
failed visual quality control (Table 1 and Figs. 5 and 6). Agreement 
between corrected FIRST and DeepGRAI was very high. Accuracy rela
tive to FIRST on 3D T1w images was 99.4% (r = 0.94, p < 0.001), as 
shown in Fig. 7. Mean Dice was 93.6%, TPR was 93.0%, FPR was 0.26%, 
Hausdorff distance was 2.4 mm, and symmetric surface distance was 
0.47 mm. In the 3D-FLAIR-only subset of the testing data (n = 31), ac
curacy relative to FIRST on 3D T1w images was 99.4% (r = 0.92, p <
0.001). Mean Dice was 93.5%, TPR was 92.3%, FPR was 0.25%, Haus
dorff distance was 2.4 mm, and symmetric surface distance was 0.49 
mm. Bland-Altmann plotting did not reveal significant biases (Fig. 8). 
Correlation between baseline-to-followup DeepGRAI change and FIRST 
change was r = 0.38, p < 0.001. In the independent clinical validation 
dataset, longitudinal correlation between the measures was r = 0.244, p 
< 0.001. 

3.2. Scan-rescan reliability 

The algorithm did not fail in any cases. Scan-rescan CoV error with 
repositioning was 0.43%., This is below values previously reported for 
FIRST scan-rescan performance (Morey et al., 2010), and very similar to 
the FIRST data on the same exams’ T1 images (0.40%). 

3.3. Inter-scanner stability 

The algorithm did not fail in any cases. Inter-scanner CoV error over 
one week was 3.21%. Comparatively, FIRST inter-scanner CoV on the 
same scans was 3.12%. 

3.4. Clinical relevance 

We evaluated correlations between FIRST, DeepGRAI, EDSS, and 
SDMT (Fig. 9). The algorithm did not fail in any cases (Table 1). 

We found that DeepGRAI-derived thalamic volume was significantly 
correlated with EDSS (r = -0.43, p < 0.01) and SDMT (r = 0.54, p <
0.01). Correlations were almost exactly in line with FIRST as assessed on 
3D T1w images (r = -0.44, p < 0.01 for EDSS and r = 0.55, p < 0.01 for 
SDMT). 

Furthermore, baseline DeepGRAI thalamic volume, controlling for 
age and sex, was also a significant predictor of longitudinal SDMT 
decline over a 5-year follow-up period (R2 = 0.081, p = 0.023; 
comparatively, FIRST was R2 = 0.080, p = 0.025) (Fig. 9). No significant 
correlations were detected between absolute EDSS changes and baseline 
thalamic volumetry measures for either DeepGRAI or FIRST. However, 
DeepGRAI change from baseline to follow-up was significantly associ
ated with EDSS change (r = -0.275, p < 0.001). 

3.5. Applicability in real-world setting 

We have tested this architecture on both GPU and CPU enabled 
machines with different operating systems. On a standard GPU-enabled 
system, runtime was approximately 7 s per case. On commodity hard
ware with no GPU (2.8 GHz dual core Intel Core i7, 16 GB RAM), run
time was approximately 19 s. 

Fig. 5. Visualization of the three worst (left) and three best (right) segmentations in the held-out test dataset (scans from untrained sites). For each figure, left panel 
is the raw T2-FLAIR image, middle panel shows the target FIRST segmentation in red, and right panel shows the resulting DeepGRAI segmentation. Dice scores for the 
worst cases were 85.9%, 86.6%, and 87.0% from top to bottom, and Dice scores for the best cases were 96.2%, 96.2%, and 96.3% from top to bottom. Average Dice 
across all 459 test cases was 93.6%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

Quantitative metrics of neuroinflammation and neurodegeneration 
have played a vital role in our understanding of MS and have become a 
key component in clinical treatment trials. (Wattjes et al., 2015; Ziva
dinov et al., 2016; Rocca et al., 2017) GM atrophy, and thalamic atrophy 

in particular, have been shown to be strong predictors of disability and 
cognition. (Houtchens et al., 2007; Batista et al., 2012; Minagar et al., 
2013; Zivadinov et al., 2013b; Azevedo et al., 2018; Eshaghi et al., 
2018). However, most approaches to measurement have focused on 
research-quality MRI, leaving a potential gap for reliable measurement 
on clinical-quality scans. In particular, reliable measures of gray matter 

Fig. 6. Results of DeepGRAI segmentaion algorithm on cases with very high (left, thalamic volume 9.7 ml) and low (right, thalamic volume 15.9 ml) levels of 
atrophy. The classifier performs well in both cases despite substantial differences in brain morphology and lesion load, as well as different image contrasts. 

Fig. 7. Agreement / predictive value of DeepGRAI as compared to FIRST, as visualized on the independent validation dataset (n = 459 exams) comprised of het
erogeneous T2-FLAIR and 3D T1w images from many individual scanners and MRI protocols. 
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atrophy applicable to conventional T2-FLAIR images would be benefi
cial. In this study, we developed and validated a fully automated deep 
learning semantic segmentation tool to address this need. 

The CNN architecture of DeepGRAI was substantially improved via a 
number of pre-planned and/or experimentally motivated implementa
tion changes. We incorporated methods such as pseudo-Dice cost func
tion, (Kleesiek et al., 2016) Xavier weight initialization, leaky ReLUs, 
(Szulczynski et al., 2018) bounding box restriction, and learning rate 
decay. We also added multi-scale iterative analysis and adaptive Adam 
optimization. We also included a number of data augmentations to help 
the trained network generalize as much as possible to new and unseen 
image acquisitions and scanner variations. 

To assess the overall accuracy of our network’s segmentation quality, 
we compared it to the previously obtained “gold-standard” volumes 
output by FSL’s FIRST software that was run on 3D T1w images from the 
same exam sessions. Overall agreement with FIRST was excellent as 
shown in Figs. 7, 8, and 9. Qualitatively, the approach was also able to 
handle both low and high atrophy cases, displaying robustness to a wide 
variety of morphological variants, as shown in Fig. 6. Taken together, 
these results demonstrate that the proposed architecture is capable of 
detecting, localizing, and quantifying the thalamus similarly to the 
performance of FIRST as applied to 3D T1w images, while using only 
low-resolution T2-FLAIR images as input. Furthermore, robustness of 
DeepGRAI to highly heterogeneous and multi-center data was 
confirmed. We also confirmed that the algorithm performs equally well 
on 3D-FLAIR images, which are becoming more popular due to manu
facturer improvements and recent consensus recommendations (Rovira 
et al., 2015). It is important to note that the goal of this work was not to 
outperform FIRST or other current state of the art techniques, but rather 
to transfer the capability for reliable thalamic segmentation from the 
domain of 3D T1-weighted sequences to the domain of clinical quality 
T2-FLAIR scans. Based on the results obtained, this appears to be 
achievable despite the lower resolution of T2-FLAIR scans used in this 
study. 

In addition to the primary outcome of overall segmentation accu
racy, we assessed a number of areas related to real-world clinical data. 
These included scan-rescan and inter-scanner reliability (because many 
clinical scans are not consistently on the same scanner/protocol. First, a 
separate dataset of 177 subjects scanned at both 1.5 T and 3 T within one 
week was evaluated to determine inter-scanner reliability. The observed 
changes are very similar to those for FIRST on the same exams, and in 
line with previous observations for 3D T1w imaging analysis with SIE
NAX of approximately 3.4%. (Chu et al., 2016) Then, another dataset of 
subjects scanned, repositioned, and then re-scanned (n = 5) was used to 
evaluate scan-rescan reliability. These experiments showed that 

agreement of DeepGRAI (using low-resolution T2-FLAIR MRI) with a 
widely used and broadly validated method (FIRST, on 3D T1w MRI) is 
comparable to the reproducibility of that method itself on scan-rescan 
and inter-scanner data (2–3%). 

To test external validity and to ensure that any seemingly-random 
small deviations from FIRST did not systematically change clinical/ 
cognitive relationships, we also directly assessed DeepGRAI’s relation
ships to EDSS and SDMT. Results were very closely in line with those of 
FIRST on 3D T1w images. Additionally, they agree with extant data in 
the literature exploring thalamic volumetry. Houtchens et al. previously 
reported a relationship of r = -0.316 (p = 0.005) between thalamic 
volume and EDSS (Houtchens et al., 2007), compared to r = -0.427 (p <
0.01) here. Similarly, they reported a relationship of r = 0.658 (p <
0.001) for between thalamic volumtery and SDMT, compared to r =
0.537 (p < 0.01) here. In a later study, Batista et al. found analogous 
results, reporting a correlation between thalamic volume and SDMT of r 
= 0.543 (p < 0.001). (Batista et al., 2012) More broadly, Schoonheim 
et al. investigated the relationship between thalamic volume and overall 
cognition across domains, reporting a relationship of r = 0.551 (p <
0.001). Finally, relevance of DeepGRAI was confirmed longitudinally, as 
both DeepGRAI and FIRST similarly predicted cognitive decline over 5 
years. Taken together, these results and broader context confirm that 
deep learning based thalamic volumetry on clinical routine T2-FLAIR is 
as relevant for cognitive and disability outcomes as traditional thalamic 
volumetry. This may be particularly important as thalamic atrophy has 
recently been shown to be a potentially modifiable outcome in clinical 
trials of newer disease modifying therapies. (Gaetano et al., 2018; Comi 
et al., 2019) 

We chose to use deep learning semantic segmentation for this 
problem for a number of reasons. Semantic segmentation is a particular 
subset of deep-learning, concerned with the progression from coarse to 
fine inference and moving from localization / detection to complete 
delineation. (Long et al., 2015) In the field of medical imaging, it has 
already proven successful in providing fast, robust, and accurate label
ing of voxels in a number of modalities and target organs. (Kamnitsas 
et al., 2017; Huang et al., 2018; Zhang et al., 2019). In our particular 
case, we implemented DeepGRAI as a fully convolutional feed-forward 
U-net neural network architecture. Such a network can incorporate 
substantial information to be more robust than traditional algorithmic 
approaches. This is of particular importance in a real-world setting. 
Real-world T2-FLAIR MRI acquisitions display a wide range of contrast 
characteristics, with background tissue weighting ranging from highly 
T2w to only marginally T2w. Furthermore, depending on the balance of 
inversion time with other MRI protocol parameters, the fluid attenua
tion (the “FLA ” in FLAIR) ranges from nearly complete to minimal, with 

Fig. 8. Bland-Altman plot evaluating agreement between FIRST and DeepGRAI as a function of thalamic volume. No significant systematic biases are noted.  
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fluid nearly isointense with tissue in some of the worst cases (Fig. 3, 
column 2, row 2). This dramatic variation in real-world contrast from 
the “ideal” FLAIR (highly T2w with perfectly suppressed cerebrospinal 
fluid) can result in many issues for classical, non-AI approaches. 

We also chose to use the thalamus in this work for a number of 
reasons, both clinical and pragmatic. From a neuroanatomical 
perspective, the thalamus is a central relay station both to and within 
many brain circuits, and is therefore likely to be impacted by many el
ements of MS pathology. From a clinical perspective, thalamic atrophy’s 
roughly constant rate and very early involvement in MS have already led 
to its proposal as an important biomarker. (Azevedo et al., 2018) 
Empirically, it also strongly correlates with many key outcomes. (Min
agar et al., 2013) From a pragmatic perspective, the thalamus is also an 
excellent target for segmentation on lower-resolution clinical-quality 

T2-FLAIR scans. It is a central structure, making it unlikely to be cut off 
or affected by artifact, as well as less susceptible to distortion due to its 
nearness to the magnet isocenter when scanning. It is also a topologi
cally simple structure with a high volume-to-surface ratio, unlike the 
highly convoluted cortex, making it more amenable to accurate inter
polation and inference in a low-resolution setting. Finally, although its 
lateral borders are not always fully distinct, its inner edges, bordering on 
ventricular CSF, are high contrast on most imaging modalities, including 
T2-FLAIR, reducing potential for error in measurement. 

This is certainly not the first work to use deep learning for neuro
imaging segmentation. Other tools have been proposed for brain 
extraction, tissue segmentation, and lesion identification. In many cases 
– and for lesions in particular – these AI methods have substantially 
outperformed more classical methods. In particular, the recently 

Fig. 9. Pair-wise plot matrix for the key outcomes from the clinical validation dataset. Legend: EDSS-Expanded Disability Status Scale; SDMT-Symbol Digit Mo
dalities Test; MS-multiple sclerosis. 
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described FastSurfer approach even includes thalamic segmentation. 
(Henschel et al., 2020) However, unlike the current work, relevant ap
proaches to structural parcellation and volumetric measurement focus 
on 3D T1 images as their input domain, and on improvements in accu
racy or speed rather than translation to a different input domain. As 
such, while the current study is useful in itself, it also confirms the 
feasibility of a more general method for “converting” classical ap
proaches on research-quality images to similar outcomes on clinical 
routine images. To accomplish this, future studies would similarly 
require a dataset with both research-quality and clinical-quality scans, 
with which they could then apply classical techniques to create masks 
and/or outcomes on research quality scans, and then use convolutional 
neural network architectures for domain transfer to clinical routine 
images via co-registration and independent input training. 

Although this study does strongly support the feasibility of AI-based 
thalamic volumetry on clinical routine T2-FLAIR images, there are a 
number of important limitations that should be considered. Perhaps 
most importantly, as with many other segmentation datasets, our 
“ground truth” for training and evaluation was based on algorithmic 
outputs and visual inspection (FIRST plus manual review and correc
tions) rather than on histopathological ground truth. Even on high- 
resolution, research-quality 3D T1 imaging, the lateral borders of the 
thalamus are not always perfectly clear. Although sites and subjects 
were kept in separate training/testing/validation/splits, no other at
tempts were made to statistically handle the relatedness of the data for 
training (e.g., by de-weighting repeated subjects). We felt it better to 
include as many cases as possible rather than reduce to one scan per 
subject, given the known dependence of deep learning approaches on 
large datasets. Similarly, the dataset was a convenience sample 
including as many cases as possible, and although the data appears 
representative, no particular a priori balancing criteria were employed. 
Again, we felt that this was a reasonable approach to maximize the 
training set. Another potential issue is the homogeneity of our supple
mentary validation datasets. Although the training/testing dataset 
spanned across many different scanners and was likely very represen
tative, the other validation datasets (scan/rescan, inter-scanner, and 
cognitive) were based on available data at our center. Ideally, such 
datasets would also span numerous scanners and centers. This is difficult 
in practice, but some initial attempts have been made (Oh et al., 2018), 
and such datasets could be used in future work like this to more robustly 
validate such secondary outcomes. A further limitation is that our data 
augmentation methods were based on commonly used approaches, but 
were certainly not exhaustive. In particular, the methods we used 
heavily expand the intensity and positioning domains (scanning-related 
factors), but with the exception of left–right flips they do not substan
tially expand the anatomical domain. We believe this is reasonable given 
the much larger variety of individual subjects included in our data as 
compared to scanners, but additional affine and/or warping-based 
augmentations might be helpful in future work. Also, it is important to 
note that our resampling approach cannot create data de novo that was 
not originally acquired. As such, the intent is not necessarily to produce 
a better image at 0.5 mm isotropic, but rather to allow the network to 
better capture partial volume and to not lose resolution from acquisi
tions with highly anisotropic voxels. Future work might exploit modern 
super-resolution techniques, though, to more completely take advantage 
of the inherent smoothness of the thalamus. Another limitation of the 
current work is the longitudinal agreement between FIRST and Deep
GRAI. Although we did find highly significant associations in change 
measures over time in both the testing and clinical validation datasets, 
the magnitude of the associations was more modest than for cross- 
sectional data. This is likely due to insufficient follow-up time and/or 
relative neurodegenerative stability in the studied group of subjects (i.e., 
minimal actual changes to find agreement for), but it does deserve future 
study in more longitudinally-targeted datasets. Finally, an important 
limitation is that our approach suffers from a common concern with 
deep learning approaches – namely, the “black-box” nature of its 

selection process. 
In conclusion, our study shows that thalamic volumetry on clinical 

routine images via deep learning is both possible and feasible. Our al
gorithm was able to successfully learn how to identify and quantify the 
thalamus on low-resolution T2-FLAIR images, and the resulting data was 
strongly related to both conventionally measured thalamic volume and 
to cognitive outcomes in MS. The system was packaged as a widely 
deployable, freely available tool via containerization technology (http 
s://hub.docker.com/r/buffaloneuroimaging/deepgrai), and can be 
easily used by others for broader clinical research on real-world 
datasets. 
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