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Whole-genome sequencing (WGS) enables the molecular characterization of 

bacterial pathogens. We compared the accuracy of the Illumina and Oxford 

Nanopore Technologies (ONT) sequencing platforms for the determination of 

AMR classes and antimicrobial susceptibility testing (AST) among 181 clinical 

Enterobacteriaceae isolates. Sequencing reads for each isolate were uploaded 

to AREScloud (Ares Genetics) to determine the presence of AMR markers and 

the predicted WGS-AST profile. The profiles of both sequencing platforms 

were compared to broth microdilution (BMD) AST. Isolates were delineated 

by resistance to third-generation cephalosporins and carbapenems as well as 

the presence of AMR markers to determine clinically relevant AMR classes. The 

overall categorical agreement (CA) was 90% (Illumina) and 88% (ONT) across 

all antimicrobials, 96% for the prediction of resistance to third-generation 

cephalosporins for both platforms, and 94% (Illumina) and 91% (ONT) for 

the prediction of resistance to carbapenems. Carbapenem resistance was 

overestimated on ONT with a major error of 16%. Sensitivity for the detection 

of carbapenemases, extended-spectrum β-lactamases, and plasmid-mediated 

ampC genes was 98, 95, and 70% by ONT compared to the Illumina dataset as 

the reference. Our results highlight the potential of the ONT platform’s use in 

clinical microbiology laboratories. When combined with robust bioinformatics 

methods, WGS-AST predictions may be a future approach to guide effective 

antimicrobial decision-making.
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Introduction

The emergence of antimicrobial resistance (AMR) is 
recognized by leading health organizations as one of the major 
threats to global health. The accelerated progression of AMR 
requires not only the development of new therapeutics but also 
rapid, comprehensive, and accurate diagnostic methods to 
guide early and effective antimicrobial therapy (Livermore, 
2004; Rochford et  al., 2018; World Health Organization, 
2018, 2020).

The Infectious Diseases Society of America’s treatment 
guidance for infections caused by multidrug-resistant Gram-
negative organisms highlights the importance of understanding the 
mechanisms mediating AMR, as antimicrobial selection may differ 
by mechanism. As an example, discerning whether a bloodstream 
infection caused by a third-generation cephalosporin-resistant 
organism is mediated by extended-spectrum β-lactamase (ESBL) 
versus AmpC β-lactamase production is important, as the 
recommended therapy for the former is a carbapenem and 
cefepime for the latter. Similarly, understanding whether a 
carbapenem-resistant Enterobacterales (CRE) infection is caused 
by the presence of a blaKPC gene versus a blaOXA-48-like gene is of 
significance, as the former is generally effectively treated by 
meropenem-vaborbactam whereas the latter is not.

Whole-genome sequencing (WGS) provides the ability to 
identify the resistome of microorganisms (i.e., all antimicrobial 
resistance genes harbored) but can also be used for antimicrobial 
susceptibility testing (WGS-AST) and potentially guide antimicrobial 
decision making. We have previously shown that machine learning-
based WGS-AST has several advantages over rule-based AMR gene 
detection for determining susceptibility or resistance to 
antimicrobials (Lüftinger et  al., 2021a). The Oxford Nanopore 
Technologies (ONT) WGS platform offers rapid and easy library 
preparation, live readout, reduced turn-around time, lower initial 
investment, and per-run costs compared to standard platforms such 
as Illumina (Greninger et al., 2015; Jain et al., 2015; Quick et al., 2016; 
Schmidt et  al., 2017; Charalampous et  al., 2019). A significant 
disadvantage of ONT, however, is the higher per-base error rate, with 
accuracies between 90 and 99%, depending on the chemistry used, 
compared to Illumina with 99.9% raw read accuracy. The lower 
fidelity of ONT reads necessitates the use of specialized 
bioinformatics tools to mitigate these impacts on downstream 
analysis (Rang et al., 2018; Wang et al., 2021).

We investigated predicted WGS-AST and AMR gene 
detection of 181 clinical Enterobacteriaceae isolates using 
sequencing data acquired on both the Illumina and ONT 
platforms. We compared the WGS-AST profiles to phenotypic 
broth microdilution (BMD) AST results to determine the overall 
categorical agreement (CA), very major error (VME), and major 
error (ME) for ONT and Illumina. We  further assessed the 
suitability of both platforms to determine clinically relevant AMR 
classes associated with third-generation cephalosporin resistance 
and carbapenem resistance by combining WGS-AST results with 
detected molecular markers in a decision tree.

Materials and methods

Isolates

A total of 181 clinical Enterobacteriaceae isolates recovered 
from patients at The Johns Hopkins Hospital (Baltimore, MD) 
between 2016 and 2020 were included in the current study. The 
included organisms were as follows: Klebsiella pneumoniae [n: 
151], K. quasipneumoniae [n: 3], Escherichia coli [n: 14], 
Enterobacter cloacae [n: 7], E. hormaechei [n: 3], E. chengduensis 
[n: 1], E. kobei [n: 1], and E. roggenkampii [n: 1]. Of these, 49 
isolates were carbapenem-susceptible and 132 were carbapenem-
resistant. Isolates were subcultured from frozen stocks twice on 
tryptic soy agar with 5% sheep blood (BD Diagnostics, Sparks, 
MD) for 18–24 h at 37°C.

Identification

Bacterial genus and species were determined by matrix-assisted 
laser desorption ionization time-of-flight mass spectrometry 
(MALDI-TOF MS; Bruker Daltonics Inc., Billerica, MA).

Antimicrobial susceptibility testing

Broth microdilution AST (BMD-AST) was performed with the 
Sensititre GN7F and MDRGN2F (Thermo Fisher Scientific, 
Waltham, MA, United States) panels for Gram-negative bacteria 
following Clinical and Laboratory Standards Institute (CLSI) 
guidelines for a total of 31 antimicrobials. BMD-AST results were 
interpreted according to CLSI guidelines M100-S31, except 
fluoroquinolones were interpreted according to M100-S28 due to 
the restricted dilutions on the panel (CLSI, 2018, 2021). For all 
BMD-AST studies, quality control organisms were evaluated each 
day of testing.

DNA extraction

Genomic DNA was extracted from pure cultures using the 
DNeasy PowerSoil Pro and DNeasy PowerBiofilm kits 
(QIAGEN, Hilden, Germany), following the manufacturers’ 
guidelines.

Illumina sequencing

The sequencing libraries were prepared using the Nextera 
DNA Flex Library Preparation Kit (Illumina, San Diego, CA, 
United  States). Library concentrations were verified using a 
dsDNA fluorescent dye method on the Qubit 3.0 Fluorometer 
(Thermo Fisher Scientific, MA, Waltham, United States). DNA 
fragment size and library quality were confirmed on a 4200 
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TapeStation system (Agilent, Santa Clara, CA, United States). 
Cluster generation was performed on the cBot System (Illumina, 
San Diego, CA United States) using the HiSeq Rapid PE Cluster 
v2 and HiSeq Rapid Duo cBot Sample Loading kits (Illumina, San 
Diego, CA United  States). Libraries were sequenced on 
HiSeq  2500 (using the rapid run mode) and MiSeq devices 
(Illumina, San Diego, CA, United States) at 7 pmol with HiSeq 
Rapid SBS Kit v2 (2 × 250 bp, 500-cycle kit), MiSeq Reagent Kit 
v2 (2 × 150 bp, 300-cycle kit), or MiSeq Reagent Kit v3 (2 × 300 bp, 
600-cycle kit) chemistries, respectively.

Oxford Nanopore Technologies 
sequencing

Long-read genomic sequencing was performed using the 
third generation Oxford Nanopore MinION Mk1B and GridION 
X5 (Oxford, United  Kingdom) sequencing instruments. Each 
Nanopore sequencing library was prepared using the 1D ligation 
kit (SQK-LSK108, Oxford Nanopore Technologies) and sequenced 
on R9.4 flow cells (FLO-MIN106). High-accuracy live base calling 
was done with Guppy 4.3+ (Oxford Nanopore, Oxford, 
United  Kingdom) as released with the MinKNOW (Oxford 
Nanopore, Oxford, United Kingdom) software.

Data processing

Sequencing reads were uploaded to AREScloud (Ares Genetics) 
for genome assembly, quality control, identification, sequence typing, 
AMR marker detection, and WGS-AST (Ares Genetics GmbH, 
2021). For Illumina sequencing, isolates were evaluated using 
FastQC v0.11.5 and fastq-stats v1.01 (Aronesty, 2011; Andrews, 
2016). Datasets exceeding 4,000,000 reads were randomly 
subsampled using seqtk v1.2-r94 (Li, 2016). Adapter removal and 
trimming of low-quality paired-end reads were done using 
Trimmomatic v0.39 (Bolger et  al., 2014). Reads were de novo 
assembled with SPAdes v3.15.25 (Prjibelski et  al., 2020). ONT 
sequencing quality was evaluated using NanoPlot v1.39.0 and 
low-quality reads were removed with NanoFilt v.2.8 at a quality 
threshold of 7 (de Coster et al., 2018). Datasets were subsampled to 
600 Mb with rasusa v0.6.0, de novo assembled with Canu v2.1.1, and 
iteratively polished with Racon v1.5 (Koren et al., 2017; Vaser et al., 
2017; Hall, 2021). For both sequencing platforms, assembly quality 
and genome completeness were determined using Quast v5.0.2 and 
BUSCO v5.2.2 (Mikheenko et  al., 2018; Manni et  al., 2021). 
Insert  size for Illumina datasets was calculated using 
CollectInsertSizeMetrics v2.25.2 from Picard Tools (Broad institute, 
2021). De novo assemblies were annotated with Prokka v1.14.1 and 
ribosomal RNA genes were identified using Barrnap v0.9 (Seemann, 
2014, 2018). The genome annotations and ribosomal RNA genes 
were used for assembly quality evaluation; the Prokka features also 
constitute part of the input feature space for the WGS-AST machine 
learning models. Microbial identification was determined with 

Kraken v2.0.9-beta using the MiniKraken PlusPF-8 database from 
2021/05/17 (Wood and Salzberg, 2014). Genome coverage was 
determined using bwa mem v0.7.17-r1188 and bedtools v2.29.0 
(Quinlan and Hall, 2010; Li, 2013). Resistance genes were 
determined with DIAMOND v1.0.11 via sequence alignment of 
six-frame translated genome assemblies against ARESdb with a 
minimum query coverage of 60% and a minimum identity of 90% 
for Illumina-derived assemblies and a minimum identity of 70% for 
ONT-derived assemblies (Buchfink et al., 2015; Ferreira et al., 2020). 
WGS-AST results were generated by susceptibility/resistance (S/R) 
stacked classification models trained per species-antimicrobial pair 
on ARESdb (Ferreira et  al., 2020). The model stacks combine 
extreme gradient boosting, elastic net regularized logistic regression 
(ENLR), and set covering machine models as well as rule-based post-
processing routines. ARESdb models were trained on features 
derived from sequence motifs and variants (Lüftinger et al., 2021b; 
Májek et al., 2021). Ertapenem was used as a proxy for the prediction 
of resistance to carbapenems and was optimized from previous 
publications, to recognize non-CP CREs (Májek et al., 2021) by 
recognizing changes in the ompK35, ompK36, and homologs 
(Doumith et al., 2009; Sugawara et al., 2016). WGS-AST was run for 
60 species-antimicrobial pairs listed in Supplementary Table  1. 
Discrepant species identifications between the Illumina and ONT 
platforms were confirmed by comparing the assemblies to the 
reference genomes of the suspected species using FastANI (Jain et al., 
2018). Data processing on AREScloud took less than 2 h for Illumina 
data and up to 5 h for ONT data; the application scales horizontally, 
i.e., samples are processed in parallel on multiple instances without 
decrease in computing power.

AMR class definition

Third-generation cephalosporin (3GC) resistance was defined 
by resistance to ceftriaxone; carbapenem resistance (CR) was 
defined by resistance to ertapenem. Molecular genotypes (ESBL, 
plasmid-mediated AmpC beta-lactamase (pAmpC), Klebsiella 
pneumoniae carbapenemase (KPC), metallo-β-lactamase [MBL], 
OXA-48-like) and WGS-AST results were combined to define 
AMR classes, as outlined in the decision tree in Figure 1. Briefly, 
3GC-resistant, carbapenem-susceptible organisms were delineated 
by pAmpC and ESBL markers. CP-CREs were characterized by 
KPC, MBL, and OXA-48-like marker genes. Non-CP CREs were 
defined by resistance to ertapenem by WGS-AST and the 
absence  of carbapenemase genes. WGS-AST performance 
and  concordance of AMR classes were finally compared 
between platforms.

Statistical evaluation

Categorical agreement (CA), very major error (VME), and 
major error (ME) were assessed for WGS-AST. Resistance (R) was 
considered a positive outcome and susceptibility (S) a negative 
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outcome. WGS-AST S/R results were classified either as true 
positives (TP), false positives (FP), true negatives (TN), or false 
negatives (FN), in comparison to BMD-AST results. Intrinsically 
resistant (IR) isolates, and isolates with an intermediate (I) 
phenotype, were treated as resistant. Categorical agreement 
(accuracy) of S/R designations was compared between WGS-AST 
and BMD-AST; very major errors (VME) are false-susceptible 
results (FNR, false-negative rate) by WGS-AST, and major errors 
(ME) are false-resistant results (FPR, false-positive rate) by 
WGS-AST. Species-antimicrobial pairs with less than 10 samples 
were removed: ampicillin (n: 9), ampicillin-sulbactam (n: 9), and 
minocycline (n: 6). Data handling and analysis was carried out in 
a Python environment using the Pandas and NumPy libraries. 
Confusion matrices were generated using the scikit-learn library 
and statistical tests were calculated using the SciPy library.

Results

Phenotypic antimicrobial susceptibility 
testing results

Phenotypic antimicrobial susceptibility testing results are 
summarized in Supplementary Table 2. Of the 181 isolates, 135 

were not susceptible (NS; i.e., intermediate or resistant) to at least 
one carbapenem (ertapenem: 72.9%, doripenem: 55.6%; 
imipenem: 61.1%: meropenem: 54.5%); 144 isolates were NS to 
3GCs, while 136 isolates were NS to fourth-generation 
cephalosporins. Non-susceptibility to newer β-lactam/β-lactamase 
inhibitor combinations was low (imipenem-relebactam: 10.5%, 
meropenem-vaborbactam: 10.6%, ceftazidime-avibactam: 6.8%). 
NS to non-β-lactam agents ranged among isolates as follows: 
8.3–51.7% for aminoglycosides, 64.1–88.9% for fluoroquinolones, 
38.0% for tetracycline, and 49.4% for sulfamethoxazole- 
trimethoprim.

Sequencing and assembly

ONT assemblies had lower BUSCO completeness scores of 
42.59% ± 23.59% compared to 98.57% ± 0.66% on the Illumina 
platform. ONT assemblies were less fragmented as determined by 
BUSCO (30.48% ± 12.65%) compared to Illumina assemblies 
(0.02% ± 0.15%); BUSCO missing scores were worse for ONT 
(26.92% ± 11.36%) than for Illumina data (1.40% ± 0.59%), 
highlighting the higher per-base error rates on the ONT platform. 
All comparisons were significant (two-tailed paired t-test, 
p < 0.0001).

FIGURE 1

Clinical AMR class decision workflow. WGS-AST: whole-genome sequencing antimicrobial susceptibility testing; CR: carbapenem resistance; CRE: 
carbapenem-resistant Enterobacterales; 3GC: third-generation cephalosporin resistance, CP: carbapenemase; ESBL: extended-spectrum 
β-lactamase; pAmpC: plasmid AmpC; MBL: metallo-β-lactamase.
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Identification

The genus of all 181 isolates (100%) was correctly identified 
for ONT and Illumina isolates. Species-level concordance was 
97.24%; 5 Enterobacter isolates were identified on the ONT 
assemblies as E. hormaechei and on the Illumina assemblies as 
E. cloacae. The discrepant isolates were confirmed belonging to the 
E. hormaechei species using the average nucleotide identity (ANI) 
method at a cutoff of 95% (Supplementary Table  3; Jain 
et al., 2018).

AMR markers

The number of uniquely identified AMR markers was on 
average 19.9% higher on the ONT dataset than on the Illumina 
dataset (Supplementary Table 4). The higher number of retrieved 
markers on ONT assemblies was due to the lower identity 
threshold used by DIAMOND v1.0.11 for sequence alignment of 
AMR markers to ARESdb. The threshold was optimized for ONT 
data to retrieve all relevant markers needed to assign AMR classes. 
Due to the higher fragmentation of ONT assemblies and lower 
base calling fidelity, incorrect alleles were assigned more often on 
ONT assemblies (two-tailed paired t-test, p < 0.001).

With the Illumina data as the reference, the sensitivity of AMR 
markers in the ONT dataset was investigated. The sensitivity of 
carbapenemases, ESBLs, and pAmpCs was slightly lower on ONT 
compared to Illumina at 98, 95, and 70%, respectively, with 
specificities of 100, 70, and 91%, respectively. Among the 
carbapenemases, accuracy was 98, 100, and 99% for KPCs, MBLs, 
and OXA-48-like AMR marker genes, respectively. The sensitivity 
was lowest for pAmpCs (70%), and specificity was lowest for 
ESBLs (70%). Across all 6 marker classes, the specificity of ONT 
was 100% for carbapenemases, KPCs, metallo-β-lactamases, and 
OXA-48-like markers. The lowered sensitivity of ONT led to a 
high false-negative rate (FNR) in some cases, e.g., 30% for 
pAmpCs (Table 1).

WGS-AST

Overall, ONT data performed slightly worse than Illumina 
sequencing data regarding WGS-AST (Table 2), but the difference 
was not significant (χ2 test on the vectorized confusion matrices, 
p > 0.05). Categorical agreement (CA) was 88% for ONT and 90% 
for Illumina, overall ME was higher on the ONT platform with 
13% compared to 11% on the Illumina platform, and overall VME 
was also slightly higher at 11% on ONT compared to 10% on the 
Illumina platform. On the ONT platform, 25 species-antimicrobial 
models had a CA between 90 and 100%, 23 between 80 and 90%, 
and 12 below 80%; on the Illumina platform, 34, 18, and 8 species-
antimicrobial models had CAs of 90–100%, 80–90%, and below 
80%, respectively. Grouped by antimicrobial, on the ONT 
platform, 10 species-antimicrobial models had a CA between 

90–100%, 11 between 80–90%, and 1 below 80%; on the Illumina 
platform, 13, 9, and zero species-antimicrobial models had CAs of 
90–100%, 80–90%, and below 80%, respectively (Table  3; 
Supplementary Table 5). Grouped by organism, CA was highest 
for Klebsiella spp. with 89% on the ONT platform and 90% on the 
Illumina platform. Enterobacter reached a CA of 83% on the ONT 
platform and Escherichia of 82% on the ONT platform. Escherichia 
reached a CA of 87% and Enterobacter a CA of 85% on the 
Illumina platform (Supplementary Table 6). Here, two effects were 
observed: Escherichia and Enterobacter models had lower CAs 
than Klebsiella models and ONT had a lower CA compared to 
Illumina as described above. While Klebsiella had the highest CA, 
it also had a higher VME of 11% on both platforms than 
Enterobacter on ONT (6%) and Illumina (8%) platforms, and 
Escherichia on the Illumina platform (5%) but not on the ONT 
platform (18%). MEs of Klebsiella (12% vs. 9%) and Enterobacter 
models (27% vs. 22%) were higher on the ONT platform 
compared to the Illumina, while Escherichia models (19% vs. 32%) 
had lower MEs on the ONT platform compared to Illumina.

The difference in CA between individual antimicrobials 
spanned from a 7% lower CA to a 4% higher CA for ONT compared 
to Illumina sequencing data. Lower performance on ONT 
sequencing data was, e.g., observed in ciprofloxacin (−7%), 
levofloxacin (−6%), piperacillin-tazobactam (−7%), and gentamicin 
(−5%), while better performance of ONT was observed in, e.g., 
aztreonam (+2%), ticarcillin-clavulanic acid (+3%), amikacin (+3%), 
and ceftazidime (+4%; Table 3).

WGS-AST models for AMR classes

Categorical agreement for ceftriaxone, which was used as a 
proxy for the prediction of resistance to third-generation 
cephalosporins, was 96% on both platforms, with ONT performing 
better with a lower VME (2% vs. 4%) but higher ME (7% vs. 3%).

Ertapenem—used to indicate carbapenem resistance—
reached a CA of 91% on the ONT platform and 94% on the 
Illumina platform (χ2 test, p < 0.001 as tested on the vectorized 
confusion matrices). VMEs were comparable on both platforms 
(7% on ONT and 6% on Illumina), but MEs were higher on the 
ONT platform (16% vs. 4%; Table 3; Supplementary Table 7). On 
the ONT platform, MEs of the E. cloacae and VMEs of the E. coli 
model, and on the Illumina platform, MEs in the Enterobacter and 
E. coli subsets model were noticeable. On both platforms, the 
Klebsiella model performs with a better trade-off between ME and 
VME (Supplementary Table 5).

Ertapenem WGS-AST models reached 95% CA for CP-CREs 
(defined by ertapenem BMD-AST and the presence of a 
carbapenemase gene in the Illumina genome assembly) for data 
acquired on the ONT platform and 100% for data acquired on the 
Illumina platform, and 88% CA in the non-CP CRE dataset for 
ONT and 76% for Illumina platforms. Among ertapenem-
susceptible isolates, CA on ONT data was lower (84%) compared 
to Illumina (96%), due to 8 samples being flagged positive. VMEs 
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of ertapenem among non-CP CREs were 12% on ONT and 24% 
on Illumina (Supplementary Table 8).

Combination of WGS-AST and molecular 
markers for AMR classes

We combined WGS-AST with the identified AMR genotypes, 
as outlined in Figure  1 in a decision workflow (Table  4; 
Supplementary Table  9). An isolate was first categorized as 
carbapenem-resistant or carbapenem-susceptible. Carbapenem-
susceptible isolates were further classified as resistant or 
susceptible to 3GCs based on the ceftriaxone resistance. Error 
rates, as discussed in the previous section, apply to both 
carbapenem and 3GC resistance results. The accuracy between 
AMR classes predicted by ONT data and AMR classes predicted 
by Illumina data was 87.8% (Figure 2). For the distinction of CP 
CREs and non-CP CREs from WGS-AST data, data acquired on 
the Illumina platform was used for the detection of CP genes as 
the reference. Mainly, non-CP CREs were overpredicted on ONT 
data due to missed carbapenemase gene detection in the dataset 
while resistance to ertapenem was correctly predicted.

Discussion

Overall, this work demonstrated that the combination of 
WGS-AST and molecular identification of AMR markers through 
WGS can classify isolates into clinically relevant AMR classes 
regardless of sequencing platform. Second, WGS-AST on 
AREScloud using ONT sequencing data was comparable to 
Illumina sequencing data. Overall categorical agreement across all 
antimicrobials was 88% (ONT) and 90% (Illumina), 96% CA by 

both platforms for third-generation cephalosporin resistance, and 
91% (ONT) and 94% (Illumina) for carbapenem resistance. VMEs 
(11% vs. 10%) and MEs (13% vs. 11%) were slightly higher on the 
ONT platform. The accuracy (89% vs. 90%) of WGS-AST 
predictions was slightly lower on ONT assemblies compared to 
Illumina. This difference was likely due to significantly higher 
fragmentation and higher base calling error rate of the ONT data, 
translating to an overall difference of 2% CA. Similarly, for 
carbapenem resistance, there were also differences in VMEs and 
MEs observed between the two sequencing platforms. The VMEs 
and MEs on the ONT platform were 7% and 16%, whereas the 
VMEs and MEs of the Illumina platform were 6% and 4%. The 
higher ME with ONT might have been due to the higher per-base 
error rate leading to the interpretation of random sequencing 
errors as SNPs in the ompK genes; however, since the data 
acquisition, ONT released new base calling models and kit 
chemistries allowing more complete, less fragmented assemblies, 
with a lower error rate, potentially lowering the ME had the 
analysis been repeated with the updated chemistries and base caller.

A total of 22 antimicrobials were tested for the 
Enterobacteriaceae: All antimicrobials for which WGS-AST 
results were predicted reached CAs above 80% and up to 97% 
across all species on both sequencing platforms compared to 
BMD-AST, except for imipenem at 79% on the ONT platform. Of 
the 60 individual species-antimicrobial WGS-AST models, 8 
(Illumina) and 11 (ONT) models had CAs below 80%. All 
species-antimicrobial pairs below 80% belonged to the Escherichia 
(n: 14) or Enterobacter (n: 13) genera, where sample sizes were 
significantly lower than for, e.g., K. pneumoniae, hampering 
statistical evaluation. Thirty-three and 25 (out of 60) species-
antimicrobial pairs reached CAs above 90% on the Illumina and 
ONT platforms, respectively (13 and 10 for Klebsiella on Illumina 
and ONT, respectively). Despite WGS-AST models of 

TABLE 1 Performance metrics of the AMR marker identification on ONT data, which is compared to the markers identified on the Illumina data 
(reference).

Marker 
class Accuracy Sensitivity Specificity FNR FPR TP FP FN TN n

ESBL 78% 95% 70% 5% 30% 79 29 4 69 181

pAmpC 96% 70% 91% 30% 9% 16 0 7 158 181

CP 99% 98% 100% 2% 0% 99 0 2 80 181

KPC 98% 96% 100% 4% 0% 74 0 3 104 181

MBL 100% 100% 100% 0% 0% 15 0 0 166 181

OXA-48 99% 93% 100% 7% 0% 13 0 1 167 181

CA: Categorical agreement, FNR: False-negative rate, FPR: False-positive rate, TP: True positive, FP: False positive, FN: False negative, TN: True negative, and n: number of evaluated 
samples.

TABLE 2 Overall performance of the WGS-AST models across all antimicrobials, broken down by sequencing platform.

Platform CA VME ME TP FP FN TN n

Illumina 90% 10% 11% 1,646 161 178 1,315 3,300

ONT 88% 11% 13% 1,619 194 205 1,282 3,300

CA: Categorical agreement, VME: Very major error, ME: Major error, TP: True positive, FP: False positive, FN: False negative, TN: True negative, and n: number of evaluated species-
antimicrobial pairs.
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antimicrobials reaching the 90% CA threshold as defined by the 
FDA for the clearance of phenotypic AST devices, MEs and 
VMEs were outside of acceptable limits of 3% and 1.5%, 
respectively (Food and Drug Administration, 2009). On-going 
improvements of sequencing chemistries and further refinement 
of WGS-AST models as more data become available will likely 
reduce error rates to acceptable limits within the next years.

A possible mitigation strategy to deal with high error 
rates could be  the introduction of areas of technical 

uncertainty (ATU), following the lead of EUCAST for 
phenotypic AST (The European Committee on Antimicrobial 
Susceptibility Testing, 2019). ATUs would help manage 
methodological and technical variability as well as variations 
in interpretation. For example, individual WGS-AST results 
could be annotated with a confidence level; results within an 
ATU could then be  flagged or excluded from the report if 
other antimicrobials are available for treatment depending on 
the clinical scenario.

TABLE 3 Comparison of the performance metrics of WGS-AST on Illumina and ONT assemblies, by antimicrobial.

Antimicrobial
CA VME ME

n
Illumina ONT Illumina ONT Illumina ONT

Amikacin 80% 83% 23% 20% 19% 16% 163

Aztreonam 91% 92% 9% 6% 12% 14% 180

Cefazolin 84% 84% 22% 20% 0% 6% 68

Cefepime 85% 83% 16% 21% 12% 7% 173

Cefotaxime 96% 95% 4% 4% 0% 10% 107

Ceftazidime 89% 93% 10% 5% 14% 14% 181

Ceftazidime-avibactam 97% 96% 6% 35% 3% 1% 175

Ceftriaxone 96% 96% 4% 2% 3% 7% 79

Ciprofloxacin 95% 88% 3% 12% 10% 12% 181

Doripenem 84% 83% 22% 22% 8% 11% 164

Ertapenem 94% 91% 7% 6% 4% 16% 181

Gentamicin 93% 88% 8% 8% 6% 15% 171

Imipenem 84% 79% 6% 5% 31% 44% 94

Imipenem-relebactam 97% 97% 21% 21% 1% 1% 91

Levofloxacin 90% 85% 9% 14% 11% 18% 181

Meropenem 84% 80% 3% 5% 31% 37% 90

Meropenem-vaborbactam 97% 95% 21% 36% 1% 1% 91

Piperacillin-tazobactam 90% 84% 11% 21% 7% 2% 168

Sulfamethoxazole-trimethoprim 80% 80% 11% 8% 30% 33% 167

Tetracycline 81% 82% 30% 30% 12% 10% 79

Ticarcillin-clavulanic acid 92% 95% 9% 5% 0% 0% 101

Tobramycin 94% 92% 4% 6% 7% 10% 173

CA: Categorical agreement, VME: Very major error, ME: Major error, n: number of evaluated species-antimicrobial pairs.

TABLE 4 Breakdown of the isolates by AMR class and sequencing platform at the decision gateways.

Group Level 1 Group Level 2 Group Level 3

Illumina ONT Illumina ONT Illumina ONT

Carbapenem 

Susceptible

55 50 3GC Susceptible 37 28 3GC-susceptible 37 28

3GC Resistant 18 22 Not ESBL or pAmpC 1 4

ESBL 15 16

pAmpC 1 1

ESBL & pAmpC 1 1

Carbapenem 

Resistant

126 131 Non-CP CRE 25 38 Non-CP CRE 25 38

CP CRE 101 93 KPC 76 70

MBL 11 12

OXA-48 10 8

OXA-48 & MBL 4 3
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Regarding AMR marker retrieval, ONT was comparable to 
Illumina regarding accuracy (98–100%), sensitivity (93–100%), 
and specificity (100%) for carbapenemases, KPCs, MBLs, and 
OXA-48-like ß-lactamases. For pAmpCs, the sensitivity was lower 
at 70% due to a high number of false negatives. The low recovery 
of pAmpCs can possibly be explained by using a ligation library 
preparation kit, which has a lower recovery of plasmids compared 
to a rapid detection kit (Wick et al., 2021). For ESBLs, specificity 
was lower at 70%. Several ß-lactamases were misclassified on the 
ONT platform, such as the broad-spectrum ß-lactamase TEM-1 
as ESBL TEM-10, or the broad-spectrum ß-lactamases SHV-1, 
SHV-11, or inhibitor-resistant broad-spectrum ß-lactamase 
SHV-26 as ESBLs SHV-12 or SHV-152. The lower fidelity on the 
allele level for ONT—due to lower quality sequencing data—has 
been previously observed (Tamma et al., 2019).

The proposed workflow to predict relevant clinical phenotypes 
(Figure 1) had multiple decision gateways. Early misclassification 
propagated downstream through the pipeline. More specifically, if 
an isolate was incorrectly identified on the first grouping level, this 
error propagated to the final classification. As an example, the 
phenotypically third-generation cephalosporin-resistant, ESBL-
positive isolate CRE596KLPN is classified as such using Illumina 
sequencing data, but on the ONT platform, ertapenem resistance 
is overcalled in the absence of a carbapenemase gene. Hence,  
this isolate is classified as non-CP CRE using ONT due to 
carbapenem classification occurring upstream of third-generation 
cephalosporin classification. Nevertheless, the ESBL genes are also 
identified in this isolate on the ONT platform. As a mitigation 
strategy, we placed the WGS-AST models at the beginning of the 

decision workflow, since we have shown that those models have a 
higher error tolerance than simple AMR marker detection. This 
allows generally to compensate for the lower sensitivity of 
pAmpCs and lower specificity of ESBLs on ONT sequencing data, 
which is more often the case than vice versa. Co-detection of 
AMR genes together with WGS-AST is important for tailoring 
therapy as this discrimination enables selection of the correct 
downstream treatment more precisely.

The higher performance of ONT compared to Illumina was 
observed for antimicrobials where identification of markers or 
marker classes is sufficient for resistance calling. This was, e.g.,  
the case for ceftriaxone and amikacin, where the presence of 
CTX-M class markers can be sufficient to predict ceftriaxone 
resistance, or amikacin which is dependent on ribosomal RNA 
methyltransferases such as armA or rmtA homologs (Bonnet, 
2004; Galimand et al., 2012; Liakopoulos et al., 2016). The lower 
performance of individual antimicrobials on the ONT platform 
was more often observed when the resolution of SNPs is crucial 
for resistance calling, as it is, e.g., the case for gyrA and parC 
mutations for fluoroquinolones, or mutations in efflux pumps  
for piperacillin-tazobactam, or when detection of multiple 
aminoglycoside-modifying enzymes is required, as it is the case 
for gentamicin resistance (Chen et al., 2003; Fu et al., 2013).

There are several limitations to this study. First, some species 
were represented by a relatively small number (E. coli [n: 14], 
E. cloacae [n: 7]) of isolates within the 181 clinical isolates. As 
some AMR markers are specific to individual bacterial species, 
this work needs to be repeated on a larger sample set. Second, all 
isolates came from a single site (geographic region) resulting in 
likely over- or under-representation of individual AMR markers 
based on the genetic relatedness of isolates. This work is currently 
in the proof-of-concept stage and should be  expanded in the 
future to include geographically diverse isolates. Third, the Phred 
quality score of ONT is still inferior to Illumina, although it has 
increased by an order of magnitude since the beginning of the 
study, both by new sequencing chemistries and due to improved 
bioinformatics. WGS-AST models and related bioinformatic 
pipelines need to be adapted accordingly.

With the availability of sequencing platforms in hospital 
practice, risk identification based on AMR classes can enhance 
patient management. For the routine application of WGS-AST, 
clinical microbiology laboratories need to implement automated 
approaches for DNA extraction, library preparation, and 
sequencing, such as fully automated clinical microbial cultivation 
and identification systems. Once established, methodological 
control of WGS-AST might be easier to maintain compared to 
BMD-AST (e.g., daily internal controls) and skills/requirements for 
routine use might be lower. Additionally, WGS-AST allows drawing 
retrospective conclusions about antimicrobials that were not 
available at the time of sequencing, for example, for AST 
surveillance studies.

The performance gap for WGS-AST between ONT and Illumina 
has narrowed over the last years, especially with the upcoming of 
newer base calling models, flow cells, and sequencing chemistries of 

FIGURE 2

Confusion matrix of AMR classes (3GC susceptible, 3GC resistant 
delineated by ESBL and pAmpC, non-CP CRE, and CP CRE 
delineated by KPC, metallo-β-lactamase, and OXA-48) derived 
from Illumina and ONT WGS-AST combined with AMR marker 
detection.
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higher accuracy, which routinely generate reads at a modal raw read 
accuracy at a Phred score of 20, which is an improvement from an 
accuracy of 90–95% (10 < Phred <13) to 99% (Phred = 20). However, 
Illumina sequencing reads typically achieve Phred scores of above 30 
(> 99.9% accuracy). Having assemblies of good quality is important 
for WGS-AST predictions, genotyping, and identification of AMR 
classes if single-nucleotide polymorphisms are involved. While 
significant differences still exist, especially for the detection of AMR 
genes, our results highlight the potential of the ONT platform for 
consideration in clinical microbiology laboratories if combined with 
robust bioinformatics methodology. Combining AMR genotypes 
and WGS-AST predictions can help guide effective therapeutic 
management decisions.
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