
Review Article
The Place of PET to Assess New Therapeutic Effectiveness in
Neurodegenerative Diseases
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In vivo exploration of neurodegenerative diseases by positron emission tomography (PET) imaging has matured over the last 20
years, using dedicated radiopharmaceuticals targeting cellular metabolism, neurotransmission, neuroinflammation, or abnormal
protein aggregates (beta-amyloid and intracellular microtubule inclusions containing hyperphosphorylated tau). (e ability of
PET to characterize biological processes at the cellular and molecular levels enables early detection and identification of molecular
mechanisms associated with disease progression, by providing accurate, reliable, and longitudinally reproducible quantitative
biomarkers. (us, PET imaging has become a relevant imaging method for monitoring response to therapy, approved as an
outcome measure in bioclinical trials. (e aim of this paper is to review and discuss the current inputs of PET in the assessment of
therapeutic effectiveness in neurodegenerative diseases connected by common pathophysiological mechanisms, including
Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric
disorders. We also discuss opportunities for PET imaging to drive more personalized neuroprotective and therapeutic strategies,
taking into account individual variability, within the growing framework of precision medicine.

1. Background

Neurodegenerative diseases (NDDs) are highly morbid he-
reditary and sporadic conditions characterized by progressive
nervous system dysfunction and, ultimately, the loss of neu-
rons. (is heterogeneous group of disorders, including Alz-
heimer’s disease (AD) and other dementias, Parkinson’s disease
(PD), multiple sclerosis (MS), amyotrophic lateral sclerosis
(ALS), Huntington’s disease (HD), is increasingly affecting the
elderly worldwide, with a number of patients expected to
double every 20 years [1]. Since these are progressive and ir-
reversible disorders, early detection and differentiation of the
disease are primordial for possible therapeutic intervention.
Despite different initial clinical manifestations, many studies
suggest that overlapping pathophysiologic processes may be

involved in various forms of NDD, such as deposition of
proteins with altered physicochemical properties in the human
brain. Indeed, NDDs are thought to share a common path-
ogenesis mechanism, the aggregation and deposition of mis-
folded proteins not only in neurons but also in glial cells, which
leads to progressive central nervous system impairments [2].
(us, NDDs are classified according to current concepts of
NDD based on clinical presentation, anatomical regions and
cell types affected, and altered proteins involved in the path-
ogenetic process [3]. Basically, concerning correlation between
anatomical involvement and NDD, it is well admitted that
hippocampus, entorhinal cortex, or also limbic system are
mainly involved in cognitive decline symptoms, whereas basal
ganglia, thalamus, motor cortical areas, or cerebellar cortex are
more involved in movement disorders. Amyloid-β (Aβ) and

Hindawi
Contrast Media & Molecular Imaging
Volume 2018, Article ID 7043578, 15 pages
https://doi.org/10.1155/2018/7043578

mailto:ac.dupont@chu-tours.fr
http://orcid.org/0000-0002-5095-9805
http://orcid.org/0000-0002-6824-7283
https://doi.org/10.1155/2018/7043578


τ-protein aggregates in Alzheimer disease, as well as other
forms of aggregates such as the α-synuclein aggregates (or Lewy
bodies) found in Parkinson disease and dementia with Lewy
bodies are among most proteins associated with the ma-
jority of NDDs. Concomitantly, microglial activation has
also been linked with degenerative brain diseases by re-
leasing proinflammatory cytokines including interleukin-
(IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α, leading
to neuronal damage and loss [4]. (ese common physio-
pathological processes suggest that these pathologies contribute
to the development of other features of neurodegeneration
such as neuronal and synaptic dysfunction in the central
nervous system.

2. Current PET Imaging of
Neurodegenerative Diseases

An early detection of the onset of NDD is pivotal as it can
provide a chance for an early treatment thatmay prevent further
progression of the disease. Over the past two decades, the
traditional view of NDD, such as AD or PD, as purely clinical
entity has been changed to one as a clinicobiological entity. A
definite diagnosis has thus far been possible only by histo-
pathologic postmortem assessment of brain tissue. Nevertheless,
an important gap between the onset of symptoms and neu-
ropathology inNDD is widely recognized. Hence, it has become
increasingly possible to identify in vivo evidence of the specific
neuropathology of NDD by use of validated biomarkers.
Principal requirements for a good biomarker are preciseness,
reliability, and capacity to distinguish healthy and pathological
tissues. Among these, numerous neuroimaging biomarkers,
being correlated with the NDD physiopathological process,
have been introduced into the core diagnosis pathway. Positron
emission tomography (PET) is a nuclear medicine imaging
technique used to noninvasively assess various biological
functions at the molecular level, by tracking a chemical com-
pound of biological significance, called radiopharmaceutical,
labeled with short-lived positron emitter radionuclide. In NDD,
PETallows noninvasive evaluation of not only regional cerebral
metabolism or perfusion but also the change of neurotrans-
mission and presence of abnormal protein such as amyloid-β.
18F-FDG PET is a well-established radiopharmaceutical to
measure regional glucose metabolism indicating neuronal
function. In different forms of neurodegenerative dementias,
specific patterns of neuronal dysfunction have been described
[5]. Besides, dopamine transporter and vesicular monoamine
transporter imaging are useful in the diagnosis and eval-
uation of Parkinson disease progression, providing infor-
mation about the integrity of presynaptic striatal dopaminergic
neurons. More recently, PET tracers for molecular imaging of
Aβ have improved early diagnosis by targeting the amyloid
deposition. Cholinergic and microglial imaging can be also
useful in the early diagnosis of dementia and improve un-
derstanding of insights into pathophysiology of neurodegen-
erative diseases.

(erefore, the ability of molecular imaging to identify
and quantify cerebral pathology has significant implications
for early detection and differential diagnosis in NDD.

3. PET Neuroimaging Interest for Therapeutic
Effectiveness Assessment

Molecular PET neuroimaging is a sensitive technique able to
identify subtle molecular changes in the brain even before
structural changes are present. (us, one of the most im-
portant short-term roles of PETneuroimaging could be in the
clinical evaluation and validation of new treatments of NDD,
such as antiamyloid therapies in AD, which have entered in
human trials (e.g., passive immunization, c-secretase, and
β-secretase inhibitors). Without a surrogate biomarker to
assess the efficacy of these therapeutic agents on their
intended central nervous system target, one cannot properly
interpret the outcome of a therapeutic trial. All the more so as
the assessment of clinical symptoms may therefore not
represent an ideal tool for follow-up and therapy monitoring
in NDD, it could have an important symptomatic overlap
between NDD themselves. (e ability of PET to not only
provide spatial localization of metabolic changes but also to
accurately and consistently quantify their distribution proved
valuable for applications in assessment of drug effectiveness.
Indeed, the great strength provided by functional and mo-
lecular PET approach allows visualizing numerous of the
physiopathological pathways involved in NDD. (e devel-
opment of PETradioligands for the in vivo neuroimaging has
been the focus of intense research efforts in recent years and
most of the pathophysiologic processes involved in NDD
mentioned above such as neuroinflammation, neurotrans-
mission or misfolded protein aggregation, could to date be
explored. Furthermore, the capacity to obtain quantitative
information with PET tracer uptake in the brain could be
relevant for the follow-up evaluation in therapy monitoring.
(e availability of plenty of PET tracers validated in humans
(both on pharmacokinetic or dosimetry fields) provides ex-
citing opportunities for the discovery, validation, and de-
velopment of novel therapeutics in NDD. (e new drug
candidates may be radiolabeled in order to reflect, for in-
stance, the biodistribution or the blood-brain barrier passage.
But PET can especially be used to study the synthesis and
release of neurotransmitters and the availability of neuro-
transmitter receptors.(e growing epidemics of NDD such as
AD, PD, or ALS have increased the need for new treatments,
and their development is conditioned by first, the choice and
the knowledge about the target and second, by the optimi-
zation of their validation in vivo. Known to be an important
tool in both research and clinical care, PET neuroimaging
approach in the therapeutic evaluation and optimization in
NDD is discussed in this manuscript.

4. PET Imaging to Assess
Therapeutic Effectiveness

4.1.GlucoseMetabolism Imaging. Since its first application in
humans in 1979 (Table 1) [13], 18F-FDG PET improves our
understanding of many brain disorders. Indeed, its ability to
measure local glucose consumption in various structures of
the brain allows to detect alterations in local cerebral meta-
bolism. 18F-FDG uptake by the cortical and subcortical
structures in the brain has the advantage to provide valuable
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information before any morphological changes become dis-
cernible. (us, 18F-FDG PET is a well-established tool to
identify disease-specific cerebral metabolic brain patterns in
several neurodegenerative brain diseases at an early disease
stage. In AD, the most prevalent neurodegenerative cause of
dementia [14], 18F-FDG is an effective modality for detecting
functional brain changes since AD patients exhibit charac-
teristic temporoparietal glucose hypometabolism. Further-
more, a correlation between the degree of hypometabolism
and the severity of dementia has been reported during disease
progression [15], in relation with neuronal cell loss and de-
creased synaptic activity. By assessing indirect functional
effects of neurodegeneration, 18F-FDG can be useful for early
diagnosis and the differential diagnosis between AD and other
various types of dementia like dementia with Lewy bodies,
frontotemporal lobe dementia, and vascular dementia. (us,
it is widely recognized that 18F-FDG holds a special place for
the staging and assessment of AD. Unlike oncology field,
where 18F-FDG is routinely used for treatment evaluation and
follow-up, 18F-FDG has only been used sporadically in the
past as a biomarker for predicting therapeutic response in AD.
(e first multicenter clinical trial in AD using 18F-FDG
measuring brain glucose metabolism as the primary out-
come has been described by Tzimopoulou et al. in 2010 [8].
Brain glucose metabolism was studied at baseline and at three
later time points (1, 6, and 12 months) after 12 months
treatment with the peroxisome proliferator-activated receptor
(PPAR) gamma agonist rosiglitazone versus placebo in 80
mild-to-moderate AD patients. Rosiglitazone has been shown
to ameliorate insulin resistance in patients with type II di-
abetes mellitus [16] and seems to improve cognition in AD in
preliminary studies [17] but that effect could be limited to
APOE4 subjects [18]. No statistically significant difference
indicated that active treatment decreased the progression of
decline in brain glucose metabolism over a one-year follow-
up in the symptomatic stages of AD. Nevertheless, while
failing to demonstrate an effect of rosiglitazone on neuro-
degeneration, these results are consistent with Phase III
clinical trials using rosiglitazone in AD [19, 20], which
conclude that PET imaging biomarker like 18F-FDG could
provide good mechanistic tests for the evaluation of future
therapeutic hypotheses. In 2016, in a safety and tolerability
study of 6months of pramipexole in 15mild-to-moderate AD
patients, Bennett et al. has used PET imaging to complete the
study by examination of cognitive performance with 18F-FDG
tracer. In this small single-arm, open-label study, there was no
apparent effect of pramipexole because a 3–6% brain glucose
uptake decrease has been observed during the 6-month
follow-up, consistent with regions of reduced metabolism in
AD patients without treatment [7]. Contrary to the minor
interest of 18F-FDG in AD therapeutic assessment, a recent
study has shown that apomorphine pump seems to be an
interesting option for treating advanced PD patients in
therapeutic impasse, thanks to a brain glucose metabolism
study [9]. In 12 advanced PD patients, significant metabolic
changes were observed, with overall increases in the right
fusiform gyrus and hippocampus, alongside a decrease in
the left middle frontal gyrus before and after 6 months of add-
on apomorphine. Besides, consistent correlations between

significant changes in clinical scores, mainly assessed
according to UPDRS (Unified Parkinson’s Disease Rating
Scale) and MDRS (Mattis Dementia Rating Scale), and
metabolism were established. In the same way, metabolic (by
18F-FDG-PET) and volumetric (by Magnetic Resonance
Imaging-MRI) differences in the brain have been investigated
to evaluate neuroprotective effects of riluzole in HD [21].
Riluzole interferes with glutamatergic neurotransmission,
thereby reducing excitotoxicity and enhancing neurite for-
mation in damaged motoneurons [22]. It also has been re-
ported to inhibit voltage-gated sodium channels and to be
neuroprotective by suppressing astrocytosis [23]. (e 12
placebo-treated HD patients showed significantly greater
proportional volume loss of grey matter and decrease in
metabolic 18F-FDG uptake than the 11 HD patients treated
with riluzole in all cortical areas (p< 0.05). Not only brain
glucose metabolism was preserved in patients receiving
riluzole, but also a correlation between the progressive
metabolic consumption with worsening clinical scores
(UHDRS-I, Unified Huntington Disease Rating Scale) in
placebo group was reported. (ese findings corroborate that
antiglutamatergic drugs like riluzole could represent a neu-
roprotective strategy in HD and that 18F-FDG-PET may be
a valuable tool to assess brain markers of HD. Considered as
a neurodegenerative or neurodevelopmental disorder, recent
studies have shown the importance of treating schizophrenia,
a chronic and severe mental disorder characterized by ab-
normal social behaviour and failure in assessing reality.
Mostly, we distinguish positive (i.e. hallucinations, paranoid
delusions, beliefs), negative (i.e. apathy, lack of emotion, and
poor or nonexistent social functioning), and cognitive (dis-
organized thoughts, difficulty concentrating and/or following
instructions, difficulty completing tasks, and memory prob-
lems) psychotic symptoms; and that is why many structural
brain studies have correlated schizophrenia symptoms with
reproducible structural brain abnormalities. For instance,
progressive prefrontal grey matter atrophy is known to be
more related to pronounced negative symptoms [24]. Cere-
bral metabolic studies with 18F-FDG have an interest to define
brain regions associated with treatment-related improvement
of symptoms in schizophrenic patients. (us, increased rel-
ativemetabolic rate has been observed in the frontal lobe in 30
psychotic patients treated with olanzapine versus no medi-
cation subjects [11]. Such a difference has not been observed
in 17 patients previously exposed to antipsychotics [12].
Linking to the interest to treat schizophrenia as soon as
possible, Yoshimuta et al. have examined the effects of
olanzapine and identified brain regions associated with
a positive response in neuroleptic-naive first-episode
schizophrenic (FES) patients [10]. Glucose metabolism in
responders was significantly increased after treatment in the
left precentral gyrus, left postcentral gyrus, and left para-
central lobule and significantly decreased in the left hypo-
thalamus. (ese observations added to the positive
correlation between the changes in “Positive and Negative
Syndrome Scale” (PANSS) scores and metabolic changes
before and after treatment reinforce the beneficial action of
olanzapine in FES patients.
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4.2. Amyloid and Tau Imaging. Currently, the only FDA-
approved AD drugs such as donepezil, galantamine, or
memantine act partially on the symptoms of AD, without
treating the underlying causes of the disease (Table 2). A
worldwide quest is under way to find new treatments to stop,
slow, or even prevent AD. Many of the new drugs in devel-
opment aim at modifying the disease process itself, by
impacting one or more of its hallmarks, like extracellular
plaque deposits of the β-amyloid peptide (Aβ). For this
purpose, interest of immunotherapy has grown during the last
decade: antibodies are attractive drugs as they can be made
highly specific for their target and often confer a lower risk of
side effects in a vulnerable patient population during long-
term treatment as compared with small-molecule anti-Aβ
therapy. (us, monoclonal antibodies have emerged to lower
the beta-amyloid load in the brain, preventing the formation of
plaques or even carrying excess beta-amyloid out of the brain.
One of the earliest compounds evaluated for the treatment of
AD was the bapineuzumab, a humanized N-terminal-specific
anti-Aβ monoclonal antibody. Several PET studies measuring
Aβ load have been performed for the clinical evaluation of this
antibody, using radiopharmaceuticals developed from the
chemical structure of histologic dyes. (is noninvasive ap-
proach made it possible to track amyloid pathology longitu-
dinally, following the disease progression.

In a study conducted by Rinne et al. in 2010 in 28 AD
patients, the amyloid load was found to be reduced in the
brains of patients treated with bapineuzumab as compared
with placebo, as measured by binding of 11C-PIB to brain
amyloid with PET [25]. In contrast, in a second Phase II
study, bapineuzumab subcutaneous once monthly did not
demonstrate a significant treatment difference over placebo
on cerebral amyloid signal, assessed with 18F-florbetapir at
one year [26]. (en, two Phase III trials of bapineuzumab in
mild-to-moderate AD, supported by Janssen Alzheimer
Immunotherapy Research & Development and Pfizer Inc.
confirmed this result since bapineuzumab failed to reach the
clinical endpoint in Phase III, namely, the overall negative
clinical findings [27, 28]. (e other humanized anti-Aβ
monoclonal antibody that has been involved to large Phase
III clinical trials is solanezumab, recognizing the central
Aβ13–28 region [29]. Two large randomized double-blind
controlled Phase III trials tested solanezumab as a potential
treatment to slow the progression of mild-to-moderate AD,
EXPEDITION 1 and EXPEDITION 2, with, respectively,
1012 and 1040 patients randomized to 400mg of sol-
anezumab or placebo every 4 weeks for 80 weeks [30].
Solanezumab failed to improve cognition or functional
ability assessed with cognitive subscale of the Alzheimer’s
Disease Assessment Scale (ADAS-cog14) [31]. In both
studies, a total of 169 patients and 97 in EXPEDITION
1 and 2, respectively, underwent baseline and follow-up 18F-
florbetapir-PET scanning. (e composite SUVR for the
anterior and posterior right and left cingulate, plus right and
left frontal, lateral temporal, and parietal regions, combined
and normalized to the whole cerebellum, did no change
significantly in the solanezumab group or the placebo group
in either study. Many other anti-Aβ monoclonal antibodies
are under development, and among them is the first fully

human antibody, the gantenerumab that also binds spe-
cifically to Aβ plaques. (e effect of up to 7 infusions of IV
gantenerumab or placebo every 4 weeks on the Aβ amyloid
load as measured by 11C-PiB has been studied in patients
with mild-to-moderate AD in a preliminary PET study [32].
In 16 AD patients, the PET study has shown a dose-
dependent reduction in brain Aβ plaques, but again no
consistent treatment effects on cognitive measures were
noted. Ongoing Phase III trials on gantenerumab on pro-
dromal or mild stage of AD may clarify whether any re-
duction in brain Aβ deposits will successfully translate into
clinical practice benefit at well-tolerated doses of gante-
nerumab [33]. Overall, to date, most of clinical trials trying
to stop AD progression has led to reduce amyloid deposition
but has little beneficial effect on cognitive improvement.
(erefore, new approaches are being investigated, and
a preliminary PET study has shown that benfotiamine sig-
nificantly improved the cognitive abilities of 3 mild-to-
moderate AD patients despite the progression of brain am-
yloid assessed by 11C-PIB [30]. Benfotiamine is a synthetic
thiamine derivative preventing abnormal glucose metabolism
via multiple pathways [34]. It is so demonstrated in this study
that the alteration of cognitive capability is independent of
brain amyloid accumulation, which is consistent with pre-
vious results showing that the reduction of brain amyloid
accumulation by antibodies has little effect on the cognitive
ability and disease progression of AD patients. It will be
necessary to validate these results by randomized, double-
blinded, placebo-controlled clinical trials.

As β-amyloid peptide, aggregates of hyperphosphorylated
tau protein known as neurofibrillary tangles (NFTs) are one of
the hallmarks of AD and related disorders, called tauopathies.
Aggregates of tau are prominent targets for novel therapeutics
as well as for biomarkers for diagnostic in vivo imaging.While
immunotherapy targeting Aβ peptide gave poor results, tau-
based immunotherapy clinical trials have recently emerged
[35]. Promising results are expected from a new active vac-
cine, namely, AADvac1, targeting pathological tau protein in
Alzheimer’s disease [36]. In addition, the recent development
of tau-specific PET tracers has allowed in vivo quantification
of regional tau deposition and offers the opportunity to
monitor the progression of tau pathology along with cognitive
impairment. To our knowledge, any study with a tau PET
tracer as a reliable outcome measure of drug efficacy as-
sessment has been published yet. As explained by Okamura
and Yanai [37], the methods to image analysis with tau PET
tracer need to be optimized. Indeed, the variety of the dif-
ferent types of tau deposits is a crucial issue for the devel-
opment in tau PET tracers. Recent data evidence the existence
of off-target binding in areas of tau accumulation. (us,
a longitudinal observation of patients at baseline and post-
selegiline (MAO-B inhibitor) 18F-THK5351 PET scans has
tested the hypothesis that a reduction of MAO-B availability
also reduces 18F-THK5351 uptake. In this study, Ng et al.
reported thatMAO-B was an 18F-THK5351 off-target binding
site; hence, the interpretation of PET images is confounded by
the high MAO-B availability [38].

With the increasing interest in antitau therapies, tau PET
tracers will certainly be a tool to assess the therapeutic effects

Contrast Media & Molecular Imaging 5
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of these new drugs acting on tau load in the brain. For
that purpose, new tau PET tracers (i.e., 18F-MK-6240 and
18F-AM-PBB3) have recently been reported to have less off-
target binding than their predecessors [39].

4.3. Neuroinflammation Imaging. Initially discovered in
Alzheimer’s disease (AD), where activated microglia cells
were found in postmortem nearby senile plaques (Table 3)
[40], it is now clearly established that microglial activation
and abnormal protein deposition take part in the process of
neurodegenerative disorders such as AD, PD, ALS, and MS
[4]. (us, glial inflammation has heightened interest in the
rapid discovery of neuroinflammation-targeted drugs [41].
Given the fact that anti-inflammatory drugs are able to
suppress peripheral inflammation, many authors in-
vestigated their potential use for central nervous system
(CNS) inflammation [42–44]. Nevertheless, only few clinical
studies have evaluated, thanks to molecular imaging, and
apart from clinical parameters, the ability of these drugs to
reduce glial cell-propagated inflammation. In parallel, over
the last 20 years, microglia PET imaging has successfully
widened through the development of radiopharmaceuticals
and the identification of several molecular targets of neu-
roinflammation. Among these targets, receptors including
the translocator protein-18 kDa (TSPO) [45], cannabinoid
receptor 2A [46], and adenosine receptor 2A [47, 48] and
enzymes such as β-glucuronidase [49] have been targeted to
evaluate the scope of microglia PET imaging in neurode-
generative disorders. To our knowledge, only TSPO PET
imaging has been used to assess therapeutic efficacy in
neurodegenerative disorders. Drugs evaluated in these
studies include specific therapeutics which have already
granted FDA licensure like interferon beta, [50] glatiramer
acetate, [51] and fingolimod [52, 53] in MS, nonspecific
drugs which exert anti-inflammatory effects, [54, 55] and
new therapeutical class-targeting biochemical pathways
involved in neurodegenerative disorder such as the hy-
drolysis of neuroprotective endocannabinoid [56] and ox-
idative stress [57]. Microglial activation plays a central role
in maintaining the central chronic inflammation in MS [58].
MS is a chronic autoimmune disease of the CNS where the
migration of myelin-reactive T-cells into the CNS is followed
by microglial activation, recruitment of peripheral macro-
phages, and oligodendrocytes destruction [59]. Fingolimod
blocks the egress of lymphocytes from secondary lymphoid
tissues and thereby prevents their entry into the CNS [60]. In
line with its mechanism of action, PET imaging showed that
fingolimod reduced microglial activation [52, 53], especially
in T2 lesion area [53]. Glatiramer acetate, a synthetic
polypeptide resembling myelin basic protein, acts further
downstream deceiving immune system and inducing im-
munomodulatory (2 cells [61]. Ratchford et al. [51] pro-
vided proof of concept that microglia PET imaging with
11C-PK11195 could also be a tool to assess disease-modifying
drugs for relapsing-remitting multiple sclerosis (RRMS)
efficacity. Indeed, radiopharmaceutical binding potential per
unit volume was statistically decreased in the whole brain
after one year of glatiramer acetate.(is result supported the

in vitro evidence of its mechanism of action in which an
inhibition of transformation to an activated microglia form
could be responsible for therapeutic effects [61]. In other
neurodegenerative disorders, TSPO PET studies have not
achieved convincing results. Indeed, authors reported no
significant difference [57] in microglial activation or a slight
decrease [56] in TSPO density and sometimes an increase in
TSPO tracer binding after therapeutic challenge [55].

4.4. Neurotransmission Imaging. During the past decades,
numerous neurotransmitter systems have been identified
and have been demonstrated to be directly involved in NDD.
In vivo neuroimaging with PET using labeled ligands can
visualize the various receptor and transporter systems and
measure in quantitative terms their densities and binding
and occupancy status (Table 4). (e importance of PET in
receptor-system-related drug research has increased tre-
mendously in recent years.

One of the key monoamine neurotransmitters, the do-
paminergic transmission plays a major role in neurological
and psychiatric disorders such as PD, HD, and SCZ. Al-
though mainly known to be involved in motor feature,
dopamine is also involved in cognition and emotion. To
investigate pre- and postsynaptic functions, PET tracers
have been developed to measure dopamine synthesis
and transport and postsynaptic receptors. For measur-
ing dopamine synthesis, the most commonly used tracer is
18F-DOPA, whereas for dopamine transport, several ra-
diolabeled tropane analogs have been developed. For
postsynaptic dopamine receptors, divided on five subtypes
of receptors, 11C-raclopride is the common tracer for
D2/D3, whereas 18F-fallypride is mainly used for the ex-
ploration of D2 [62]. In clinical practice, it is well admitted
that the extent of dopaminergic neuronal loss in the sub-
stantia nigra in PD patients is measured in vivo using 18F-
DOPA considered as the gold-standard for monitoring the
course of PD [63]. Unlike for other physiopathological
pathways cited above as neuroinflammation or amyloid
aggregation, dopamine molecular imaging has already
widely been used for a long while to assess drug therapeutic
effectiveness in PD essentially. Actually, it could be
explained first by the fact that a treatment allowing resto-
ration of dopamine neurotransmission is available for years
for PD patients and second by direct dopaminergic trans-
mission radiotracers availability. In 1990s, PET studies with
11C-raclopride have demonstrated the downregulation of
the striatal D2 receptor binding in PD related to long-term
treatment. Indeed, compared to the baseline, 11C-raclopride
binding was significantly decreased in the putamen and
caudate nucleus in PD patients treated for 3–5 years with
L-DOPA or lisuride, whereas no change was observed in D2
density 3–4 months posttreatment [64, 65]. More recently,
11C-raclopride PET studies have evaluated the relationship
between clinical improvement following a single oral dose
of levodopa and drug-induced synaptic dopamine increases.
A significant increase of striatal DA in both caudate and
putamen after levodopa administration was correlated
with the improvement of rigidity and bradykinesia, whereas
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tremor and axial symptoms are not found to be related to
this striatal synaptic dopamine level [66]. (is last study
indicates that pathways other than nigrostriatal pathway
may be implicated in the pathogenesis of parkinsonian
tremor and axial features and so other treatments are ex-
pected. In parallel, dopaminergic system molecular imaging
has broadly been investigated in levodopa-induced dyski-
nesias (LID) field [67]. LIDs are associated with increased
and fluctuating synaptic dopamine levels following levodopa
administration [68]. Finally, dopamine in vivo imaging has
extensively been used to assess safety after neural trans-
plantation [69–73].

Finally, PET imaging in clinical transplantation trials can
provide additional valuable information alongside clinical
observations. Although being used in almost ever case in PD
study, dopamine transmission in vivo imaging has measured
brain MAO-B inhibition in patients with AD and elderly
controls after oral administration of sembragiline [74]. In
order to assist in dose selection of the Phase 2 sembragiline
study in patients with moderate AD, Sturm et al. had to
determine the relationship between exposure to Sembragi-
line and the inhibition of MAO-B enzyme activity in the
brain, thanks to 11C-L-Deprenyl-D2.

In addition to the dopamine neurotransmission, radio-
ligands have been developed to target cholinergic, seroto-
ninergic, or gabaergic transmissions. (anks to two
cholinergic system tracers (11C-PMP and 11C-nicotine), we
can see the acetylcholinesterase inhibition by the galantamine
up to 12 months in 18 mild AD patients [75]. (e inhibitory
c-aminobutyric acid (GABA) is known to be involved in
a number of neuropsychiatric disorders including schizo-
phrenia, and that is why, the tiagabine effect, which increases
synaptic GABA, has been investigated with 11C-Ro15-4513 in
12 male participants to show its potential involvement in
schizophrenia. Tiagabine produced significant reductions in
hippocampal, parahippocampal, amygdala, and anterior
cingulate synaptic tracer binding, suggesting that acute in-
creases in endogenous synaptic GABA are detectable in the
living human brain using 11C-Ro15-4513 PET [76]. (en, an
in vivo impairment in GABA transmission in schizophrenia
has been recently demonstrated with 11C-flumazenil after
administration of tiagabine, in 17 off-medication patients with
schizophrenia and 22 healthy comparison subjects [77]. Fi-
nally, anectodal evidence suggests that serotonine PETimaging
could also be interesting to assess buspirone efficacy in PD [73].

5. Discussion

As PET has become increasingly available and as the range
of available brain radioligands continues to expand, the
use of PET neuroimaging has increased in drug develop-
ment assessment in recent years. To date, the neurotrans-
mitter system which has been most widely studied in
humans is the dopaminergic system, mainly explored in
movement disorders notably, thanks to 18F-DOPA or even
11C-raclopride. (ese dopaminergic relevant biomarkers
allowed to improve our knowledge about why PD patients
develop daily fluctuations in mobility and troublesome in-
voluntary movements after several years of dopamine

replacement therapy. In vivo dopamine imaging could also
help to improve PD patient selection in future clinical trials
by selecting those with better predicted outcomes. Another
physiopathological approach has surged recently with
the development of PET amyloid radioligands. Developed
and approved for clinical use as important diagnosis and
prognostic biomarkers for AD or mild cognitive impairment
(MCI) patients, amyloid tracers are also being used to
evaluate therapeutic interventions. (us far, clinical trials of
promising treatment for AD have failed to significantly stop
the disease progression [78]. Surprisingly, while almost all
research effort has been focused on antiamyloid therapy for
AD, a recent PETstudy shows that the alteration of cognitive
capability is independent of brain amyloid accumulation,
and thus, also other physiopathological ways have to be
explored to try to reduce AD progression [30].

(us, it may be of interest to provide perspectives on new
targets for which PET tracers are currently under devel-
opment and which are also considered relevant for thera-
peutic management of NDD:

(i) Purinergic ion channel receptors, and especially P2X7
receptor (P2X7R), are known to be overexpressed in
activated microglia in animal models of neurode-
generative diseases, such as AD [79], ALS [80], or HD
[81], and might be a promising target to assess
therapeutics, especially since the GSK1482160,
a strong P2X7R antagonist, has been evaluated in
Phase 1 clinical study by GSK company [82]. Labeled
with carbon-11, 11C-GSK1482160 is a promising
radioligand for neuroinflammation PETimaging, and
one would think that this P2X7R antagonist could be
an excellent candidate for a theranostic approach.

(ii) Regarding the protein accumulation, three major
types of aggregated hyperphosphorylated proteins
(amyloid-beta, tau, and alpha-synuclein (α-syn)) are
involved in the pathogenesis of a variety of neuro-
degenerative diseases, referred to as proteinopathies.
Indeed, PD, Lewy body dementia, and multisystem
atrophy are part of a family called synucleinopathies.
We have described the importance of amyloid-beta
and tau tracers and the criticality of developing se-
lective PET tracers for each type of aggregate above,
in order to assess their relative contribution in
pathogenesis. α-Syn appears undoubtedly to be an
excellent target for PET radiotracer development for
PD and other synucleinopathies. α-Synuclein in-
clusions (Lewy bodies) appear before dopaminergic
changes, (i.e., premotor PD) so imaging α-syn could
better predict premotor PD [83].While success in the
development of selective α-syn PET imaging agents
has not been realized yet, α-syn radiotracer could be
a potentially useful surrogate marker in clinical trials.
Work is ongoing in multiple laboratories throughout
the world, and AC Immune and Biogen companies
have identified two lead compounds designed to
selectively bind to α-syn aggregates.

(iii) As mentioned earlier, numerous neurotransmitter
systems have been identified and allowed to assess
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therapeutics. Among them, the cholinergic system
could be of interest for the follow-up of NDD and
their treatment. Degeneration of cholinergic neurons
is well described in pathophysiology of AD and is
associated in several reports with a significant loss of
α7 nicotinic acetylcholine receptor (α7-nAChRs) in
the cortex and hippocampus of patients. α7-nAChR
mediates various brain functions and represents an
important target for drug discovery. In clinical trials
with selective α7 agonists, activation of the receptor
improved cognitive performance in patients with
schizophrenia [84].(e recently developed 18F-ASEM,
a highly α7-nAChR specific and selective radiotracer
for brain PET, opens new horizons for studying
α7-nAChRs in the living human brain.

Finally, PET imaging in NDD therapeutic development
assessment can lead to (i) the study of the role and density of
receptor involved, (ii) the study of the mechanism of action
of therapeutic drug, and (iii) the optimization of new
treatment development by reducing costs and the time re-
quired for new drug development.

Nevertheless, the expansion of PET imaging as a reliable
biomarker for in vivo treatment evaluation faces the critical
lack of effective treatment for NDD patients, especially for
AD. Concurrently, new potential applications of these ra-
diotracers initially developed for central application have
shown their interest in the field of personalized medicine in
numerous peripheral diseases, including cancer. 18F-DOPA
illustrates this concept since it is a well-known excellent tracer
for imaging neuroendocrine tumors (NETs), including
pheochromocytoma, extraadrenal paraganglioma, medullary
thyroid carcinoma, gastro-entero-pancreatic (GEP), or NE
tumors (reviewed in [85]). In NET, 18F-DOPA may be par-
ticularly useful in patients with negative 68Ga-somatostatin
analogs. More recently, TSPO PET imaging has been shown
to assume a promising involvement in the development of
diagnostic strategies in cancer. More recently, TSPO has been
introduced as a possible molecular target for peripheral sterile
inflammatory diseases PET imaging, making this protein
a potential biomarker with the aim of addressing disease het-
erogeneity, assisting in patient stratification, and contributing to
predicting treatment response [86–88]. Finally, amyloid tracers
such as 18F-florbetapir or 11C-PIB may be promising PET ra-
diotracers for imaging amyloid deposit in cardiac amyloidosis
[89, 90], considering that they also exhibit specific affinity for
myocardial amyloid fibers.

It would be consider that this field of investigationwill grow
up in the context of personalized and/or stratified medicine.

6. Conclusion

(is paper has reviewed findings from PET neuroimaging
studies which have contributed to assess efficacy of drugs in
NDD. In the last decades, molecular imaging with PET led to
the progress in the development of new drugs, thanks to
multiple molecular probes imaging biological, functional,
and pathological conditions of NDD. Brain PET imaging
allows a multiple approach of the disease by assessing several

physiopathological pathways like neuroinflammation, neu-
rotransmission, or protein aggregation in the disease. (is
multiple approach allows to assess drug efficacy from dif-
ferent perspectives and forms the link between clinical and
physiopathological conditions. Complementary to the re-
cent concept called “theranostics” referring to the use of
molecular targeting vectors labeled either with diagnostic or
therapeutic radionuclides for diagnosis and therapy, re-
spectively, brain PET imaging seems to be a relevant and
attractive tool in SNC drug development that could help in
therapeutic decision-making within the growing framework
of precision medicine.
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