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Abstract

Biofilm infections are extremely hard to eradicate and controlled, triggered and

controlled drug release properties may prolong drug release time. In this study, the

ability to externally control drug release from micro and nanoparticles was

investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and

magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both

micro/nanoparticles were observed to have narrow size distributions. We

investigated and compared their passive and externally triggered drug release

properties based on their different encapsulation structures for the nano and micro

systems. In passive release studies, CIP demonstrated a fast rate of release in first

2 days which then slowed and sustained release for approximately 4 weeks.

Significantly, magnetic nanoparticles containing systems all showed ability to have

triggered drug release when exposed to an external oscillating magnetic field

(OMF). An experiment where the OMF was turned on and off also confirmed the

ability to control the drug release in a pulsatile manner. The magnetically triggered

release resulted in a 2-fold drug release increase compared with normal passive

release. To confirm drug integrity following release, the antibacterial activity of

released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP

maintained its antimicrobial activity after encapsulation and triggered release.

Introduction

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative bacterium belonging

to the bacterial family pseudomonadaceae. P. aeruginosa is responsible for many

types of infections which are difficult to treat, such as ulcerative keratitis, skin and
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soft tissue infections, pneumonias and urinary tract infections [1]. According to

the report of United States Cystic Fibrosis (CF) Foundation Patients Registry

(2004), 57.3% of all reported respiratory cultures in CF patients contained P.

aeruginosa [2]. Ciprofloxacin hydrochloride (CIP) is a widely used antibiotic drug

against a broad range of clinically relevant Gram-negative and Gram-positive

pathogens infections. In initial stage of administration, oral CIP appeared to be

effective. However, infections are often persistent and difficult to clear [3]. For

example, urinary tract infections required twice daily at doses of 250 mg or once-

daily extended-release ciprofloxacin; a current treatment regimen of cystic fibrosis

requires ciprofloxacin at least twice-a-day administration at a dose of 300 mg for

alternating 28-day on-off cycles [4]. It was reported that a sustained released

antibiotic formulation may reduce inconvenience of patient and increase

therapeutic efficacy [5, 6]. In addition, aminoglycoside therapy of cystic fibrosis

lung infections may be realized if delivery of sufficient drug at sustained levels in

and around the target infections could be achieved [7].

Poly (lactic-co-glycolic acid)-PLGA is one of the most successfully used

biodegradable polymers for controlled drug delivery systems [8–13]. As a result,

there is a significant amount of reported research on PLGA micro/nanoparticles

for long term release using (water-in-oil-in-water) W/O/W methods [14, 15].

Both PLGA micro and nanoparticles have potential advantages depending on

drug properties, disease characteristics, and desired administration requirements

[12, 16]. If disease treatment focuses on delivery to the deep lung as an inhalation

formulation, inhaled particles should have aerodynamic diameters between 1mm

and 5mm [17].

Magnetic nanoparticles (MNPs) have drawn attention for their intrinsic

magnetic properties and have therefore been applied as targeted drug delivery

systems [18–20] or as hyperthermia agents in the field of cancer treatment [21–

22]. When placed in an external applied magnetic field, MNPs show super-

paramagnetism [23]. This enables MNPs to potentially be targeted to a desired

location of human body [24]. Furthermore, when placed in an external magnetic

field, MNP can respond by causing local hyperthermic conditions [25] and/or

result in mechanical disruption of polymer materials to cause drug release [26].

Previously we reported ability of magnetic nanoparticles to cause disruption of a

biopolymer [26]. In addition, we also demonstrated that these effects could be

achieved at much lower magnetic fields than previously reported with little to no

hyperthermia or heating of the surrounding tissues under OMF [26]. Several

researchers have focused on magnetically triggered release. Pradhan et al. [27]

described thermosensitive magnetic liposomes for use in magnetic hyperthermia-

triggered drug release to treat by thermo-chemo-therapy in cancers. A recent

study reported by Hu et al. [28] demonstrated that a Yolk/shell capsules

containing a volume/hydrophobicity transformable core and an ultra-thin silica

shell have been prepared which can exhibited a triggering size shrinkage causing

solid shells destruction and drug burst release when an external magnetic field

applied. Moreover, incorporation of superparamagnetic particles into PLGA

particles provides more opportunities for targeting efficacy and triggered release
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property. Recently, paclitaxel (PTX) and magnetic nanoparticles (MNPs)

coencapsulated, PLGA-L-lysine-D-galactose (PTX-MNP-PLGA-Lys-Gal) nano-

particles preparation has been reported [28], and burst release of PTX can be

triggered under near infrared (NIR) irradiation. Surprisingly, there is relatively

few research papers published on the externally triggered drug release from PLGA

particles [29–31]. Moreover, there is no references comparing triggered drug

release characteristics between PLGA micro and nanoparticles under low energy

magnetic fields. In this study, CIP encapasulated PLGA magnetic micro or

nanoparticles have been prepared and their release properties under different

condition have been investigated.

By combining the sustained release and biocompatibility advantages of PLGA

micro or nanoparticles with the attractive properties of magnetic nanoparticles, a

controlled and triggered drug delivery system could be developed. In these studies,

CIP and MNP loaded into PLGA micro/nanoparticles allowed the investigation of

sustained and triggered release properties of this system.

Materials and Methods

Materials

Poly (lactic-co-glycolic acid, 50:50, Mw,85,000) was purchased from

Birmingham Polymer Inc. (USA). Ciprofloxacin?HCl was purchased from Letco

Medical (USA). The magnetic nanoparticles used in these studies were nano-

screenMAG-CMXR (Chemicell, Berlin, Germany), an aqueous dispersion of

magnetic-fluorescent nanoparticles with a hydrodynamic diameter of 200 nm.

The particles consist of a magnetite core which is first covered by a lipophilic

fluorescence dye. A second layer envelops the particle with a hydrophilic polymer

(carboxymethyl-dextran) which protects the particles against aggregation. In the

manuscript we abbreviate these nano-screenMAG-CMXR particles as CMX. All

other chemicals were used as HPLC grade or extra pure grade.

Preparation of CIP encapsulated in PLGA magnetic particles

CIP encapsulated in PLGA magnetic micro or nanoparticles were prepared by

water-in-oil-in-water double emulsion evaporation method, sonicator 4000

(Misonix, USA) and polytron PT-MR 2100 benchtop homogenizer (Kinematica

AG, CH) were used. Briefly, 310mL CIP (20 mg/ml) and 90mL CMX (25 mg/ml)

was added dropwise into 4 ml Dichloromethane (DCM) containing 40 mg PLGA

and sonicated for 2 min at 40% amplitude (24 cycles of 5 s) to get the primary

water in oil emulsion. Next, to prepare CIP encapsulated in PLGA magnetic

nanoparticles, 20 ml 2% Polyvinyl Alcohol (PVA) was added and sonicated in an

ice bath for 2 min at 40% amplitude (24 cycles of 5 s) for stabilization of the

emulsion. For CIP encapsulated in PLGA magnetic microparticles preparation,

the secondary emulsification was performed by homogenizing the water-in-oil

(W/O) emulsion with 20.0 mL 2% PVA solution at 15,000 rpm 10 min. All the
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samples were placed in orbital shaker over night to evaporate the organic solvent

at room temperature. Washing the harvested samples with double distilled water

was performed and then centrifuged at 4,000 rpm for 10 min. This washing

procedure was repeated three times. For drug loading efficiency testing some

samples were freeze-dried for 3 days.

Particle size measurement

The size distribution of CIP encapsulated PLGA nanoparticles was determined by

Dynamic light scattering (DLS) (Zetasizer Nano ZS, Malvern, UK). We used

Sympatec Laser diffraction HELOS system equipmed with the cuvette attachment

for CIP encapsulated PLGA microparticles size measurement (Sympatec,

Germany).

SEM observation

The surface and morphology of particles were evaluated by Zeiss Supra 40 VP

Scanning Electron Microscope (SEM) (Carl Zeiss, Germany). Samples were

prepared by placing a droplet of an aqueous suspension onto a carbon tape and

dried over night.

Drug content and loading efficiency

To determine the drug content, 10 mg particles were dissolved in 70%

dimethylsulfoxide (DMSO) and sonicated for 2 h. CIP concentration was

measured using UV-spectrophotometer (Tecan infinite M200, Switzerland) at

276 nm. Drug content and loading efficiency were as follows:

Drug content ~
drug weight in particles
total weight of particles

� �
|100

Loading ef f iciency~
actual loading

theoretical loading

� �
|100

The theoretical loading means the point where all the supplied ciprofloxacin

was encapsulated in the spheres.

Drug release study

For normal drug release (i.e. without magnetic fields), 100 mg particles was

suspended in 1 ml phosphate buffered saline (PBS, pH 7.4, 0.1 M).1 ml CIP

encapsulated in PLGA micro or nanoparticles were placed in dialysis bag

(MWCO:12,000–14,000) in 15 ml microtubes with an additional 9 ml PBS buffer,

yielding a total volume of release medium of 10 ml. Release was performed in an

incubated shaker at 37 C̊ and 100 rpm. At regular intervals, to ensure sink
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conditions were maintained, 1 ml samples was taken and replaced with an equal

volume of fresh PBS. Triggered released using an external magnetic field was also

assessed with the same method The microtube was placed in a custom-built

oscillating magnetic field apparatus (Magnetherm, NanoTherics Ltd, UK) for

exposure 1 to 6 hours. The nominal frequency of the oscillating magnetic field

was 355 kHz with an amplitude of 0.56 kA/m, and a DC power supply voltage was

26V. 500ml samples were taken and replaced with an equal volume of fresh PBS at

predetermined time intervals. Samples were centrifuged to then further purified

through magnetic MACS Separation 20m columns to remove any remaining

magnetic particles (Miltenyi Biotec GmbH, USA) and allowing collection of the

released CIP. The concentration of released drug was measured with UV-

spectrophotometer at 276 nm. All experiments were performed in triplicate. The

cumulative CIP release was calculated as:

Cumulative CIP release(%)~(Ve
Xn{1

1

CizV0Cn)=m|100

Where Ve is the amount of release media taken out every time (1 ml), V0 is the

amount of release medium (10 ml), Ci is the concentration of CIP released from

particles at intervals of i, m is the mass of drug used for release and n is the

replacement times.

Antibacterial activity of ciprofloxacin-encapsulated PLGA particles

P. aeruginosa PAO1 was kindly gifted by Dr. Marvin Whitely, from the

Department of Molecular Genetics and Microbiology at The University of Texas

at Austin. P. aeruginosa biofilms were developed as described by Bandara [32]. In

brief, P. aeruginosa suspension 100ml (107organisms/ml) was dispersed into wells

of 96-well plate at time 0 and incubated in an orbital shaker (75 rpm) at 37 C̊ for

90 min for the adhesion phase. Then, wells were washed with sterile PBS twice,

and 200 ml of media were added and cells were incubated for 24 h (37 C̊, 75 rpm)

for the P. aeruginosa biofilm formation phase. At the end of incubation, the wells

were again washed twice with sterile PBS. 198ml of media and 2ml of serially

diluted test and control samples were added to the preformed mature P.

aeruginosa biofilms and incubated for 24 h (37 C̊, 75 rpm). Following incubation,

the supernatant was removed, the wells were washed twice with sterile PBS and a

standard XTT reduction assay was performed as described by Jin et al [33] to

measure the metabolic activity of biofilms. The color changes were measured with

a microtiter plate reader (Tecan infinite M200, Switzerland) at 492 nm. All assays

were carried out at least in triplicate on three different occasions.

Statistics

Significant differences were calculated using a paired Student’s t-test. Values of

p,0.05 were considered significant.
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PLOS ONE | DOI:10.1371/journal.pone.0114271 December 5, 2014 5 / 17



Results and Discussion

Particle Characterization

CIP encapsulated in PLGA magnetic particles were prepared using a double

emulsion technique. Two different particles sizes were produced using either

sonication or homogenization as shown in Table 1. Nanoparticles and micro-

particles obtained had average diameters of 221 nm (sonication) and 1.5mm

(homogenization) respectively. Fig.1 shows the typical particle size distribution of

CIP encapsulated in PLGA micro or nanoparticles. These results are consistent

with the particle size analysis shown in Fig.2A and B. The size distributions were

between 95–477 nm for the nanoparticles and 0.5–6mm for the microparticles

respectively (Fig.2A and B). PDI of both nano- and microparticles were less than

0.5, indicating size distributions for both nano- and micro- particle were narrow.

According to previously published data [34], 2% PVA was chosen as an

emulsion stabilizer for preparation of PLGA particles. It can help improve the

entrapment efficiency in O/W emulsion methods [35, 36]. Although PVA may

result in toxicity in certain conditions, recent evidence suggest magnetic nano

particles are less or no toxic when PVA coated [37, 38]. Both nano and

microparticles were spherical in morphology with relatively smooth surfaces

(Figure2 A, B), which was in accord with previous reports [35]. As shown in

table 1, the loading efficiency was 76.9% for microparticles, while it was only

54.7% for nanoparticles. Compared with microparticles, the lower internal

dimensions of nanoparticles were attributed as the main reason of lower loading

efficiencies. CIP, a water soluble drug, may have increased drug loss during

sonication and second emulsion steps according a literature report [39]. However,

both of the loading efficiencies observed in our studies were.50%, and were

considered successful.

Passive Drug release from PLGA particles

CIP release profiles from the various particle systems produced were investigated.

Under passive conditions, prolonged release for 30 days from all PLGA particles

was observed. Surprisingly, as shown in Figure 3A, similar release kinetics were

observed between nanoparticles and microparticles. They both showed initial

burst release in the first 2 days, release rates (total release amount of drug per hour

or day) of nanoparticles and microparticles were 304.4 mg/day and 340.8 mg/day

respectively. Following this ‘‘burst release’’ the next 4 weeks exhibited sustained

release from the particles. The two systems showed linear release rates from 2–14

Table 1. Characterization of CIP and CMX encapsulated PLGA particles.

Drug Contents Loading Efficiency Particle Size

(%, w/w) (%, w/w) (Mean ¡ SD)

nanoparticles 2.78 54.67 220.9+7.4 nm

microparticles 3.65 76.88 1.45¡0.74mm

doi:10.1371/journal.pone.0114271.t001
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days, with release rate of 146.8 mg/day for the nanoparticles and 125.6mg/day

microparticles. The nanoparticles had slightly greater release rates from 2–14 days

than the microparticles as expected, due to surface area differences. These

different rates lead to significant differences in total drug release for the two

systems, 63.4% versus 41.3% from 2–14 days. After 14 days, there appeared to be

little difference in release rates between the two systems. For the microparticles,

Figure 1. Particle size distribution of CIP encapsulated in PLGA magnetic microparticles (A) and
nanoparticles (B).

doi:10.1371/journal.pone.0114271.g001
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drug release was linear up to the 20th day, during which the release rate was

106.6mg/day. However, over the next 10 days, drug release from the microparticles

was observed to decrease to 18.9mg/day. For nanoparticles, after the 15th day, drug

release was 18.5mg/day. The possible reason of the initial burst release was

unencapsulated weakly adhering drug on the microparticles and nanoparticles

surfaces [40, 41]. Nanoparticles showed the higher total drug release, 95% after 30

days. We hypothesize that the differences in the surface areas of the nano and

microparticles may explain this. The surface area of a single sphere is pd2 (d is

diameter of sphere) and the volume of a sphere is pd3/6; thus, the specific surface

area per unit volume (Sv) for a single spherical particle is SV~ 6
d; The specific

surface area per unit mass (Sw) for a single spherical particle is as below:

Sw~
Sv
rs

~
6

d � rs

Here rs is the density of sphere. We assumed the density of micro and

nanoparticles was equal and calculated the ratio of theoretical specific surface of

Figure 2. Surface morphology of CIP encapsulated PLGA magnetic particles by SEM. (A) CIP encapsulated in PLGA magnetic nanoparticles (B) CIP
encapsulated in PLGA magnetic microparticles (C) CMX.

doi:10.1371/journal.pone.0114271.g002
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micro and nanoparticles. Using the formula above, the theoretical surface areas of

the nanoparticle system was calculated to be 7 fold higher than the available

surface area of the microparticles. Thus, the nanoparticles, with significantly

higher surface areas would be expected to release drug more rapidly from the

surface. However, it was suspected that the PLGA microparticles may have thinner

walls than their nanoparticle counterparts. For example, as shown in the SEM

micrographs, under certain treatment conditions, breakage of the walls occurred

with the microparticles but not the nanoparticles (Fig. 4A and B). The thinner

walls may explain why the nanoparticle release was not orders of magnitude

Figure 3. Drug release from PLGA magnetic micro/nanoparticles. (A) Drug release in PBS buffer from PLGA magnetic micro/nanoparticles at 37˚C and
shaking at 100rpm. (B) Drug release from PLGA magnetic micro/nanoparticles under OMF and control drug release from PLGA magnetic micro/
nanoparticles at 20˚C without OMF. (C) Drug release from PLGA magnetic microparticles under OMF for initial 4hours then released in PBS buffer at 37˚C
and shaking at 100 rpm for another 15 days. (D) Drug release from PLGA magnetic nanoparticles under OMF for initial 4 hours then released in PBS buffer
at 37˚C and shaking at 100 rpm for another 15days.

doi:10.1371/journal.pone.0114271.g003
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different from the microparticle release as would be predicted by the specific

surface areas.

As the encapsulation method for ciprofloxacin within the particles was via a W/

O/W technique, we suggest that the drug release will mainly occur via drug

diffusion out of particle surface, and partly due to PLGA hydrolysis mediated

particle erosion/surface poration as described previously by Hirenkumar et al

[42]. It can be confirmed by fitting data with Ritger-peppas model, which is often

used to describe drug release from matrix systems of various geometries as the

formula below:

Mt

M?
~ktn

Figure 4. Surface morphology of CIP encapsulated PLGA magnetic particles after trigger release under OMF for 4hours by SEM. (A) CIP
encapsulated in PLGA magnetic nanoparticles after trigger release under OMF. (B) CIP encapsulated in PLGA magnetic microparticles after trigger release
under OMF (arrow indicating crack on the surface of microparticles). (C) CIP encapsulated in PLGA microparticles after trigger release under OMF.

doi:10.1371/journal.pone.0114271.g004
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Where t is release time, Mt/M‘ denotes the fraction of drug released at time t;K

is the Ritger-Peppas release rate constant; n is indicated the mechanism of drug

release. By fitting data using Ritger-Peppas model, the formulations of particles

were as below:

ln (Mt=M?)~0:55lntz2:59(R2~0:98) for microparticles;

ln (Mt=M?)~0:46lntz3:08(R2~0:96) for nanoparticles

Because the values of n were found between 0.45–0.89, thus both diffusion and

polymeric chain relaxation were found responsible for drug release [43]. When n

is close to 0.45 indicated that diffusion was the dominating mechanism of release.

All the data was fitted using Origin8.0, which confidence interval of the default

was over 95%.

In addition to the model drug, magnetic nanoparticles were also loaded into the

PLGA particle systems. To confirm MNPs incorporation into the PLGA particles,

both magnetic separation and size separation steps were performed on the formed

particles. Following magnetic separation through the magnetic columns (as

described in the methods section), a 0.22mm filter was used to separate unbound

CMX from the CIP encapsulated in PLGA magnetic particles. Since the MNP we

selected for these investigations were also fluorescent, they were quantified at

excitation 578 nm, emission 613 nm and confirmed that magnetic nanoparticles

has been incorporated into PLGA micro/nanoparticles.

Magnetically Triggered Drug release from PLGA particles

As introduced above, MNPs can be externally manipulated in several different

ways. In these experiments we wanted to test the hypothesis that MNPs co-loaded

PLGA particles could be used to triggered drug release or increase release rates

using an external low energy oscillating magnetic field. In these studies, drug

release was performed in PBS buffer at 20 C̊ as a control (OMF treatment group

was water cooled in the magnetherm, temperature is 20 C̊). Separately,

microparticles and nanoparticles suspended in dialysis bag within a 15 ml

microtube with PBS buffer were exposed to oscillating magnetic fields maintained

water cooled in the magnetherm. Both particle types showed higher percentage

drug release under OMF than controls (Fig 3C). It was notable that drug release

percentage of microparticles was higher than nanoparticles after 4 hours. And this

phenomenon did not show in control group. Surface cracks were observed on

microparticles following OMF treatment (Fig. 4B) but were not observed in

control particles. It appears, therefore, that increased release of drug from the

microparticles during OMF induced drug release was caused by the mechanical

poration of the microparticles by the activated MNPs. Microparticles surface walls

may also have been sufficiently thin to allow poration by mechanical and/or

thermal forces generated by the MNPs. However, the surfaces of the nanoparticles

exposed to the same OMF were observed to be unbroken and uniform under SEM

analysis. The total released drug of microparticles and nanoparticles under OMF

at 6 hours were 23.9% and 22.2% respectively.

Triggered-Release of Drug from PLGA Micro and Nanoparticles
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Poration of the particles may influence the drug release rates after the removal

of the magnetic field, and could have enabled the particles to rapidly empty the

drug contents. Thus, to test if micro/nanoparticles retained their sustained release

ability after OMF treatment, we conducted drug release experiments from the

PLGA magnetic particles after 4 h OMF treatments. Samples of micro/

nanoparticles after OMF treatment were placed into dialysis bags with PBS buffer

as the method to monitor drug release. Both micro/nanoparticles demonstrated

sustained drug release profiles for 15 days (Fig. 3C and D). Drug release

percentage of microparticles was higher than nanoparticles from 1 to 7 days. The

total release amount under OMF was 89.4%, and higher than passive release from

microparticles as reported above (80.3%). In future applications, it could be

foreseeable that the drug loaded PLGA system described here could be targeted to

a certain location and then, once desirable, drug release at high rates could be

initiated using the external OMF to ensure therapeutic effect at the site of action.

To further investigate this controllable release property, we conducted a ‘‘turn-

on and -off switch’’ drug release experiment (Fig. 5). In these studies, an OMF

was applied to the particles from 0–1 hours, turned off from 1–2 hours, switched

on at 2–3 hours and so on, until 6 hours was reached (Fig. 5A). A control

experiment of drug release was conducted in the same condition from 1 to 6 hour

keeping OMF off as shown in figure 5B. It can be seen that during the ‘‘off’’ time

periods, there was low or even no drug release observed. This phenomenon was

also seen in control group, the total drug release amount was less than 5%. Drug

release observed during the first ‘‘off’’ period was attributed to residual drug also

observed in the control experiments. A significant increase in drug release during

the ‘‘ON’’ time periods was observed, especially the first ‘‘on’’ period where 10%

of drug was released, with the release rate 55.5mg/h for the microparticles and

52.3mg/h for the nanoparticles. While in the next two ‘‘ON’’ stage, average 4% of

total drug was released less than the amount of first ‘‘ON’’ period. Because of

partial drug weakly adhered to the surface of particles, drug was easily released

under the effect of OMF and resulted in burst release in the first ‘‘ON’’ period.

Drug release rates from micro and nanoparticles were lower during the second

and third ‘‘off’’ periods (less than 4mg/h). Collectively, these studies showed the

high degree of adaptability of using PLGA-magnetic particle systems as a

controlled release platform for drugs like ciprofloxacin.

Antibacterial activity of ciprofloxacin-encapsulated PLGA particles

To ensure the functionality of the released drug during passive and triggered

release and also assess the relative antimicrobial performance of the different

particle systems developed, a biofilm treatment assay was conducted.

Pseudomonas aeruginosa forms biofilms readily and is typical in chronic

infections, and are persistent and hard to treat [44]. Thus, the inhibition of

biofilm (An in-vitro biofilm assay in which the biofilm metabolic activity is

assessed via XTT assay) is a useful indicator of the antibacterial activity of drugs/

delivery systems. To test antibacterial activities of CIP-encapsulated PLGA

Triggered-Release of Drug from PLGA Micro and Nanoparticles
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particles, CIP-encapsulated particles were dosed to P. aeruginosa biofilms. Free

CIP was a positive control while untreated P. aeruginosa biofilms served as a

negative control. Bacterial growth was measured by UV-spectrophotometer and

Figure 5. Drug release from PLGA magnetic micro/nanoparticles. (A) Switched turn-on and -off drug
release under OMF. (B) Drug release with OMF off.

doi:10.1371/journal.pone.0114271.g005
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expressed as an OD values as according to established methods [33]. Figure 6

shows the antibacterial activities of free CIP and CIP-encapsulated particles. From

Figure 6, empty micro/nanoparticles had insignificant Pseudomonas aeruginosa

biofilm inhibition (less than 2%), indicating both PLGA micro/nanoparticles

showed no innate cytotoxicity against the microorganisms. 1mg/ml CIP caused a

38.4% reduction of bacterial activity. The sustained release CIP from the PLGA

micro/nanoparticles resulted in a bacterial activity reduction rate of 20.4% for

PLGA microparticles and 25.8% for PLGA nanoparticles. According to these

observations, the antibacterial activity of CIP encapsulated in PLGA nanoparticles

was slightly better than that of the PLGA microparticles. As observed with the

release studies, the microparticles had significant amounts of CIP remaining

within the microspheres after several days, significantly longer than the time

period of these standard antibacterial assays performed here and therefore may

not reflect the actual in use performance.

To test the biological activity of CIP released from PLGA particles under OMF,

drug released from microparticles and nanoparticles after 4 h OMF treatment was

diluted to 1mg/ml then applied to Pseudomonas aeruginosa biofilms for 24 h. The

bacterial activity reduction caused by CIP released from micro- and nanoparticles

were 32.5% and 33.3% respectively. These reductions in bacteria were slightly

lower compared with 1mg/ml free CIP control (38.4%). The slightly lower activity

may be related to incomplete drug release, drug loss, or degradation during OMF.

Elemental iron release from the MNP may also confound these observations and

requires further investigation. Iron release may result higher antibacterial [45] but

reports also suggest pseudomonas may also be supported by increased iron levels

[46].

Figure 6. In vitro antibacterial activity against P. aeruginosa biofilms of free CIP and CIP encapsulated
in PLGA magnetic micro/nanoparticles and of CIP release from magnetic PLGA micro/nanoparticles
under OMF.

doi:10.1371/journal.pone.0114271.g006
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From these studies it was confirmed that CIP released from the particles before

and after OMF triggered release was still active. The objective of this study was to

investigate the release property of CIP encapsulated PLGA magnetic micro/

nanoparticles, however in future studies formulations will be optimized and

cytotoxicity will be tested.

Conclusion

CIP encapsulated in PLGA magnetic micro/nanoparticles were successfully

prepared using the W/O/W method. CIP encapsulated PLGA magnetic particles

showed spherical shapes under a SEM, and narrow size distributions. In release

study, there were three phases of drug release from PLGA magnetic micro/

nanoparticles. The total drug release from nanoparticles (95%) was higher than

that of microparticles (80.3%). In addition, CIP release from PLGA magnetic

particles can be triggered in an external magnetic field and then continuously

released for 2 weeks after triggered release. The total release amount under OMF

was higher than passive release. A turn-on and -off switch experiment further

illustrated the ability to have magnetically controlled drug release from PLGA

particles. Activity against P. aeruginosa biofilms in vitro was confirmed. CIP

released from PLGA particles under OMF retained antimicrobial activity. This

study supports the potential application of PLGA magnetic particles as facilitators

of drug delivery and drug release switches.
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