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Introduction
Cone-beam computed tomography (CBCT) has revolu-

tionized the field of dentistry by providing 3-dimensional 

(3D) imaging of the dentomaxillofacial region. This ad-
vanced imaging technique overcomes the limitations asso-
ciated with conventional 2-dimensional (2D) radiographs, 
such as magnification, distortion, superimposition, and 
misrepresentation of anatomical structures within the in-
tricate head and neck area.1 As a result, CBCT has found 
extensive applications across various dental specialties, 
improving diagnostic accuracy and treatment planning.2

While CBCT has advanced the field of dentistry, it is 
crucial to consider the risk associated with its use due to 

its higher ionizing radiation exposure compared to con-
ventional 2D imaging modalities. In the current litera-
ture, this advanced imaging modality is suggested not as 
a replacement for conventional methods, but rather as an 
advanced imaging tool.3 While CBCT is widely utilized 
for procedures such as endodontic treatments and implant 
planning,4,5 it should be used judiciously and under the 
“as low as reasonably achievable” (ALARA) principle for 
ionizing radiation exposure.6

The high resolution and larger field of view (FOV) of 
CBCT often reveal radiographic findings that exceed the 
initial imaging intent and area of concern.7 These find-
ings, commonly referred to as incidental findings, occur 
in 24.6% to 94.3% of CBCT scans.7-9 While many of 
these findings are non-threatening, such as calcification 
of the stylohyoid ligament, some can be serious. One 
such significant finding that warrants further investigation 
and referral is the presence of vascular calcifications in 
the area of the carotid artery.10 Carotid artery calcification 
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(CAC) is a well-known marker of atherosclerosis, and 
vascular calcification is present in 80%-90% of athero-
mas.11 Cardiovascular disease and ischemic stroke pose 
a significant global health concern, ranking among the 
leading causes of mortality and disability worldwide.12 In 
2020, estimates suggested the presence of carotid plaques 
in 21.1% of individuals aged between 30 and 79 years 
worldwide.13

The significance of CAC in the progression of ischemic 
cardiovascular disease, along with its well-established 
predictive value for stroke incidents;14,15 underscores the 
importance highlighted in the literature for dental profes-
sionals to conduct comprehensive examinations of CBCT 
scans, specifically focusing on these areas that are oppor-
tunistically included in the FOV.16,17

Acknowledging the increasing number of CBCT scans, 
this comprehensive literature review was conducted to 
compare the radiation exposure from these scans with cur-
rent national radiation guidelines and dose limits, as well 
as radiations exposure from natural sources. Additional-
ly, recognizing the possible benefits of CAC diagnosis in 
CBCT scans, the potential advantages of early CAC detec-
tion were investigated relative to the risk of radiation-in-
duced cancer associated with these scans. The findings 
of this study could be pivotal in guiding decision-making 
regarding the use of CBCT and optimizing radiation dose 
levels.

CBCT radiation doses in comparison with 
guidelines and suggested dose limits
Humans are constantly exposed to radiation from var-

ious natural sources, which encompass cosmic, terres-
trial, inhalation, and ingestion-related factors.18 The bi-
ological risk of this radiation is assessed by measuring 
the effective dose absorbed by the body. The quantity 
of background radiation differs across various regions, 
with an annual average of 2.4 mSv worldwide, 3 mSv in 
the United States, and 1.8 mSv in Canada.19 Beyond this 
background radiation, additional radiation exposure is 
incurred through activities such as air travel and medical 
diagnostic imaging. The average radiation exposure for 
cross-Canada air travel, for instance, is 20 μSv.20

The radiation exposure from different medical imag-
ing procedures exhibits significant variation. However, it 
should be noted that there are no limits for ionizing radi-
ation exposure on diagnostic imaging.21 Procedures such 
as positron emission tomography-computed tomography 

(CT) scans and spine CT scans involve high levels of ra-
diation, with respective exposures of 22.7 mSv and 8.8 

mSv.22 In contrast, procedures such as bone dosimetry 
and dental X-rays involve much lower radiation levels, 
with exposures of 1 μSv and 5 μSv, respectively.22

The effective dose for CBCT scans has been quantified 
in numerous studies across various dental specialties. It is 
influenced by the patient’s size and age, machine param-
eters such as scan time, voxel size, resolution, peak kilo-
voltage, and milliamperage, as well as the purpose and lo-
cation of the scan.23 Ludlow et al.23 reported a broad spec-
trum of doses ranging from 5 to 1073 μSv, with an aver-
age value of 212 μSv for large-FOV scans and 84 μSv for 
small-FOV scans. In another study, the median effective 
dose for small, medium, and high heights of FOV was re-
ported as 29 μSv, 65 μSv, and 118.65 μSv, respectively.24

Comparing the reported doses with the annual back-
ground radiation and the dose limits for the public as per 
the guidelines and recommendations of Canada, the United 
States, and the International Commission on Radiological 
Protection (ICRP), which is 1 mSv,20,21,25,26 it becomes ev-
ident that the average radiation from CBCT at the largest 
FOV, which is 212 μSv, constitutes one-fifth of the annu-
al dose limit. This is equivalent to 22 days of background 
radiation and is 41 times lower than the radiation from 
cervical spine CT scans (8.8 mSv).22 Moreover, the imple-
mentation of low-dose CBCT scans, achieved by modify-
ing exposure settings and limiting the FOV across various 
specialties, has been demonstrated to effectively reduce the 
dose for the patient while maintaining high scan quality.27,28

To quantify the risk of radiation, the available litera-
ture that measured the lifetime risk of cancer or death 
from CBCT scans was reviewed. It is crucial to note that 
the causal relationship between radiation-induced cancer 
and advanced dental imaging remains unknown. The ma-
jority of studies used the Biological Effects of Ionizing 
Radiation (BEIR) VII model from the National Research 
Council to estimate the risk.29 Pauwels et al. showed that 
the incidence of cancer attributed to radiation varies by 
age, with a rate of 2.7 per million for individuals older 
than 60, and 9.8 per million for those aged 8 to 11, and 
the average risk stands at 6.0 per million, based on skin 
dosimetry. Notably, the risk is on average 40% higher for 
female patients.30 A study on orthodontic patients report-
ed a higher risk of death due to radiation exposure among 
younger and female patients. Specifically, the risk was 
2.6 per million for 10-year-old females and 1.9 per mil-
lion for 10-year-old males. In contrast, the risk decreased 
to 1.04 per million for 30-year-old females and 0.89 per 
million for 30-year-old males.31 Similarly, Jha et al. con-
ducted a study on orthodontic patients and highlighted the 
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impact of age and sex on the risk of cancer. They reported 
that the risk of cancer for children (aged 5 and 10 years) 
under a median exposure setting was 16 times greater 
than the risk for adults (aged 20, 30, and 40 years).32

Quantitative assessment of CBCT benefits in the 
detection of CAC versus carcinogenic risks
CBCT scans have been proven to effectively detect vas-

cular calcifications, and its image quality for calcifications 
has been found to be comparable to that of conventional 
CT.33-35 However, these imaging modalities are not con-
sidered to be the standard of care for CAC. Thus, CBCT 
scans may be a valuable tool for the early and opportu-
nistic detection of soft tissue calcifications, particularly 
in asymptomatic patients who are receiving 3D scans for 
dental procedures. The reported rates of significant inci-
dental findings vary widely, from 0.3% to 31.4%, across 
different studies, largely due to varying classifications of 
conditions.10 CAC is detected in 5.7% to 17.6% of general 
scans,9,36 and the prevalence of this finding escalates with 
age, with scans of adults aged 40 years and older revealing 
calcifications in up to 63% of cases.37

According to the most recent report from the Canadian 
Chronic Disease Surveillance System, the age-standard-
ized incidence rate of stroke in Canada for those aged 20 
and older is 270 per 100,000.38 Notably, 87% of these 
stroke events are ischemic, primarily associated with ath-
erosclerosis.39 Bos et al. showed that the presence of in-
tracranial CAC increased the risk of stroke by 4.64 times. 
They also highlighted that intracranial CAC contributed 
to 75% of strokes, while extracranial CAC contributed to 
25%.14 Additionally, a significant correlation was noted 
between the presence of calcifications in both the extracra-
nial and intracranial portions of the carotid artery-specif-
ically, if calcification was detected in the extracranial part 
of the ICA, there was an increased likelihood of observing 
similar calcification in its intracranial segment.33

Drawing upon the findings of Bos et al.14 and data from 
the Canadian Chronic Disease Surveillance System, it can 
be inferred that calcification in the intracranial and extra-
cranial carotid arteries contributes to 202 and 67 strokes 
per 100,000 individuals, respectively in Canada. Taking 
into account the 15% 30-day mortality rate for ischemic 
stroke,40 it is estimated that internal and external CAC 
contribute to 30 and 10 deaths per 100,000 individuals, 
respectively. These conditions are potentially detectable 
by CBCT scans, and by identifying these entities, dental 
professionals can effectively contribute to the prevention 
of stroke events. Moreover, the predictive value of carotid 

atherosclerosis and calcification in cardiovascular disease 
and coronary artery disease augments the importance of 
these findings.41

In terms of radiogenic cancer risk from medical imag-
ing, real mortality and morbidity data have been previ-
ously employed for high-dose procedures, such as head 
CT and abdominal CT, enabling the establishment of 
a benefit-to-risk ratio.42,43 When comparing the risk of 
ischemic stroke events with the risk of radiation-induced 
cancer or death from CBCT, the risk of stroke in adults is 
considerably higher. Specifically, the risk of stroke events 
involving internal and external CAC stands at 202 and 
67 per 100,000 individuals, respectively. In contrast, the 
risk of radiation-induced cancer is estimated to be 0.6 per 
100,000,30 which is notably lower than the risk of stroke 
associated with CAC. Furthermore, the estimated risk of 
death is 30 and 10 per 100,000 for internal and external 
CAC, respectively, and 0.1 per 100,000 for radiation from 
CBCT.

There are several limitations in this comparison, such as 
uncertainties in predicting cancer risk and comparing dif-
ferent populations; however, it could provide a broad over-
view of reported statistics. Moreover, from the perspective 
of stroke prevention, the comparison is constrained by the 
assumption of 100% prevention of stroke upon diagnosis 
of CAC, which is not realistic. However, previous studies 
have indicated that solely adopting a healthy lifestyle can 
reduce the risk of stroke by 80%, underscoring the impor-
tance of early diagnosis.44

In addition to utilizing mortality and morbidity data, 
some studies have suggested employing disability-adjust-
ed life years (DALYs) as an index to quantify excess can-
cer risk resulting from radiation exposure.45 DALYs serve 
as a metric for assessing the impact of a disease on a pop-
ulation by integrating mortality (years of life lost due to 
premature mortality) and morbidity (years lived with dis-
ability) into a unified measure.46 Shimada et al.47 reported 
that the DALY loss for all cancers in Japan per 1 Gy per 
person was 0.84 years in men and 1.34 years in women, 
with the loss decreasing as age increases.47

Utilizing data from the study of Shimada et al., a study 
calculated the justification factor for various imaging 
methods.48 In an example closely related to the present 
study, the ratio of benefit to detriment for head CT in re-
lation to mild stroke/transient ischemic attack was exam-
ined. The author concluded that radiological examinations 
considered to provide information that assists in patient 
management are likely to be quantitatively justified, and 
the justification factor tends to increase with age at expo-
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sure. An explanation for this is that the survival time is 
shorter than the latency period for radiation-induced can-
cers.48

Considering the relatively low radiation risk of CBCT 
for patients older than 30 years, and the higher prevalence 
of CAC findings in these patients, the benefit-to-risk ra-
tio tends to be particularly favourable for older patients. 
Patients over the age of 65 were found to be 5.01 times 
more likely to exhibit vascular pathologies than patients 
aged between 41 and 65. Furthermore, compared to pa-
tients aged between 16 and 40, this likelihood increased 
significantly to 13.39 times.49

Therefore, CBCT scans with a medium to large FOV for 
adults, encompassing the carotid artery areas, offer oppor-
tunities for investigating vascular calcifications that should 
be carefully further investigated. Dental professionals 
performing scans of these areas should be aware of their 
responsibility to report these findings and refer patients 
to their primary care physician for further clinical inves-
tigation. This approach could lead to the early detection 
and treatment of serious findings and potentially improve 
health outcomes.

The appropriateness of each dental imaging modality 
and the prescription of radiographs should be a constant 
consideration for dental professionals when choosing be-
tween 2D and 3D radiographs, and the potential risks as-
sociated with ionizing radiation exposure must always be 
weighed against its potential benefits. When prescribing 
advanced imaging such as CBCT, dental providers should 
be aware of the responsibility to report all radiographic 
findings in the imaged volume and, if necessary, refer the 
patient for further evaluation.50 This ensures comprehen-
sive patient care and adherence to professional standards 
of care.

Discussion
CBCT has emerged as a valuable tool in dental imag-

ing, offering distinct advantages and considerations. This 
study aimed to comprehensively compare CBCT radiation 
exposure with current guidelines and dose limits. Addi-
tionally, given the high prevalence of incidental findings 
in CBCT scans, some of which indicate serious condi-
tions requiring further investigation, this review evaluated 
the benefits of early detection of CAC against the poten-
tial increased cancer risk from these scans. 

According to this review, the ionizing radiation dose of 
dental CBCT scans is notably lower than that of common 
CT scans, positioning it as a safer alternative. However, it 

should not be regarded as a direct substitute for conven-
tional dental radiographs due to its higher radiation dose. 
Furthermore, employing lower dose parameters and small 
FOV scans for younger patients is essential for substan-
tially reducing ionizing radiation exposure and the risk of 
radiation-induced cancer. This goal can be achieved by 
limiting the FOV through collimation, selecting the largest 
voxel size appropriate for treatment requirements, opting 
for lower dose settings, and employing thyroid shields.51 
Ultimately, this approach will bring radiation levels closer 
to those of 2D radiographs while maintaining high quality. 
This approach aligns with the concept of “as low as diag-
nostically acceptable” (ALADA),52 which is a modification 
of “as low as reasonably achievable” (ALARA). ALADA 
underscores the optimization of radiation exposure by bal-
ancing image quality with reduced radiation dose, prioritiz-
ing patient safety while ensuring diagnostic efficacy.

In contrast, opting for CBCT with a larger FOV can be 
reasonable for older adults, offering the potential benefits 
of early detection of significant findings such as vascular 
abnormalities and improved treatment planning without 
significantly increasing radiation risk to patients. Com-
paratively, a full-mouth radiograph series using films de-
livers a similar radiation dose equivalent to a limited FOV 
CBCT scan, highlighting the value of CBCT.53

It is crucial to educate dentists about their medical-legal 
responsibilities and the interpretation of all radiographic 
findings from CBCT scans, including awareness of the 
potential consequences related to overlooking a finding 
requiring further action. Referring CBCT volumes to oral 
and maxillofacial radiologists for a complete evaluation 
of the volume, if necessary, ensures comprehensive pa-
tient care and optimizes the benefits of CBCT technology 
in dental practice. A multi-professional approach is essen-
tial in complex cases and to interpret larger FOV scans.
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