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Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens.
However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 out-
break, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication
leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are
directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines
and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which
may aid in developing possible therapeutic targets for the infection.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction

In 2020, the global pandemic COVID-19 infection caused many
researchers to focus on the role of the immune system in fighting
viral infections. The novel coronavirus, SARS-CoV-2, was found to
be the causative of the acute respiratory disease syndrome (ARDS)
which is similar to that caused by severe acute respiratory syn-
drome coronavirus (SARS-CoV) and Middle East respiratory syn-
drome coronavirus (MERS-CoV) [1,2]. Upon infection, some
patients show mild symptoms such as fatigue and cough, whereas
others develop severe symptoms such as bilateral infiltrates and
pneumonia [3].

In COVID-19 patients, lymphopenia affecting natural killer (NK)
and T cells (CD4+ Th1, Tregs, and CD8+), was more pronounced in
severe cases [4,5]. Lymphopenia is also associated with neu-
trophilia and monocytopenia particularly in severely infected indi-
viduals [6]. Additionally, circulating CD8+ T and NK cells displayed
abnormal function and exhaustion, where a negative correlation
between perforin content and serum cytokine levels was detected
[5,7]. Despite the low count of CD4+ T cells in COVID-19, these cells
seem to be more activated as observed by CD69, CD38, CD44, and
HLA-DR expression [5]. However, one of the main mechanisms
associated with the pathophysiology of COVID-19 is the recruit-
ment of inflammatory immune cells towards infected lungs and
the subsequent hyperinflammatory state or the so-called cytokine
releasing syndrome (CRS) [8–10]. These inflammatory mediators
include TNF-a, interleukins such as IL-1b and IL-6 as well as
chemokines.
2. Role of chemokines in viral infections

Chemokines play a critical role in fighting viral infections by
recruiting innate and adaptive immune cells to sites of infection,
and by enhancing their cytotoxic function and their ability to pro-
duce antiviral mediators [11]. On the other hand, some viruses
manage to escape the immune system via chemokines. For
instance, some large DNA viruses such as herpesviruses produce
molecules that mimic the chemokines which dysregulate the sig-
naling and immune response, thus leading to viral propagation
and persistence [12].

There are different mechanisms through which chemokines
exert their anti-viral effects. The role of chemokines and their
receptors in NK cells have been previously described [13–16]. In
this regard, chemokines have been reported to activate NK cells
to kill virally-infected cells such as that observed in vaccinia virus
and cytomegalovirus infections [17], as well as their ability to
enhance NK cell lysis of tumor cells [18]. Additionally, chemokines
and T cells were linked and investigated in viral infections such as
hepatitis and HIV [17]. Further, viruses induce the production of
inflammatory chemokines that promote a Th1- polarized immune
response possibly by a cytokine-to-chemokine-to-cytokine signal-
ing cascade that links innate and adaptive immune responses. Sev-
eral viruses stimulate dendritic cells (DCs) to produce interferon
leading to CCL3 (MIP-1a) production [19,20], and resulting in NK
cell recruitment to perform direct killing of virally-infected cells
as well as releasing IFN-c. Reciprocally, this may lead to macro-
phage activation and CXCL9 production, thus recruiting Th1-
polarized CD4+ CXCR3+ cells [21]. Additionally, other cytokines
such as IL-1 and TNF-a, could induce the expression of chemokines
such as CCL2, CCL3, CCL4, CCL5 and CXCL8 which are linked to viral
infections [11].

Interferons along with interferon-inducible chemokines are also
known to be involved in the host anti-viral response by promoting
viral elimination until the adaptive immune system is activated
[22]. IFN-c-inducible protein 10 (IP-10 or CXCL10) is one of the
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main players in the anti-viral responses, especially in respiratory
tract infections [23]. In several viral infections, CXCL10 was found
to be elevated in the plasma and bronchial alveolar lavage fluid
(BALF), and is correlated with disease severity [23–25]. Another
key chemokine is CXCL8 that acts as a trafficking mediator for neu-
trophils. This chemokine is highly involved in inflammatory pro-
cesses especially those associated with viral infections. CXCL8
level in the nasal fluid was found to be correlated with the severity
of acute respiratory tract infections [26].

CCL2 and CXCL10 were highly expressed in the cerebrospinal
fluid (CSF) of patients with viral meningitis, possibly in order to
stimulate the migration of immune cells towards sites of infection
[27]. Also, CXCL10 has been reported to act as a marker in hepatitis
B and HIV infections [28,29]. This was supported by a study where
CXCL10 levels were found to be elevated in untreated HIV-infected
patients and would be restored to normal upon receiving anti-
retroviral therapy [30]. Other CC or CXC chemokines such as
CCL3, CCL5 or CXCL10 were also involved in viral infections such
as influenza and human respiratory syncytial virus (HRSV)
[11,31,32]. Furthermore, CCL5 and CXCL9 (MIG) are involved in
the inflammatory state of patients with chronic hepatitis C infec-
tion [33]. Whereas mice deficient in CCL3 exhibit delayed viral
clearance when infected with influenza virus, or murine cytomega-
lovirus [34,35]. In patients infected with HIV, expression of CCL3,
CCL4, and CCL5 was correlated with a Th1 immune response
[36]. Also, CXCR4 and CCR5 were found to be co-receptors for
HIV entry, while their ligands CXCL12 and CCL5 inhibited HIV
infection [37,38].

However, massive recruitment of cells towards infected sites
along with the enhanced antiviral and cytotoxic responses, could
lead to hyperinflammation and tissue damage. Therefore, inflam-
matory chemokines could have beneficial or harmful roles during
viral infections, and their blockage could provide a therapeutic
approach against certain viruses [17]. Several molecules and antag-
onists targeting chemokines or their receptors, have been devel-
oped for the treatment of various diseases [39]. For instance,
CCR4 blocker, Mogamulizumab, and anti-CXCR4 were utilized in
treatment of leukemias and lymphomas [39–41]. The absence of
the CCR5 receptor was suggested to provide resistance against
HIV transmission. This was the case in HIV ‘‘Berlin patient” who
went into remission due to the transplantation of bone marrow
from a CCR5 D32 homozygous donor whose CCR5 gene had a 32-
bp deletion and a non-functional CCR5 receptor [42]. Another pos-
sible therapeutic mechanism to block virus entry using CCR5
antagonists such as Maraviroc and Cenicriviroc was suggested in
the treatment of HIV [43–45]. Similarly, several CXCR4 antagonists
such as AMD3100, AMD3465, and AMD070 demonstrated efficacy
for combating HIV [43]. The proinflammatory chemokine CCL2 was
elevated during HIV infection, and was found to stimulate HIV pro-
duction, promoting viral propagation and persistence. Thus, neu-
tralization of CCL2 might be a therapeutic modality to fight HIV
infection [46–47].
3. Role of chemokines in coronavirus infections

Before discussing the chemokine profile in COVID-19 and their
roles in disease pathogenesis, it is important to highlight the che-
mokine signature of SARS and MERS since they share structural
features and clinical presentation with COVID-19. However, stud-
ies have shown notable differences among the three viruses such
as the receptors used to infect host cells, susceptibility to type I
IFN, and the cytokines and chemokines involved in the
immunopathology of the lungs. Like other viral infections, the pro-
duction of chemokines is an important anti-viral response respon-
sible for infiltrating immune cells towards infected lungs as part of
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the immune response against corona viruses. Although chemoki-
nes are vital to attract immune cells to clear the virus, exacerbated
expression leads to excessive inflammation and consequently
ARDS, a common complication for SARS, MERS and COVID-19
[48–50]. Accordingly, controlling chemokines and their inflamma-
tory effects are crucial for disease management. In addition, study-
ing the chemokine profile in a temporal manner in COVID-19
patients may improve our understanding of the immunopatholog-
ical processes of SARS-CoV-2 infection and may serve as an impor-
tant prognostic marker for disease progression and outcome.

3.1. Chemokine profile in SARS-CoV and MERS-CoV patients

Post SARS-CoV infection, two waves of cell types occur. First, a
rapid recruitment of monocytes and macrophages into the lungs
occurred early after infection as determined by high-density
oligonucleotide array analysis of gene expression changes in
PBMCs of heathy donors inoculated with SARS-CoV [51,52]. The
second wave results in T cells infiltration into the lungs where they
initiate a specific response to clear the virus [53]. Both waves are
controlled by chemokine gradients recruiting these cell types

In both SARS and MERS, CXCL10 and CCL2 are released as early
as 2 to 3 days when the virus peaks in the lungs and persist in
infected individuals [53–58]. CXCL10 and CCL2 suppress the prolif-
eration of myeloid progenitor cells leading to lymphopenia in both
SARS and MERS patients [58–60]. Other studies supported the
increase in CXCL10 transcription in fibroblasts and macrophages
infected with SARS-CoV, but CCL5 transcripts are absent in SARS-
CoV infected tissue cells [61–63]. Contradictory data revealed that
SARS-CoV infected DCs and airway epithelial cells (AECs) signifi-
cantly up-regulated CCL5 [61,64,65]. Interestingly, Interferon regu-
latory factor 3 (IRF-3) responsible for IFN induction is reduced in
SARS patients and IRF-3 contributes as well to the transactivation
of CCL5 and CXCL10 genes [66]. However, the increase in CXCL10
and the decrease in CCL5 in some studies post SARS-CoV infection
reflect that CXCL10 transcription might be less dependent on IRF3
and is rather more induced by other transcription factors such as
IRF5 and NF-jB [67–69]. Furthermore, in a SARS mouse model,
the lack of detectable IFN-c which tightly controls the expression
of CXCL9 and CXCL10, suggests the role of other factors in inducing
these chemokines [70]. Accordingly, CXCL10 is less responsive to
coronavirus inhibition mechanism by the IFNs [71].

Regarding CCL2, it was shown by ex vivo measurement of
chemokines produced by inflammatory monocytes and macro-
phages (IMM) that CCL2 is released predominantly to amplify
these cells activation [72]. IMMs can be either protective or patho-
genic depending on the infecting pathogen. In the context of SARS-
CoV, macrophages are prominent immune cells in the infected
lungs and are a major source of inflammatory cytokines and
chemokines where they contribute significantly to disease patho-
genesis [73,74]. In BALB/c mice, the number of Ly6ChiCD11b+ cells
increased dramatically in the lungs three days post SARS-CoV
infection and it was shown that the recruitment and activation of
IMM are dependent on IFN-a signaling [72]. Phenotypic examina-
tion of pulmonary IMM revealed the expression of CCR2, the recep-
tor for CCL2, CCL7 and CCL12 [72,75]. Moreover, postmortem
examination of SARS patients as well as patients with persistent
ARDS showed elevated levels of CCL2 in BAL fluid and this corre-
lated positively with the presence of alveolar macrophages
[74,76–78]. Besides, CCL2 and CXCL2 play crucial roles in the
migration of macrophages, monocytes and neutrophils. Interest-
ingly, CCL2 and CXCL2 have the ability to clear SARS-CoV in the
absence of CD4+, CD8+ T cells or neutralizing antibodies post
12 days of infection. This reflects their importance in activating
the innate anti-viral immune response by recruiting neutrophils,
mononuclear phagocytes and monocytes towards the site of infec-
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tion [79,80]. In addition to CCL2, it is worth mentioning that
although SARS-CoV is unable to induce potent IFN-a and IFN-b
response in human macrophages, other chemokines such CXCL10,
CCL3, CCL7, and CCL8 are released and contribute to SARS patho-
genesis [81,82]. Collectively, these chemokines further increase
the accumulation of pathogenic IMMs which in turn produce
pro-inflammatory cytokines such as TNF-a, IL-6, or IL-1b leading
to T cell apoptosis and impeding virus clearance [72,83]. Similarly,
MERS-CoV infection of the monocytic cell line THP1, and of human
peripheral blood monocyte-derived macrophages and dendritic
cells induced elevated levels of CCL2 and CCL3 [58].

Another important chemokine that serves as a prognostic mar-
ker for SARS and MERS severity is CXCL8. The levels of CXCL8 were
shown to be elevated in both the blood and alveolar spaces in
SARS-CoV patients early after disease onset [84]. Such elevation
of CXCL8 level could be due to a direct effect of the virus at the cel-
lular level or could be associated with superimposed bacterial
infection during SARS [69,85]. Similarly, MERS-CoV infected
patients exhibited significant increase in CXCL8, and its expression
level was correlated with fatality rate [48]. This could be due to
increased numbers of neutrophils in BAL fluid where they secrete
myeloperoxidase and elastase that could cause acute lung injury
and progress to pneumonia and ARDS [86–89]. Another effect of
CXCL8 in MERS infection is the ability to upregulate CD4 molecules
and to enhance T helper cell function [90].

The chemokine receptors CCR1, CCR2, and CCR5 were shown to
be protective in a mouse model infected with MA15-SARS-CoV,
and in human DCs infected with SARS-CoV. The deficiencies of
these receptors were associated with severe disease and mortality
due to the reduction in the recruitment of immune cells into the
lungs [89]. In MERS infected patients, CCR2 and CXCR3 were upreg-
ulated in a study investigating pulmonary Th1 and Th2 responses
[92]. Studies on other respiratory viruses confirm the protective
role of the aforementioned chemokine receptors in SARS and
MERS. For instance, CXCR3 is crucial for cell-mediated clearance
of west Nile virus (WNV) infection [93]. Moreover, CCR2 and
CXCR3 were reported to be upregulated in RSV, which was corre-
lated with disease severity [94]. Further, antagonizing CCR2 during
influenza A (H1N1) infection and blocking CXCR3 during respira-
tory virus infections reduced pulmonary immunopathology
[95,96].

Despite sharing similar chemokine profiles, comparative studies
between SARS and MERS showed that MERS-CoV-infected mono-
cytes and dendritic cells induce higher levels of CXCL10 for a pro-
longed interval of time compared to SARS-CoV. This may explain
the systemic dissemination, the hyperactive inflammation and
higher fatality of MERS compared to SARS patients [58,97].
3.2. Chemokine profile in COVID-19 patients

SARS-CoV-2 shares structural and viral features with SARS-CoV
and MERS-CoV. Therefore, it is expected that the chemokine profile
of COVID-19 patients will have common inflammatory mediators
as well as some differences that account for the high transmissibil-
ity and low mortality rate of SARS-CoV-2 compared to SARS and
MERS. Also, the hyperinflammation that occurs during other respi-
ratory viruses such as influenza H1N1, avian H5N1 or Rous Sar-
coma Virus (RSV) may help in revealing immune molecules that
might be involved in the inflammation process post SARS-CoV-2
infection [23,98,99]. Hence, identifying the chemokine signature
of SARS-CoV-2 and differentiating it from non-COVID-19 bacterial
or viral ARDS will help in developing interventional strategies to
prevent complications and reduce mortality. Fig. 1 illustrates the
chemokine profile in asymptomatic, symptomatic and severe
COVID-19 patients.



Fig. 1. The chemokine profile in COVID-19 patients. Chemokines are involved during all stages of SARS-CoV-2 infection and contribute differently to disease pathogenesis by
recruiting immune cells to the pulmonary microenvironment. The upregulation of chemokines as determined by transcriptomic analysis and kinetic studies revealed a
chemokine signature of asymptomatic, mildly infected, and severely infected patients. Upregulated chemokines in severely infected patients such as CCL2, CXCL8 and CXCL10
may be used as plausible biomarkers for disease outcome.
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Before discussing the chemokine profile of the different status
of COVID-19 patients (mild, severe or fatal), it is worth highlighting
the differences in the chemokines involved in SARS-CoV-2 ARDS
versus those involved in non-COVID-19 bacterial or viral ARDS.
Generally, CCL3, CXCL10, CCL5, and CCL20 were shown to be
upregulated in COVID-19 patients compared to the non-COVID-
19 counterparts and the concentration of the chemokines released
by CD14+CD16+ inflammatory monocytes such as CCL19, CCL20
and CCL5 remained stable over time [5,49]. Interestingly, CXCL10
is lower in bacterial ARDS upon comparing to non-COVID-19 viral
ARDS, indicating that this chemokine may be used as a viral bio-
marker [49]. Furthermore, the initial innate immune response eli-
cited by SARS-CoV-2 is explained by the upregulation of CXCL17
(VCC-1) that is responsible for attracting DCs and monocytes
towards infected lungs. This is considered specific to COVID-19
infection as it is absent in community acquired pneumonia (CAP)
979
cases [100]. These findings implicate that the population of
immune cells in infected organs of COVID-19 patients is different
when compared to patients with bacterial or non-COVID-19 ARDS,
and accordingly the mechanisms driving the course of COVID-19
and its subsequent complications may be different. Also, this con-
firms that the chemokine profile is an important diagnostic tool for
intervention and treatment post SARS-CoV-2 infection.

The chemokine signature of SARS-CoV-2 infected patients can
vary depending on the medical status of individuals ranging from
being asymptomatic, symptomatic, severely infected or recovering
from the disease. However, despite the level of disease severity,
there is a general chemokine profile shared by all COVID-19
patients. In the presence or absence of symptoms and in recovering
patients, CCL3, CCL4 and CCL5 were detected in a similar fashion
[101]. Moreover, serum analysis of SARS-CoV-2 in cohort positive
patient revealed a generalized inflammation defined by a signifi-
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cant increase of CXCL2, CXCL8, CXCL9 and CXCL16 levels [102].
Collectively, T and NK cells recruited by CXCL9 and CXCL16 respec-
tively, monocytes and macrophages recruited by CCL8 and CCL2,
and neutrophils recruited by CXCL8 and CXCL2, constitute the
main immune cells infiltrating the lungs of COVID-19 patients
[103,104]. In turn, recruited macrophages initially expressed high
amounts of CCL2, CCL7 and CCL8, whereas in advanced disease
stages and increased severity, the levels of CXCL10 and CCL3 were
elevated [105]. Symptomatic patients showed higher levels of
CXCL10, CCL2 and CXCL9 compared to convalescent cases [101].
It is worth noting that CXCL10 is absent in healthy individuals,
while it increases with disease severity, suggesting that CXCL10
may help in early diagnosis and could be a potential predictive
marker of disease outcome [101]. Further, CXCL10 can help in con-
trolling new outbreaks given it is a crucial detection marker for
asymptomatic patients. Moreover, genome-wide RNA-sequencing
showed that other chemokines are elevated in the BALF samples
of patients infected with SARS-CoV-2 compared to healthy individ-
uals and these include CXCL1, CXCL6, CCL3 and CCL4 [106]. The
same study detected an increase in the transcription of CCR2 and
CCR5 and reflected the activation of their signaling pathways.
The deficiency of these receptors in mice infected with mouse-
adapted SARS-CoV virus aggravated the disease and increased the
mortality due to defect in directing immune cells into the sites of
viral infection [91,106].

Most studies investigating the role of cytokines and chemoki-
nes in the pathogenesis of COVID-19 revealed a broad array of
elevated inflammatory mediators during the cytokine storm with-
out specifying the exact time points of their increase during the
infection. Therefore, it is crucial to analyze the temporal changes
of chemokines over the course of the disease in order to catch the
window of treatment when designing drugs that target critical
immune molecules. Recently, simultaneous detection of 48
cytokines, chemokines and growth factors was performed using
multiplex system on mild, severe and fatal COVID-19 group of
patients in order to investigate the kinetic changes of chemo-
kines. The levels of CCL4 and CCL5 were shown to be upregulated
in all three groups of patients, but negatively correlated with dis-
ease severity, as the expression of these chemokines was signifi-
cantly higher in mild cases. This suggests that CCL4 and CCL5 are
likely to be associated with recovery and resolution of inflamma-
tion possibly through the activation of cytotoxic T cells and
release of CCL5 upon antigen presentation [1,107]. Furthermore,
elevated CCL5 levels remained consistently high during the 4-
week follow up period [107]. However, contradictory data exist
regarding CCL5, as some studies showed the presence of this che-
mokine in severe patients as well as its close association with dis-
ease progression [108].

Although increased by several folds, CXCL1, CXCL12, CCL11 and
CCL27 did not show significant differences among the three groups
of patients and remained steady over the different tested time
points. This suggests that these chemokines contribute to the com-
mon pulmonary inflammation and respiratory symptoms in all
COVID-19 patients [1]. On the other hand, patients dying from
SARS-CoV-2 infection showed significantly higher plasma levels
of CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL7, CCL20, and CX3CL1
compared to severe and/or mild COVID-19 patients [1,49]. Another
study confirmed the use of CXCL10 and CCL7 as independent pre-
dictors for COVID-19 progression since they were highly correlated
with the ARDS group including critically ill and severe cases [109].
Further, transcriptional studies on post-mortem lung samples of
COVID-19 patients showed significant upregulation of genes cod-
ing for CCL2, CCL8 and CCL11 [102]. The upregulation of these
chemokines was associated with an intense, unresolved inflamma-
tion during the early stage of the infection and with a prolonged
duration of ICU stay [110,111].
980
Notably, the serum concentration for CXCL10 showed differ-
ences between patients who died post ARDS complications versus
those who remained alive [49]. These observations were in line
with another clinical investigation on samples of COVID-19
patients requiring ICU admission exhibiting higher levels of
CXCL10, CCL2, CCL3 and CCL7 compared to mildly infected patients
[3,109]. It is worth noting that among the chemokines significantly
elevated in fatal COVID-19 cases, CXCL8, CCL2 and CCL3 were
increased similarly in mild and severe cases during early stages
of infection and remained at steady levels afterwards in mild cases.
However, these molecules were further increased during the late
stages of the infection as reported in fatal cases [1]. On the other
hand, the levels of CXCL9, CXCL10 and CCL7 did not change during
late stages of the disease and their significant upregulation to
higher levels in fatal patients make them important predictors of
COVID-19 severity [1]. Based on the above, the chemokine profile
is an important tool that aids in stratifying patients and identifying
those at higher risk to develop complications in severe cases.

Regarding chemokine receptors, SARS-CoV-2 upregulated CCR1,
CCR2 and CCR5 on the human thoracic dorsal root ganglion indi-
cating the impact of inflammatory mediators on activating the sen-
sory neurons of the lungs. This could possibly suggest that
pharmacological inhibition of these receptors might suppress the
hyperinflammation in critical COVID-19 patients [112]. Moreover,
host genomic factors are important elements that can impact the
infection and mortality rate due to SARS-CoV-2. For instance, the
frequency of CCR5 D32 showed significant positive correlation
with COVID-19 infection and mortality rate/million especially in
an African population, yet the mechanism through which this poly-
morphism increases patients predisposition to SARS-CoV-2 infec-
tion and death is still unknown [113,114]. Other polymorphisms
such as ORF wt/D32, �2459G/A, and rs1015164G/A that regulate
the expression of CCR5 should be considered in the treatment out-
come analysis of COVID-19 patients [112].

Furthermore, a meta-analysis showed that CXCR6 and CCR9
located at chromosome 3p21.31 were also associated with
genome-wide significance with the respiratory failure of Italian
and Spanish COVID-19 patients. In this case CXCR6 regulates the
localization of lung-resident memory CD8+ T cells in response to
airway pathogens such as influenza viruses [112,115]. Further, an
increase in the expression of CCR7 receptor, which has a crucial
role in adaptive immunity particularly during T cell activation
and tolerance, was detected on naïve and central memory Tregs
in COVID-19 patients. The same study reported a lower expression
of CCR6 and CXCR3 on CD8+ T cells of patients [116]. This supports
the decrease in the number of CD8+ T cells and an increase in the
number of different types of Tregs in the peripheral blood of
infected patients, thus explaining the suppressed immunity during
SARS-CoV-2 infection [116]. In addition, CXCR4 was shown to be
higher in severe COVID-19 cases along with an elevation in the
CD10LowCD101� immature neutrophils in the blood. This could
probably be due to the premature release of neutrophils from the
bone marrow to infiltrate the lungs of severely infected patients
[117]. On the other hand, an increase of CXCR5, a lymph node hom-
ing receptor used to define peripheral T follicular helper (pTfh), is
seen in convalescent COVID-19 patients [118]. This finding sup-
ported another study which reported an increase in total pTfh dur-
ing acute infection with SARS-CoV-2 [119]. During SARS-CoV-2
infection, the increase in antigen specific pTfh population was cor-
related with neutralizing antibodies against the membrane (M),
nucleocapsid (N) and spike (S) proteins of the virus, with the high-
est correlation observed against the S protein [118]. Therefore,
focusing research on pTfh cells in the context of COVID-19 is of
high importance to better understand the humoral response, con-
sidering that T cells are crucial contributors to the formation of
neutralizing antibodies which can optimize vaccine design.
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Upon comparing the chemokine profile of SARS-CoV-2 to SARS-
CoV and MERS-CoV, it can be concluded that CXCL8, CXCL10 and
CCL2 are crucial contributors to pulmonary pathogenesis in all
three corona viruses. However, the differences in the virus behav-
ior of SARS-CoV-2 and SARS-CoV in ex vivo human lung tissue
explants particularly in relation to the higher infection and replica-
tion capacity of SARS-CoV-2 and the lower ability to trigger anti-
viral IFN release, suggest that the two viruses modulate the pro-
duction of cytokines and chemokines differently [69]. For instance,
SARS-CoV upregulated 11 out of the 13 pro-inflammatory factors
evaluated, whereas SARS-CoV-2 upregulated CXCL10, IL-6, CCL2,
CXCL1 and CXCL5. Specifically, CXCL10 was significantly more
induced by SARS-CoV-2 than SARS-CoV [120]. Discrepancies
among different studies regarding the expression level of chemoki-
nes cannot only be attributed to the differences in viral load among
the three b-CoVs but also due to the inconsistencies in the tempo-
ral studies and detection tools used. After discussing the role of
chemokines in viral infections in general and their involvement
in the pathogenesis in SARS, MERS and COVID-19 (Fig. 2), we will
discuss in the following section the role of the invariably upregu-
lated chemokines that are correlated with disease severity such
CCL2, CCL5, CXCL8 and CXCL10, which are culprits in increasing
the mortality rate in COVID-19 patients [121]. Also, we will
address the possible mechanisms for targeting these chemokines.

However, it is crucial to mention beforehand that besides the
specific therapeutic options available or under clinical investiga-
tions, there are possible ways to target the signaling pathways that
lead to the release of important chemokines implicated in COVID-
19 pathogenesis such as CCL2 and CXCL8. NF-jB/TNFa and the
Fig. 2. Involvement of chemokines in viral infections including SARS, MERS and SARS-
immunodeficiency virus (HIV), influenza, hepatitis B virus (HBV), respiratory syncytial
including SARS-CoV, MERS-CoV and SARS-CoV-2.
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sphingosine-1-phosphate (S1P) receptor 1 pathways are among
the most important pathways that induce cytokine and chemokine
production leading to pulmonary inflammation post infection with
respiratory viruses including SARS-CoV and influenza [122,123].

Generally, corticosteroids inhibit NF-jB and AP-1 activation
and ma consequently, reduce the levels of chemokines that con-
tribute directly to SARS-CoV-2 pathogenesis such as CXCL8 and
CXCL10, in a similar effective way as in SARS-CoV infection [124].
Accordingly, glucocorticoids such as dexamethasone are being pro-
posed by clinicians to reduce the excessive inflammation in severe
COVID-19 patients [125,126]. Yet, corticosteroids ought to be used
with care to avoid undesired immunosuppressive effects especially
during early disease stages, where they might lead to disseminated
fungal disease or even increase mortality [127,128]. Furthermore,
the specific pharmacological inhibition of NF-jB using caffeic acid
phenethyl ester (CAPE), Bay 11–7082, and Parthenolide, sup-
pressed the mRNA expression of TNF-a, CXCL2, and CCL2 in the
lungs of mice, enhancing their survival post SARS-CoV infection
[122]. Regarding SIP agonists, Fingolimod, an approved drug for
multiple sclerosis, is currently used in a non-randomized phase II
clinical trial to establish its efficacy in the treatment of COVID-19
(NCT04280588) [129].

3.3. Role of chemokines in COVID-19 pathogenesis

3.3.1. CXCL8lCXCR1, CXCR2 axis
CXCL8 is released by monocytes/macrophages and alveolar

epithelial cells. Its synthesis is induced by IL-17A and IL-17F
secreted by IL-6-dependent Th17 cells whose numbers are ele-
CoV-2. Several chemokines are involved in various viral infections such as human
virus (RSV), viral meningitis, and hepatitis C virus (HCV) as well as coronaviruses
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vated in the peripheral blood of COVID-19 patients [104,130]. The
activity of CXCL8 is strongly dependent on the transcription factor
AP-1 and is linked to the viral spike and nucleocapsid proteins of
SARS-CoV which is shared with SARS-CoV-2 [131,132]. CXCL8 is
known to directly inhibit IFN induction by viral proteins leading
to reduction in the antiviral effect of IFN especially during early
stages of SARS-CoV infection [71,133]. Functionally, CXCL8 is
responsible for the recruitment, activation and accumulation of
neutrophils. Also, CXCL8 induces the formation of the highly
immunogenic and toxic neutrophil extracellular traps (NETs) that
lead to inflammation and epithelial/endothelial cell death [134–
137]. This is attributed to the ability of CXCL8 to stimulate exocy-
tosis and oxidative burst of superoxide and hydrogen peroxides
from neutrophils [138]. In turn, lung NETs release more CXCL8
which further recruits more neutrophils, and prevents their apop-
tosis [135,136,139]. Moreover, CXCL8 stimulates the airway
epithelium and induces its contraction which allows for further
recruitment of other inflammatory cells in the infected lungs
[140]. Collectively, the above functions of CXCL8 explain how it
may contribute to COVID-19 pathogenesis and disease severity.
This was further confirmed in a study which used single cell RNA
sequencing analysis (scRNA-seq analysis) to compare the immuno-
logical response of severe and mild COVID-19 patients. The
increase in CXCL8 release from myeloid cells was more pro-
nounced in severe cases and was associated with an increase in
neutrophil recruitment to the lungs along with an elevation in
the number of neutrophils in the blood [141]. Moreover, higher
expression of secretion-related molecules, lysosome-associated
molecules, and NETosis features were observed in the neutrophils
of severe patients [141]. These findings corroborated with the ele-
vated NETs in the sera of COVID-19 patients when compared to
healthy controls [142]. Importantly, scRNA-sequence analysis
showed that although NETosis genes were elevated in severe cases,
they are considered abnormal when it comes to their antiviral
effect. However, the same data revealed one mechanism through
which neutrophil NETs might aggravate COVID-19 pathogenesis
through epithelial damage [141].

As neutrophils contribute significantly to SARS-CoV-2
immunopathology, reducing their numbers by targeting the
CXCL8-CXCR1/2 axis can also be of clinical benefit to COVID-19
patients. For instance, the CXCR2 antagonists Reparixin, a non-
competitive CXCR1 and CXCR2 dual inhibitor, the humanized
mAb against CXCL8, the neutralizing antibodies against CXCR1/2,
the miRNAs against CXCL8 mRNA expression, or the inhibitors of
CXCL8, are considered possible therapeutic modalities [143–150].
Currently, an ongoing phase 2 clinical trial (NCT04347226) is test-
ing the efficacy of anti-CXCL8 on SARS-CoV-2 patients [141].

3.3.2. CXCL10/CXCR3 and CXCL11/CXCR3 axis
CXCL10 is considered a key chemokine downstream the com-

mon TLR4-TRIF signaling pathway implicated in the pathogenesis
of lung injury [151,152]. In response to infection, CXCL10 is pro-
duced at high concentrations by activated bronchial and alveolar
epithelial cells and consequently, activates CXCR3 cascade
involved in the etiology of various pulmonary conditions such as
pulmonary fibrosis [153,154]. CXCL10 attracts monocytes, NK cells
[16], Th1 cells expressing CXCR3, and activates cell-mediated
immune response [85]. Furthermore, CXCL10 might be implicated
in T cells apoptosis and lymphopenia seen in SARS, MERS and
COVID-19 patients which results in impairing T lymphocyte func-
tion to clear the virus [85]. Importantly, although CXCL10 is a non-
ELR chemokine (lacking Glu-Leu-Arg tripeptide adjacent to CXC
motif), it was reported to play a crucial role in pulmonary neu-
trophil infiltration, which in turn releases significant amounts of
CXCL10 [155,156]. Moreover, CXCL10/CXCR3 axis acts in an auto-
crine manner on the recruited neutrophils and elicits the oxidative
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burst which contributes to exacerbating lung inflammation and
progression to ARDS [155]. This may explain the importance of
CXCL10 as a prognostic and predictive marker for SARS-CoV-2 out-
come. Accordingly, antibodies targeting CXCL10 may stand to be a
potential and promising therapeutic option in treating the acute
phase of ARDS as reported previously in H1N1 mouse model
[155,157].

It is worth mentioning that aside from CXCL10, CXCL11 is also
the ligand with high affinity for CXCR3 [158]. The CXCL11/CXCR3
axis is induced following IFN-c and IFN-b production, and is likely
related to activated Th1 response [159,160]. Moreover, the
CXCL11/CXCR3 pair has a role in coordinating the distribution of
circulating Tfh cells into infected tissues to form resident memory
cells capable of responding faster to viral antigens at the level of
the bronchus-associated lymphoid tissue and assisting other local
resident memory B and CD8+ T cells [161–165]. This was further
supported by single-cell analysis which revealed the presence of
infiltrated Tfh cells in the airway of COVID-19 patients [166].

3.3.3. CCL2/CCR2 axis
Monocytes and macrophages are important immune cells in

COVID-19 pathogenesis where resident alveolar macrophages play
a protective role during the early phase of the disease. Infiltrating
monocytes constitute the majority of leukocytes migrating into the
infected lungs, contributing significantly to the severe lung inflam-
mation in SARS-CoV-2 patients, possibly due to the excessively
released cytokines and chemokines [73,74,167]. This is corrobo-
rated with the upregulation of monocytes-attractant chemokines
such as CXCL6, CXCL11, CCL2, CCL3, CCL4, CCL7, CCL8 and CCL20,
which are detected in the BALF samples of COVID-19 patients
[168]. In turn, high numbers of macrophages specifically the M1
phenotype, present in severely and moderately infected COVID-
19 patients, induce the release of CXCL9, CXCL10 and CXCL11
which are responsible for the recruitment of inflammatory cells
towards infected lungs, and which are positively associated with
intra-alveolar hemorrhage by compromising the integrity of the
endothelium [169,170]. Although several chemoattractant mole-
cules are utilized for migration of monocytes, CCL2 and CCL7 are
usually rapidly produced by both stromal cells and immune cells
upon activation of pattern recognition receptors (PRR) or cytokines
[171]. As indicated above, CCL2 is the prominent chemokine linked
to COVID-19 severity, is upregulated during the early phase of
infection and is increased further during late stages of fatal cases
[1,76]. In the lungs, CCL2 is mainly produced by alveolar macro-
phages, T cells and endothelial cells and its cognate receptor
CCR2, is mainly expressed on monocytes and T cells [172]. Upon
binding to CCR2, CCL2 dimerizes, binds to ECM GAGs and induces
the recruitment of monocytes into infected lungs where they elicit
calcium influx, producing oxygen radicals and superoxide as well
as upregulating integrin expression [171,173,174]. CCL2/CCR2 axis
was also demonstrated to recruit mast cell progenitors during pul-
monary inflammation as observed in freshly isolated bone marrow
in vitro and in allergic airway models in vivo [175]. Together, his-
tamine and leukotrienes released from mast cells enhance Th2
polarization [176].

Furthermore, the presences of CCR2 bearing blood monocytes
enhance the accumulation of neutrophils drastically reflecting
the cooperativity and coordination between monocytes and neu-
trophils in leukocyte efflux during lung inflammation [177]. Addi-
tionally, CCL2 was reported to increase procollagen synthesis by
fibroblasts [176,178]. Collectively, these functions of CCL2 may
lead to fibroproliferative complications in ARDS [176]. Hence, the
prophylactic use of CCL2 antagonists tends to reduce the pul-
monary immunopathology and significantly improve the survival
of infected mice [95,179]. Moreover, blocking the CCL2/CCR2 axis
by CCR2 antagonist was shown to inhibit inflammatory monocytes



Table 1
Chemokines and chemokine receptors implicated during COVID-19 infection.

Chemokine Receptor Role in Immunity Expression and Role in COVID-19

CCL2 (MCP-1) CCR2 Migration of inflammatory
monocytes

- Produced by alveolar macrophages, T cells and endothelial cells
- Demonstrated to recruit mast cell progenitors
- Enhances the accumulation of neutrophils
- Increases procollagen synthesis by fibroblasts
- Upregulated early post SARS-CoV-2 infection
- Higher levels detected in mildly symptomatic and severe cases compared to

asymptomatic
CCL3 (MIP-1a) CCR1 and

CCR5
Migration of macrophages and
NK cells

T cell/DCs interaction

- Upregulated early post SARS-CoV-2 infection
- Higher levels detected in mildly symptomatic and severe cases compared to

asymptomatic

CCL4 (MIP-1b) CCR5 Migration of macrophages and
NK cellsT cell/DCs interaction

- Upregulated early post SARS-CoV-2 infection

CCL5 (RANTES) CCR1, CCR3,
CCR5

Migration of macrophages and
NK cells

T cell/DCs interaction

- Ability to cause acute renal failure and liver toxicity
- Upregulated early post SARS-CoV-2 infection

CCL7 (MCP-3) CCR2 and
CCR3

Migration of monocytes - Higher levels detected in mildly symptomatic and severe cases compared to
asymptomatic

- Independent predictor for COVID-19 progression
CCL8 (MCP-2) CCR1, CCR2,

CCR3 and
CCR5

Th2 response - Detected in post-mortem lung samples and associated with disease severity

CCL11 (Eotaxin-1) CCR3 Migration of eosinophil and
basophil

- Upregulated early and remained steady post SARS-CoV-2 infection
- Detected in post-mortem lung samples and associated with disease severity

CCL19 (MIP-3b) CCR7 T cell and DC homing to lymph
node

- Upregulated and its level remained steady post SARS-CoV-2 infection

CCL20 (MIP- 3a) CCR6 Th17 responses

B cell, and DC homing to gut-
associated lymphoid tissue

- Higher levels detected in mildly symptomatic and severe cases compared to
asymptomatic

CCL27 (CTAK) CCR10 T cell homing to skin - Upregulated early and remained steady during SARS-CoV-2 infection
CXCL1 (GRO-a) CXCR2 Migration of neutrophils - Upregulated and remained steady during SARS-CoV-2 infection
CXCL2 (GRO-b, MIP-2a) CXCR2 Migration of neutrophils - Upregulated and remained steady during SARS-CoV-2 infection
CXCL6 (GCP-2) CXCR1, CXCR2 Migration of neutrophils - Upregulated post SARS-CoV-2 infection
CXCL8 (IL-8) CXCR1 and

CXCR2
Migration of neutrophils - Released by monocytes/macrophages and alveolar epithelial cells.

- Induced by IL-17A and IL-17F secreted by IL-6-dependent Th17 cells
- Inhibits IFN induction by viral proteins.
- Stimulates exocytosis and oxidative burst of superoxide and hydrogen peroxides

from neutrophils
- Induces the formation of the highly immunogenic and toxic neutrophil extracel-

lular traps (NETs) that lead to inflammation and epithelial/endothelial cell death
- Stimulates the airway epithelium and induces its contraction and recruitment of

more inflammatory cells
- Upregulated early post SARS-CoV-2 infection
- Higher levels detected in mildly symptomatic and severe cases compared to

asymptomatic
CXCL9 (MIG) CXCR3 Migration of Th1, CD8 and NK

cells

Th1 response

- Upregulated early post SARS-CoV-2 infection
- Higher levels detected in mildly symptomatic and severe cases compared to

asymptomatic

CXCL10 (IP-10) CXCR3 Migration of Th1, CD8 and NK
cells

Th1 response

- Produced by activated bronchial and alveolar epithelial cells
- Implicated in T cells apoptosis and lymphopenia
- Plays a crucial role in pulmonary neutrophil infiltration
- Upregulated early post SARS-CoV-2 infection
- Levels increase with disease severity and death
- Important marker for disease outcome

CXCL12 (SDF-1) CXCR4 Bone marrow homing - Upregulated and its level remained steady post SARS-CoV-2 infection
CXCL16 CXCR6 Migration and survival of NKT

and ILC
- Upregulated early post SARS-CoV-2 infection

CXCL17 ? Migration of macrophages and
DC

- Upregulated early post SARS-CoV-2 infection

CX3CL1 (Fractalkine) CX3CR1 Migration of NK cells,
monocytes and T cells

- Higher levels detected in mildly symptomatic and severe cases compared to
asymptomatic
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recruitment in a murine model of hepatocellular carcinoma where
antagonizing CCR2 had an anti-tumor effect [180].

3.3.4. CCL5/CCR5 axis
CCL5 is a chemotactic cytokine for monocytes, DCs, granulo-

cytes and leukocytes during acute viral infection and can activate
T cells [181] and NK cells [18], as well as sustains the response
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of CD8+ T cells during chronic viral infections. In SARS-CoV-2 infec-
tion, the effect of CCL5 is rather contradictory. For instance, in
mildly infected patients, it is assumed that the main source of
CCL5 during the early stage of the disease is the virus specific
CD8+ T cells. This is probably due to the higher number of lympho-
cytes in mild cases compared to severe cases [107]. Moreover,
CCL5/CCR5 axis is important for preventing apoptosis of macro-



B.A. Khalil, Noha Mousaad Elemam and A.A. Maghazachi Computational and Structural Biotechnology Journal 19 (2021) 976–988
phages, the crucial immune cells in viral clearance. In a mouse
model infected with parainfluenza or human influenza virus, the
absence of CCL5 caused a delay in viral clearance, excessive airway
inflammation and respiratory death [182]. The same study
revealed the signal transduction downstream the activation of
CCR5 where bilateral activation of Gai/PI3K/AKT and Gai/MEK/
ERK pathways induce anti-apoptotic activity and rescue macro-
phages [182]. Based on the above, it is thought that CCL5 may have
a protective anti-viral role in COVID-19 patients. However, other
studies reported contradictory data where critically ill patients
with liver and kidney injuries showed elevated levels of CCL5 com-
pared to healthy controls or mildly and moderately SARS-CoV-2
infected patients [183]. This goes in parallel with the ability of high
levels of CCL5 to cause acute renal failure and liver toxicity
[184,185]. The discrepancy regarding the role of CCL5 in COVID-
19 pathogenesis might be attributed to the differences in the pop-
ulations studied, timing of chemokine measurement or the detec-
tion method. Therefore, CCL5 is not considered a clear predictive
marker of COVID-19 outcome and more studies are needed to con-
firm its inflammatory or protective role. CCL5 was proven to exac-
erbate the status of COVID-19 patients, and thus a clinical trial
targeting CCR5 (NCT04343651), may be beneficial [186]. Leroli-
mab, an antibody used to block CCR5, prevents CCL5-induced cal-
cium mobilization in CCR5+ macrophages and T cells. This results
in a rapid reduction of IL-6, a decline in myeloid cell clusters and
plasma viremia, and restoration of CD4/CD8 ratio. Consequently,
this may resolve the hyperinflammation and enhance anti-viral
immunity in COVID-19 patients [112,183].

Table 1 illustrates the role of the different chemokines impli-
cated in COVID-19 pathogenesis and clearly reflects the redun-
dancy in the chemokine system which is attributed to two main
reasons: (1) the promiscuity of chemokine receptors which allow
various chemokines to bind to the same receptor and produce dif-
ferent functions, and (2) the overlapping spectrum of action
through the ability of different chemokines to produce the same
effect on specific immune cells. The redundancy in the chemokine
system is not only important to produce a robust immune response
to fight infection, but is also crucial to overcome genetic and epige-
netic differences among individuals.
4. Summary and outlook

Chemokines and their receptors are vital players during an
immune response, yet tight regulation of their functions is man-
dated to prevent excessive inflammation. In COVID-19 patients,
chemokines serve various roles in the different phases of the dis-
ease. In this article, we identified a clear consensus among the var-
ious studies conducted regarding the chemokine profile in COVID-
19 patients despite the differences in sample size and detection
methods. Here, it is important to highlight the need for studies
on larger groups of patients with different ethnic backgrounds
and clinical history so as to reach a comprehensive conclusion
about COVID-19 chemokine signature which could be used to pre-
dict disease outcome. In addition, we highlighted the most promi-
nent chemokines correlated to COVID-19 progression which
include CCL2, CXCL10 and CXCL8, and their importance as poten-
tial biomarkers. However, it is not only important to block inflam-
matory mediators, but it is also crucial to determine when to
intervene so as not to compromise the protective role of chemoki-
nes in recruiting the immune cells needed for viral clearance. Fur-
ther, we discussed the chemokine profiles pertaining to the
different stages of SARS-CoV-2 infection and their importance in
stratifying patients at risk to develop complications. This will aid
in identifying the right protocols to target chemokines in order
to avoid complications and reduce mortality. Finally, we shed some
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light on the available targeted therapies against chemokines or
their receptor in the ongoing related clinical trials. Based on the
predictive and prognostic values of the chemokine profile, it ought
to be included in the routine clinical tests of COVID-19 patients.
Analysis of chemokines and their receptors during the infection
stages will help in identifying the possible outcome of the disease
and the likelihood of complications development.
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