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Extracellular ATP activates inflammasome and triggers the release of multiple cytokines
in various immune cells, a process primarily mediated by P2X7 receptors. However, the
expression and functional properties of P2X7 receptors in native mast cells in tissues
such as meninges where migraine pain originates from have not been explored. Here we
report a novel model of murine cultured meningeal mast cells and using these, as well
as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated
mast cell activation. We show that ATP induced a time and dose-dependent activation
of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as
4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was
mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect
of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was
promoted by the P2X7 agonist 2′,3′-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular
ATP-induced degranulation of native and cultured meningeal mast cells was shown
with Toluidine Blue staining. Taken together, these data demonstrate the important
contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these
purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization
in migraine.
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INTRODUCTION

Mast cells are well-known players in allergic responses and essential contributors to inflammation
in various tissues (Galli and Tsai, 2012). When activated, mast cells release multiple substances such
as biogenic amines, histamine and serotonin, enzymes β-hexosaminidase, chymase and tryptase,
and a number of pro-inflammatory cytokines and growth factors (Wernersson and Pejler, 2014).
The particular profile of these secreted agents determines the type of inflammatory responses in
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surrounding tissues. Notably, mast cells are tissue resident
and their morphology and functional role are tissue-dependent
according to the local microenvironment and triggering stimuli
(Galli et al., 2011). Therefore, the data obtained from one
population of mast cells cannot be simply extrapolated to another
type of mast cells.

Recently, much attention has been paid to the role of
meningeal mast cells as the triggering actor in migraine attack.
It has been suggested that degranulation of mast cells located
in meningeal tissues contributes to pain signaling in migraine
(Levy, 2009, 2012; Kilinc et al., 2017). However, the main missing
piece of information in this hypothesis concerns the nature of the
endogenous trigger for degranulation of mast cells in meninges
in situ.

A purinergic hypothesis of migraine, originally proposed
by Burnstock (1981), was complimented by a more recent
hypothesis suggesting the role of ATP-gated P2X3 receptors in
generation of migraine pain (Giniatullin et al., 2008; Yegutkin
et al., 2016; Zakharov et al., 2016). However, given the presence
of multiple types of ATP receptors in meningeal tissues, the
full spectrum of ATP driven mechanisms in migraine remains
incomplete. For instance, it is well established that extracellular
ATP activates ligand-gated P2X7 receptors present in the
majority of immune cells thus leading to a release of multiple
pro-inflammatory cytokines and activation of inflammasome
(Sperlágh and Illes, 2014; Franceschini et al., 2015; Burnstock,
2016; Karmakar et al., 2016). Consistent with this, P2X7 receptor
knockout animals have a blunted inflammatory response and
failed to develop certain types of pain (Chessell et al., 2005).
In contrast to other types of immune cells, the role of
P2X7 receptors in mast cells is little explored. Nevertheless,
there is evidence for the role of ATP-mediated mast cell
dependent inflammation through P2X7 receptors in the intestine
(Kurashima et al., 2012). P2X7 receptors are also characterized
in human LAD2 mast cells, derived from a patient with mast
cell leukemia (Wareham and Seward, 2016). However, there is
still lack of information regarding the role of P2X7 receptors in
activation of meningeal mast cells, which are potential players in
migraine.

In this study, we developed a new model of cultured
meningeal mast cells, and using a combination of various
techniques, including time-lapse flow cytometry measurements,
we show that mast cells obtained from the peritoneal cavity
and from meninges, express ATP-gated P2X7 receptors and are
permeable to organic molecules. ATP mediated degranulation
of meningeal mast cells may be responsible for the activation
of trigeminal nerve fibers and local neuroinflammation in the
trigeminovascular system associated with migraine attack.

MATERIALS AND METHODS

Animals
Experiments were performed on 10-12 week-old male C57BL
mice obtained from the Animal Facilities of the University
of Eastern Finland (UEF). The animal treatment procedures
were approved by the Committee for the Welfare of Laboratory
Animals of the University of Eastern Finland and the

Provincial Government of Kuopio. All experiments were
conducted in accordance with the guidelines of the European
Community Council (Directives 86/609/EEC). All efforts were
made to minimize the number of animals used and their
suffering.

Isolation and Identification of Mast Cells
To obtain meningeal mast cells, we adapted the method of
dural immune cell isolation described by McIlvried et al. (2015).
Animals under deep Avertin (tribromoethanol) anesthesia were
perfused through the ascending aorta with phosphate buffer
saline (PBS), pH 7.2. After decapitation, the head was cut along
the sagittal suture and the brain was gently removed from
hemispheres leaving intact meninges. For meningeal mast cell
isolation, hemiskulls were gently scraped with pestles into PBS.
The obtained cell suspension was transferred to ice-cold PBS
supplied with 2% of heat inactivated fetal bovine serum (FBS) and
centrifuged at 300 g for 5 min at 4◦C. The pellet was resuspended
in PBS, filtered through 70 µm pre-separation filters (Miltenyi
Biotec, Germany) and used for mast cell identification.

Peritoneal mast cells were isolated as described previously
by Jensen et al. (2006) with slight modifications to improve
cell viability and minimize baseline mast cell activation: lavage
procedure was performed using ice-cold PBS with 2% FBS and all
following steps were conducted at 4◦C. The obtained pellet was
resuspended in PBS and filtered through 50 µm filters (Sysmex
CellTricsr, Germany).

For flow cytometry characterization, peritoneal or meningeal
cells were stained with anti-mouse FcεRI conjugated with
Alexa Fluorr 647 (clone MAR-1, BioLegend, USA), and
CD117 conjugated with tandem dye APC/Cy7 (clone 2B8,
Biolegend) antibodies for 15 min at room temperature, washed
with PBS with 2% FBS (300 g for 5 min) and resuspended
in 300 µl of fresh PBS. Cell viability was determined using
SYTO 16 Green Fluorescent Nucleic Acid Stain (Thermo Fisher
Scientific, Waltham, MA, USA).

The data were acquired using BD FACSAriaTM III cell
sorter (BD Biosciences, San Jose, CA, USA) equipped with
488 and 633 nm lasers. SYTO 16 is excited by the 488 nm
laser and detected through 530/30 filter. Phenotyping marker
fluorochromes are excited by the 633 nm laser and detected
through 660/20 and 780/60 filters for Alexa Fluorr 647 and
APC/Cy7, respectively. Compensation for the spillover of
fluorochromes into other channels was made using single stained
cells.

Culturing of Peritoneal and Meningeal
Mast Cells
Unfractionated peritoneal cells or cells obtained by hemiskull
scraping were centrifuged at 300 g for 5 min at 4◦C. The pellet
was re-suspended in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% FBS, 1% antibiotics
(penicillin/streptomycin), 2 mM L-glutamine, 50 µM
B-mercaptoethanol, 10 ng/ml murine recombinant stem
cell factor (SCF; PeproTech, NJ, USA), and 10 ng/ml murine
recombinant interleukin (IL)-3 (PeproTech, NJ, USA). After
2–3 weeks of culture, more than 98% of cells were identified as
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mast cells by Toluidine Blue staining. Cells were kept in culture
for up to 5 weeks.

Toluidine Blue Staining of Meningeal Mast
Cells
Whole mount meninges on hemiskulls were pre-treated with
or without 1 mM ATP in artificial cerebrospinal fluid (ACSF)
containing (in mM): NaCl 115, KCl 3, CaCl2 2, MgCl2 1,
NaH2PO4 1, NaHCO3 25 and glucose 11; bubbled with 95%
O2/ 5% CO2) for 10 min at room temperature. Then samples
were fixed with 4% paraformaldehyde at 4◦C overnight. After
rinsing with PBS, meninges were carefully dissected from the
skull, and put on a glass coated with poly-L-lysine (Polysiner

Thermo-Scientific, USA). Staining with Toluidine Blue (pH
2.0) was performed according to the standard protocol we
described previously (Levy et al., 2007; Kilinc et al., 2017). Images
were captured using Olympus AX-TFSM microscope (Olympus,
Japan). The number of granulated and degranulated mast cells
in each meninges (n = 5) was counted in five random areas
containing the main branches of the middle meningeal artery
by an observer blinded to treatment groups. Mast cells were
classified as degranulated if they were pale, poorly stained, had
distorted cytoplasmic boundaries, and surrounding positively
stained granules (Shelukhina et al., 2017).

Stimulation of Peritoneal and Meningeal
Mast Cells With ATP
To study P2X7 receptor activation in freshly isolated peritoneal
and meningeal mast cells, the cells were treated with different
concentrations of ATP and 2′,3′-O-(benzoyl-4-benzoyl)-ATP
(BzATP; both from Sigma-Aldrich, Germany). Notably, BzATP
is more potent than ATP as an agonist at P2X7 receptors whereas
it is equally or less potent than ATP at other P2X receptors
(North and Surprenant, 2000).

ATP-induced mast cell activation was evaluated using
the fluorescent dye YO-PRO1 (Thermo Fisher Scientific,
Waltham, MA, USA) which enters the cells through the dilated
P2X7 receptor ion channel (Michel et al., 1999; Browne and
North, 2013; Browne et al., 2013). ATP at final concentrations
100 µM, 1 mM or 5 mM or BzATP to a final concentration of
100 µM were added and samples were incubated for 20 min in
the dark at room temperature, followed by addition of 1 µM of
YO-PRO1. After incubation, 200 µl of fresh PBS was added.

Samples were run on a BD FACSAria III cell sorter (BD
Bioscience). YO-PRO1 is excited by the 488 nm laser and
detected through 530/30 filter. The data were shown as a
percentage of YO-PRO1 positive cells in each sample as
previously reported (Karmakar et al., 2016).

Cultured mast cells, before stimulation, were washed once
with Dulbecco’s PBS, and then centrifuged at 300 g for 5 min
at 4◦C, and the pellet was resuspended in 1 ml of PBS. A cell
suspension (5 × 105 cells/ml) was plated onto 24-well plates
(100 µl per well). Meningeal cell-derived mast cells (MDMCs)
were stimulated with ATP at final concentration 1 mM for
5 min at room temperature. Peritoneum-derived mast cells were
stimulated with ATP (100 µM, 1 or 5 mM) or BzATP (100 µM)
at room temperature. For inhibitory experiments, peritoneum-

derived mast cells were pre-treated with P2X7 antagonist
A839977 (10 µM) for 5 min followed by 1 mM ATP stimulation.
Application of PBS was used as the control. After incubation,
mast cells were transferred onto glass microscope slides, dried
at 37◦C, and stained with Toluidine Blue. The number of intact
and degranulated mast cells was counted randomly and blindly in
five fields on each slide. Mast cells were defined as stated above
(Shelukhina et al., 2017).

Time-Lapse Analysis of DAPI Fluorescence
It has been recently shown that P2X7 receptors are also
permeable to the DNA dye 4,6-diamidino-2-phenylindole
(DAPI; Bukhari et al., 2016). We used flow cytometry to
determine the time-course of DAPI uptake (excitation/emission
405/450 nm) by mast cells. Peritoneal mast cells were identified
based on FcεRI and CD117 expression as described above.
Samples were analyzed using the Cytoflex flow cytometer
equipped with 405, 488, and 638 nm lasers (Beckman Coulter
Inc., CA, USA). A peristaltic pump in this device allowed
the addition of the agonist ATP during on-line acquisition
of data. ATP at final concentrations 100 µM or 1 mM
was added at 20 s after the beginning of the recording. Up
to 25,000 peritoneal mast cells per sample were acquired
during 120 s. All flow cytometric data were analyzed using
CytExpert Software v 1.3 or Kaluza Software v 1.5 (Beckman
Coulter Inc., CA, USA). DAPI (1 µg/ml) incorporation
was measured by using median fluorescence intensity (MFI)
of single cells after ATP application or control. The data
from independent experiments were tested for normality of
distribution by the Kolmogorov-Smirnov test (n > 50) at each
time point.

Statistical Analysis
Data were analyzed using Statistica 8 Software (Quest Software
Inc., Aliso Viejo, CA, USA), Origin (Origin labs, MS, USA)
and GraphPad Prism 4 (GraphPad Software, La Jolla, CA,
USA). Statistical analysis was performed using nonparametric
Mann-Whitney U test, Student t-test or one-way ANOVA,
followed by Dunnett’s multiple comparisons test when
appropriate. Differences with p values of less than 0.05 were
considered statistically significant. The data are presented as
mean± SEM.

The raw data supporting the conclusions of this manuscript
will be made available by the authors, without undue reservation,
to any qualified researcher.

RESULTS

Identification of Mast Cells
In order to distinguish a population of murine mast cells from
other cell types localized in meninges or in the peritoneal cavity,
the cell surface expression of FcεRI and CD117 was determined.
FcεRI is a mast cell membrane receptor specific for IgE, which
is a potent inducer of mast cell activation and degranulation
(Rivera and Gilfillan, 2006) whereas CD117 (also named c-kit)
is a receptor for the SCF important for mast cell migration,
survival and proliferation (Yamazaki et al., 2015). Figure 1 shows
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FIGURE 1 | Flow cytometric gating strategy used to identify mast cells. (A) Light scatter profile for cells based on forward scatter (FSC-A) and side scatter (SSC-A)
(the region is set to discriminate between cells and debris). (B,C) Singlet gating based on FSC-H vs. FSC-A and then SSC-A vs. SSC-H, respectively (the regions are
set to discriminate cell doublets). (D) Cells were divided into subpopulations based on Alexa Fluor 647-FcεRI and APC-Cy7-CD117 (the region is set to discriminate
between double-positive cells and all other subpopulation of cells). (E) Back-gating of double positive cells onto the light scatter plot FSC-A vs. SSC-A. This shows
relative size and granularity of mast cells compared to those in (A). Cells from the region of “mast cells” were used further to assess the action of ATP on mast cell
functionality.

the gating strategy of our protocol to obtain the final fraction
of mast cells. Thus, there are light scatter dot plots for isolated
cells based on forward scatter (FSC-A) related to light refraction
and cell size and side scatter (SSC-A) reflecting cell granularity
(Figure 1A). The selected region from the light scatter plot,
which eliminates debris, was set to remove doublet cell aggregates
(Figures 1B,C). Cells were further divided into subpopulations
based on expression of FcεRI and CD117 (Figures 1D,E) to
isolate the fraction of ‘‘mast cells.’’ Cells with double positive
expression of both FcεRI and CD117 were identified as mast
cells. This approach allowed us to identify a pure fraction
of mast cells, which were further tested with the purinergic
agonists.

ATP-gated P2X7 Receptor Mediates
Peritoneal Mouse Mast Cell Degranulation
First, to optimize our technical approach, we evaluated the
ability of ATP to activate ATP-gated P2X7 receptors in easily
accessible peritoneal mouse mast cells by using YO-PRO1
which is able to penetrate the cell membrane during the
activation of P2X7 receptors (Browne et al., 2013). As expected,
unstimulated mast cells failed to take up YO-PRO1, as only
8.2± 1.3% (n = 11) of the cells contained YO-PRO1 (Figure 2A).
Application of 1 mM ATP for 15 min increased the uptake up
to 37.9 ± 9.2% (n = 8, p < 0.01; Figure 2B). P2X7 specific
antagonist A839977 (Honore et al., 2009) prevented the ATP

induced increase in YO-PRO1 signal (8.7 ± 0.6%, n = 4;
Figure 2C) whereas application of P2X7 agonist BzATP (Bianchi
et al., 1999) effectively enhanced the YO-PRO1 loading of the
cells by 32.2 ± 10.9% (n = 5, p < 0.05; Figure 2D). Next, we
demonstrated the dose-dependent action of ATP on YO-PRO1
uptake (Figure 2E). Stimulation of mast cells with increasing
concentrations of ATP led to increased YO-PRO1 uptake.
Pre-treatment with P2X7 antagonist A839977 (5 µM) prevented
the ATP-induced YO-PRO1 incorporation (Figure 2E).

Next, we reconstructed a time-course for ATP-induced
responses of P2X7 allowing us to characterize the early events
in the activation of P2X7 receptors. Application of 100 µM
ATP on murine peritoneal mast cells induced a slight increase
in DAPI fluorescence by 120 s (Figures 3A,D,E) whereas in
samples treated with 1 mM ATP, a robust enhancement of
DAPI fluorescence was observed during the 120 s recording time
(Figures 3B,D,E). Specific P2X7 receptor antagonists prevented
the stimulatory effect of 1 mM ATP on DAPI fluorescence
(Figures 3C–E).

In addition to the flow cytometry approach, we confirmed the
ATP action on cultured peritoneal mast cells by morphological
analysis (Figure 4). In control conditions, most mast cells were
intact, and exhibited dense, compact, unbroken cytoplasmic
boundaries and did not have many surrounding granules
(Figure 4A). Application of 1 mM ATP (Figure 4B) or 100 µM
BzATP (Figure 4C) increased the number of mast cells with
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FIGURE 2 | ATP induces the uptake of YO-PRO1 by peritoneal mast cells. (A–D) Representative histograms (fluorescence intensity vs. number of cells) of
YO-PRO1 incorporation into murine peritoneal mast cells. (A) Negative control of untreated murine peritoneal mast cells incubated with 1 µM of YO-PRO1 for 15 min
(n = 11). (B) Mast cells pre-treated with 1 mM of ATP for 15 min and stained with 1 µM of YO-PRO1 (n = 8, p < 0.01). (C) Mast cells in the presence of
P2X7 antagonist A839977 (5 µM), then stimulated with 1 mM of ATP for 15 min and stained with 1 µM of YO-PRO1 (n = 4). (D) Mast cells pre-treated with 100 µM
of 2′,3′-O-(benzoyl-4-benzoyl)-ATP (BzATP) for 15 min and stained with 1 µM of YO-PRO1 (n = 5, p < 0.05). (E) The dose-response curve showing percent of mast
cells which incorporated YO-PRO1 after stimulation with increasing doses of ATP and in the presence of the P2X7 antagonist A839977 (5 µM). Mean ± SEM
(one-way ANOVA, followed by Dunnett’s multiple comparison test).

blurred contours and numerous granules around the cells which
is indicative of degranulation. Notably, even 100 µM ATP
significantly increased mast cell degranulation (by 37.1 ± 1.5%,
n = 4, p = 0.0013). However, a much higher level of degranulation
was observed with 1 mM and 5 mM ATP. Consistent with
this the P2X7 agonist BzATP (100 µM) effectively degranulated
most mast cells. Pre-treatment with the P2X7 antagonist
A839977 (10 µM) suppressed the ATP-induced degranulation
(Figure 4D). Thus, consistent with flow cytometry data, two
agonists (ATP and BzATP) induced significant degranulation of
peritoneal mast cells mediated by the P2X7 receptors.

Long-Term Culturing Enriched Mature
Meningeal Mast Cells
In order to evaluate P2X7-receptor activation on a more relevant
model of mast cells, we developed a method to culture mouse
meningeal mast cells. Freshly isolated meningeal cells were
identified in Toluidine Blue stained slides by their rounded
shape and average size of 12 µm (Figure 5A). The granules of
meningeal mast cells were always stained metachromatically in
violet by Toluidine Blue. All other meningeal cells, their nuclei
and the nuclei of mast cells were stained orthochromatically in
blue (Figure 5A). During 1 month of observations, the cultures
were significantly enriched by mast cells (Figures 5A–D). After
1 week in culture, all cells showed similar morphological features:

a rounded shape with an average size of 7.95 ± 1.1 µm and
poorly visualized granules in the cytoplasm. The cytoplasm
was stained in tones from light blue to blue in the presence
of Toluidine Blue (Figure 5B). After 2 weeks of cultivation,
the cultured cells retained a round shape and had an average
size of 7.33 ± 0.96 µm. After two and three weeks, granules
were seen within the cytoplasm of these cells (Figure 5C, red
arrows). After 3 weeks of cultivation, cells exhibited a rounded
shape and the cytoplasm was filled with metachromatically
(violet) stained granules (Figure 5D). Mature mast cells obtained
from the culture were heterogeneous in size (average cell size
was 7.3 ± 0.97 µm) and density of metachromatic granules.
The MDMCs maintained such morphology up to 3 months of
culture.

Murine mast cells were identified from other cell types
localized in meninges or in the peritoneal cavity based on their
cell surface expression of FcεRI and CD117 (Figures 5E–H).
Figure 1 shows the gating strategy to identify a pure fraction
of mast cells. Less than 1% of the freshly isolated cells from
meningeal tissues were FcεRI+CD117+ positive. By the end of
the first week of culturing the percentage of FcεRI+CD117+ cells
increased up to 27%, reaching over 95% by the second week in
culture (Figures 5E–H). The percentage of viable FcεRI+CD117+
mast cells remained over 95% up to fifth week of culture. The
culture viability remained between 81% and 100% for the first
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FIGURE 3 | ATP induces 4,6-diamidino-2-phenylindole (DAPI) uptake by peritoneal mast cells. (A–C) Representative dot-plots [time vs. DAPI (1 µg/ml) fluorescence
intensity] obtained from murine peritoneal mast cells stimulated with 100 µM and 1 mM ATP, 1 mM ATP in the presence of 150 nM P2X7 antagonist A839977
(dot-plots A, B and C, respectively). The X-axis represents the time (seconds) from the beginning of sample acquisition, ATP was added at 20 s; the Y-axis
represents the relative fluorescence of DAPI (notice log scale). (D) Pooled DAPI fluorescence intensity data for murine peritoneal mast cells (n = 3) stimulated with
100 µM and 1 mM ATP, and 1 mM ATP + 150 nM P2X7 antagonist A839977, respectively. (E) Histograms showing DAPI fluorescence at three different time points
before and after application of 100 µM ATP (white), 1 mM ATP (black) alone or 1 mM ATP in the presence of 150 nM P2X7 antagonist A839977 (gray). Mean ± SEM,
n = 3, ∗p = 0.049 (paired sample Student t-test).

1–4 weeks and decreased to 62.4% during the fifth week in culture
(data not shown).

P2X7 Receptors Are Expressed in
Meningeal Mouse Mast Cells
Next, in order to investigate the tissue specific properties of mast
cells in the dura mater, where they are likely to be involved in
triggering of migraine attack (Levy, 2009; Kilinc et al., 2017),
we explored P2X7 receptor activation in meningeal mast cells.
Mouse meningeal mast cells were identified based on labeling
with CD117 and FcεRI (Figure 6A) and further separated from
debris based on their light scatter characteristics (FCS-A vs.
SSC-A, Figure 6B). The final population contained at least 95%
of viable meningeal mast cells (Figure 6C) which were tested
for ATP-induced P2X7 activation. In control conditions, in a
population of freshly purified cells obtained from meninges,

the percentage of YO-PRO1 uptake was low, approximately
14.4 ± 1.9% (Figure 6D). Incubation with 1 mM ATP
significantly enhanced the uptake of the dye (Figure 6D). Similar
to the peritoneal cells, the treatment with the P2X7 antagonist
A839977 (5 µM) prevented the ATP induced YO-PRO1 uptake
(Figure 6D).

To explore if the purinergic challenge has a functional
impact on the release of active components from granules
we tested the degranulation ability of 1 mM ATP on mouse
meningeal mast cells in whole mount meningeal tissues as
identified by Toluidine Blue staining (Levy et al., 2007; Kilinc
et al., 2017). In naïve isolated meninges most mast cells
were intact (Figure 7A), whereas ATP triggered degranulation
of multiple mast cells localized near the meningeal artery
(Figure 7B). Figure 7C shows pooled data obtained from
five mice, indicating the ability of ATP to induce significant
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FIGURE 4 | Degranulation of cultured peritoneal mast cells induced by ATP
and BzATP. (A–D) Toluidine Blue staining of cultured peritoneal mast cells
(20×). (A) Control conditions, (B) application of 1 mM ATP, (C) application of
100 µM BzATP, (D) pre-treatment with P2X7 antagonist A839977 (10 µM)
followed by 1 mM ATP stimulation. (E) Histograms showing a percent of
degranulated mast cells in control, after application of ATP (100 µM, 1 mM,
5 mM) and BzATP (100 µM), and after pre-treatment with A839977 (10 µM)
followed by application of 1 mM ATP. Calibration bar 100 µm. Mean ± SEM,
n = 4, ∗∗p ≤ 0.005 vs. control, ∗∗∗p < 0.0001 vs. control, ##p < 0.0001 vs.
1 mM ATP group (one-way ANOVA, followed by Dunnett’s multiple
comparison test).

degranulation of mast cells in the dura mater. These findings
were further confirmed in cultured meningeal mast cells by
morphological analysis. In control conditions most mast cells
were intact (Figure 7D), and the application of 1 mM ATP
significantly increased the number of degranulated mast cells
(Figures 7E,F).

DISCUSSION

Here, we show for the first time that rodent mast cells
derived from meninges can be grown, matured and enriched
in long-term culture. The ability of mast cell granules to
show metachromasia, that is, to display a color different from
that of the applied dye, is a key feature of mature mast
cells. In mammalian mast cells, the distinctive property of
metachromasia is accounted for the presence of heparin, a

sulfur-rich glycosaminoglycan, in mast cell secretory granules
(Härmä and Suomalainen, 1951). Based on these data, blue
(orthochromatic) staining of mast cell granules, which was
observed after 1 week of cultivation, may indicate immaturity.
The appearance of violet (metachromatic) granules in the cell
cytoplasm after 2 weeks of cultivation is evidence of active
maturation. The presence of metachromatic granules in almost
all cells after 3 weeks of cultivation indicates the functional
maturity of the mast cells at this time point.

The high-affinity IgE receptor (FcεRI) and CD117 (c-Kit) we
used for flow cytometry are classical mast cell markers. Both mast
cell progenitors and mature mast cells express these cell surface
markers (Dahlin et al., 2015). This explains the high percentage
of double positive cells already after 2 weeks of cultivation when
only a few cells were identified to contain metachromatic stained
granules in the presence of Toluidine Blue. Comparing the
obtained flow cytometry data with the Toluidine Blue staining
data, it can be concluded that the MDMCs have reached maturity
after 3 weeks of cultivation. At this time point, more than 95%
of the living cells in culture express FcεRI and CD117 and
contain metachromatically violet stained (mature) granules in
the cytoplasm. Based on these results, we recommend the use of
MDMC culture 3–5 weeks after the start of cultivation.

By using these and the easily accessible peritoneal mast
cells, we characterized the role of ATP-gated P2X7 receptors
associated with the uptake of organic dyes. The ability of
ATP to degranulate meningeal mast cells suggests that this
extracellular purinergic messenger could act as an endogenous
trigger of neuroinflammation in various neurological disorders,
including meningitis and migraine. ATP-gated P2X7 receptors
are important triggers of neuroinflammation in different tissues.
The activation of P2X7 receptors in mast cells is associated
with release of pro-inflammatory cytokines such as IL-1β, IL-18
(Ferrari et al., 2006) and IL-6 (Shieh et al., 2014) which are
essential contributors to neuropathic and inflammatory pain
(Chessell et al., 2005; Sperlágh and Illes, 2014). The role of the
NLRP3 inflammasome and release of IL-1β have been shown
also in pneumococcal meningitis (Zwijnenburg et al., 2003)
suggesting the involvement of P2X7 receptors in this pathology.
However, recent testing with P2X antagonists did not reveal
a significant change in the time-course of the disease which
the authors explained by down-regulation of ATP receptors
expression and decreased concentration of endogenous ATP
(Zierhut et al., 2017). Unlike bacterial meningitis, in aseptic
form of this disorder, so called drug-induced aseptic meningitis,
headache is the leading symptom (Holle and Obermann,
2015), thus closely linking trigeminal pain and meningeal
neuroinflammation.

P2X7 receptors are expressed in the majority of immune cells
(Junger, 2011; Burnstock and Boeynaems, 2014). For instance,
they have been found in macrophages (Moore and MacKenzie,
2007), monocytes (Humphreys and Dubyak, 1998; Grahames
et al., 1999), neutrophils (Chen et al., 2004; Christenson
et al., 2008), and different subtypes of T cells (Frascoli et al.,
2012; Rissiek et al., 2015). However, P2X7 receptors are less
studied in mast cells, which are often implicated in allergic
reactions and in neuroinflammation. Nevertheless, one study
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FIGURE 5 | Cultured meningeal mast cells exhibit typical mast cell morphology. (A–D) Toluidine Blue staining of (A) freshly isolated meningeal mast cells, (B) cells
kept in culture for 1 week, (C) 2 weeks (red arrows showing the presence of both blue and violet granules in the cytoplasm of mast cells), and (D) 3 weeks.
(E–H) Cultured mast cells were identified by their surface expression of FcεRI and CD117. The percentage of FcεRI+CD117+ cells increased upon time in culture.
(E) freshly isolated cells, (F) cells after 1 week in culture, (G) cells after 2 weeks in culture, (H) cells after 3 weeks in culture.

reported that P2X7 receptors in mast cells play a role in gut
inflammation (Kurashima et al., 2012). Another recent very
detailed study, using a calcium imaging technique, demonstrated
the functional expression of different P2X receptors, including
P2X7 subtype, in human LAD2 mast cells (Wareham and
Seward, 2016). The advantage of our study is that we focused
on techniques, which allowed us to test the function of
P2X7 receptors that is critical for initiation of neuroinflammation
and compared two different populations of native mast
cells.

Activation of P2X7 receptors in different cells is often
followed by uptake of relatively large organic molecules such
as the fluorescent dye YO-PRO1, which normally does not
penetrate the cell membrane (Michel et al., 1999; Jindrichova
et al., 2015; Bukhari et al., 2016). It is still a matter of
debate whether these dyes penetrate the dilated ion channel of
P2X7 receptor or enter through other P2X7 receptor associated
proteins (Rassendren et al., 1997; Jiang et al., 2005; Pelegrin
and Surprenant, 2006). Recent studies, however, showed that
the P2X7 receptor permeability to organic cations such as
YO-PRO1 is the intrinsic property of the ion channel itself
determined by the long COOH-terminal tail reviewed recently
by Di Virgilio et al. (2018). Thus, our data with the measurement
of the fluorescence of YO-PRO1 and DAPI reflect, actually, the
function of the ion channel of the P2X7 receptor opened by
BzATP or ATP.

In the current project, using flow cytometry, we found
that stimulation of mast cells with ATP led to P2X7 receptor
mediated influx of YO-PRO1 in murine peritoneal and
meningeal mast cells. This uptake was inhibited by the
P2X7 antagonist A839977 suggesting either direct or indirect
involvement of P2X7 receptors. A similar effect was observed
using the P2X7 agonist BzATP and with relatively high

concentrations of ATP. Taken together, these findings indicate
a key role for P2X7 receptor in the activation of mast
cells.

One novelty of our study was to use a flow cytometry
technique to assess the permeability of mast cell membrane for
the dye DAPI in real time after stimulation with 1 mM ATP. We
found that stimulation with ATP caused DAPI influx into murine
peritoneal mast cells in tens of seconds, and this effect was
completely prevented by the P2X7 antagonist A839977. These
data indicated the key role of P2X7 receptors in activation of mast
cells.

It has been reported that human P2X7 receptor has essentially
a higher affinity for several agonists than the mouse equivalent
(Chessell et al., 1998). This suggests that the processes, which
we observed in mouse cells, could be better presented in human
tissues. Moreover, in humans, there are differences in dye uptake
properties of the P2X7 receptor due to high polymorphism
typical for this receptor type. Interestingly, this single nucleotide
polymorphism can be linked (or probably even determine) lower
pain sensitivity (Sorge et al., 2012). The latter observation,
essential for personified pain medicine, highlights the need for
further investigation of native P2X7 receptors in individual
patients in order to evaluate the risk of pain state formation.

Mast cells are best known for their ability to release a
plethora of various active substances. The early phase of mast
cell activation leads to a release of pre-formed pro-inflammatory
mediators from secretory granules followed by synthesis of lipid
messengers, cytokines and chemokines (Boyce, 2005; Lorentz
et al., 2012; Wernersson and Pejler, 2014). Classical mediators
such as histamine and serotonin are released by different
mechanisms such as degranulation (Dvorak, 1992; Moon et al.,
2014) and constitutive or regulated exocytosis (Lacy and Stow,
2011; Lorentz et al., 2012; Moon et al., 2014). Degranulation of
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FIGURE 6 | YO-PRO1 uptake in meningeal mast cells in response to ATP. (A) Flow cytometric gating strategy used to identify mouse meningeal mast cells is first
based on CD117 and FcεRI labeling. (B) Next elimination of debris by gating of mast cells based on light scattering properties FSC and SSC. (C) Viable meningeal
mast cells are gated on the viability dye SYTO 16 Green Fluorescent Nucleic Acid Stain. (D) Stimulation with ATP led to increase of YO-PRO1 positive cells (n = 8)
whereas pre-treatment with the P2X7 antagonist A839977 inhibited incorporation of YO-PRO1 (n = 5). Mean ± SEM, (n = 10 in control), ∗p = 0.016 (Mann-Whitney
U test).

mast cells may be provoked by various stimuli such as antigens,
monomeric IgE, neuropeptides (substance P, CGRP) and viruses
involving different receptors and various signaling mechanisms
(Moon et al., 2014). Among a number of stimuli, ATP emerged
recently as an important trigger of mast cell activation (Wareham
and Seward, 2016). These authors showed P2X7 mediated mast
cell activation and degranulation in LAD2 mast cells by assessing
calcium fluxes and β-hexosaminidase release (Wareham and
Seward, 2016). In our study, we demonstrated not only that
ATP activates native P2X7 receptors in meningeal mast cells but
also showed that the application of ATP induces the release of
granules from these cells.

According to common view, migraine pain is initiated by
sensitized trigeminal nerve terminals in meninges within the

so-called trigeminovascular system (Moskowitz, 1993; Levy,
2012; Zakharov et al., 2015). Meninges are occupied by a
plethora of mast cells, which are localized at ‘‘strategic loci’’
close to main meningeal vessels and nerve fibers suggesting a
functional interaction (Levy, 2009; Kilinc et al., 2017). Although
we do not have direct evidence that mast cells degranulation
causes activation of trigeminal nerve endings, there are data
which provide evidence that activation of mast cells plays a
triggering role in the underlying sensitization process (Levy et al.,
2007; Kilinc et al., 2017). In a previous study, we developed
the purinergic hypothesis of migraine originally proposed by
Burnstock (1981), by showing that extracellular ATP activates
primary afferents in meninges (Yegutkin et al., 2016). One
open issue still remains: what is the source of extracellular
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FIGURE 7 | Degranulation of native and cultured meningeal mast cells with ATP. (A,B) Toluidine Blue staining of mast cells in whole mount meninges (20×). Mast
cells are mostly intact in control conditions (A). After treatment with 1 mM ATP the number of degranulated mast cells significantly increased (B). (C) Histograms
showing a fraction of degranulated cells in control and after application of 1 mM ATP. Calibration bar 20 µm. Mean ± SEM, n = 5, ∗∗p = 0.008. (D,E) Toluidine Blue
staining of cultured mast cells (40×). (D) Control conditions, (E), application of 1 mM ATP. (F) Histograms showing a percentage of degranulated mast cells in control
and after application of 1 mM ATP. Calibration bar 50 µm. Mean ± SEM, n = 4, ∗∗∗p < 0.0001 vs. control (Mann-Whitney U test).

ATP in migraine? There are plenty of potential sources to
release ATP in the nervous system including astrocytes, neurons,
platelets, and endothelial cells (Pangrśi č et al., 2007; Burnstock
and Ralevic, 2014). In meninges, the main sources of ATP
could be vessels, nerves and mast cells themselves. ATP-driven
degranulation of mast cells is likely happening in migraine
with aura since the cortical spreading depression is itself an
inducer of meningeal mast cells degranulation and opening of
pannexin1 channels (Karatas et al., 2013), which are permeable
to ATP (Dahl, 2015). Notably, there is a positive feedback
loop providing ATP-induced ATP release via pannexins (Dahl,
2015). This loop can amplify the initial signal to provide a level
of extracellular ATP high enough to activate P2X7 receptors.
A recent study indicated that the complex of P2X7 receptors
and pannexins determines not only neuroinflammation but
also the development of the cortical spreading depolarization,
which is a key process underlying migraine aura (Chen et al.,
2017).

We propose that the released extracellular ATP acts through
the P2X7 subtype of purinergic receptors thus leading to
both mast cells’ activation and degranulation. The main actor
after degranulation of meningeal mast cells appears to be
serotonin robustly exciting nerve terminals via ligand gated
5-HT3 receptors (Kilinc et al., 2017), whereas ATP can also act
directly on nerve terminals via P2X3 receptors (Yegutkin et al.,
2016; Zakharov et al., 2016). Taken together, these mechanisms
contribute both to meningeal neuroinflammation and lasting
pain formation in migraine.

In conclusion, we show the leading role of ATP-gated
P2X7 receptors in activation and degranulation of mast cells
that naturally reside in two different body compartments.
Given the emerging appreciation of the role of mast cells in
neuroinflammation, the present data could help to identify
new therapeutic strategies to alleviate peripheral and central
neurological disorders, including migraine.
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