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Abstract

Background: Gene fusions can be used as tools for functional prediction and also as
evolutionary markers. Fused genes often show a scattered phyletic distribution, which suggests a
role for processes other than vertical inheritance in their evolution.

Results: The evolutionary history of gene fusions was studied by phylogenetic analysis of the
domains in the fused proteins and the orthologous domains that form stand-alone proteins.
Clustering of fusion components from phylogenetically distant species was construed as evidence
of dissemination of the fused genes by horizontal transfer. Of the 51 examined gene fusions that
are represented in at least two of the three primary kingdoms (Bacteria, Archaea and Eukaryota),
31 were most probably disseminated by cross-kingdom horizontal gene transfer, whereas 14
appeared to have evolved independently in different kingdoms and two were probably inherited
from the common ancestor of modern life forms. On many occasions, the evolutionary scenario
also involves one or more secondary fissions of the fusion gene. For approximately half of the
fusions, stand-alone forms of the fusion components are encoded by juxtaposed genes, which are
known or predicted to belong to the same operon in some of the prokaryotic genomes. This
indicates that evolution of gene fusions often, if not always, involves an intermediate stage, during
which the future fusion components exist as juxtaposed and co-regulated, but still distinct, genes
within operons.
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Conclusion: These findings suggest a major role for horizontal transfer of gene fusions in the
evolution of protein-domain architectures, but also indicate that independent fusions of the same
pair of domains in distant species is not uncommon, which suggests positive selection for the
multidomain architectures.

Background

Gene fusion leading to the formation of multidomain proteins
is one of the major routes of protein evolution. Gene fusions
characteristically bring together proteins that function in a
concerted manner, such as successive enzymes in metabolic
pathways, enzymes and the domains involved in their regula-
tion, or DNA-binding domains and ligand-binding domains

in prokaryotic transcriptional regulators [1-3]. The selective
advantage of domain fusion lies in the increased efficiency of
coupling of the corresponding biochemical reaction or signal
transduction step [1] and in the tight co-regulation of
expression of the fused domains. In signal transduction
systems, such as prokaryotic two-component regulators and
sugar phosphotransferase (PTS) systems, or eukaryotic
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receptor kinases, domain fusion is the main principle of
functional design [4-6]. Furthermore, accretion of multiple
domains appears to be one of the important routes for
increasing functional complexity in the evolution of multi-
cellular eukaryotes [7-9].

Pairs of distinct genes that are fused in at least one genome
have been termed fusion-linked [3]. A gene fusion is pre-
sumably fixed during evolution only when the partners
cooperate functionally and, by inference, a functional link
can be predicted to exist between fusion-linked genes.
Recently, this simple concept has been used by several
groups as a means of systematic prediction of the functions
of uncharacterized genes [1-3,10,11].

In addition to their utility for functional prediction, analysis
of gene fusions may help in addressing fundamental evolu-
tionary issues. Gene fusions often show scattered phyletic
patterns, appearing in several species from different lin-
eages. By investigating the phylogenies of each of the two
fusion-linked genes, it may be possible to determine the evo-
lutionary scenario for the fusion itself. A recent study pro-
vided evidence that the fission of fused genes occurred
during evolution at a rate comparable to that of fusion [12].
Here, we address another central aspect of the evolution of
gene fusions, namely, do fusions of the same domains in dif-
ferent phylogenetic lineages reflect vertical descent, possibly
accompanied by multiple lineage-specific fission events, or
independent fusion events, or horizontal transfer of the
fused gene? In other words, is a fusion of a given pair of
genes extremely rare and, once formed, is it spread by hori-
zontal gene transfer (HGT) perhaps also followed by fissions
in some lineages? Alternatively, are independent fusions of
the same gene pair in distinct lineages relatively common
during evolution? Among fusions that are found in at least
two of the three primary kingdoms of life (Bacteria, Archaea
and Eukaryota), we detected both modes of evolution, but
horizontal transfer of a fused gene appeared to be more
common than independent fusion events or vertical inheri-
tance with multiple fissions.

Results and discussion

To distinguish between a single fusion event followed by
HGT and/or fission of the fused gene and multiple, indepen-
dent fusion events in distinct organisms, we analyzed phylo-
genetic trees that were constructed separately for each of the
fusion-linked domains (proteins). The fusion was split into
the individual component domains and phylogenetic trees
were built for each of the corresponding orthologous sets
from 32 complete microbial genomes (Figure 1, and see
Materials and methods), including both fusion components
and products of stand-alone genes. The topologies of the
resulting trees were compared to each other and to the
topology of a phylogenetic tree constructed on the basis of a
concatenated alignment of ribosomal proteins, which was

chosen as the (hypothetical) species tree of the organisms
involved [13]. If the fusion events either occurred indepen-
dently of each other or were vertically inherited, perhaps fol-
lowed by fission in some lineages, the distribution of the
fusion components in the phylogenetic trees for the ortholo-
gous clusters to which they belong is expected to mimic the
distribution of the species carrying the fusion in the species
tree. In contrast, if the fusion gene has been disseminated by
HGT, fusion components will form odd clusters different
from those in the species tree.

This could be a straightforward approach to reconstructing
the evolutionary history of gene fusions, if only the topology
of the species trees was well resolved. However, this is not
necessarily the case for bacteria or archaea, where relation-
ships between major lineages remain uncertain [14,15],
although a recent detailed analysis suggested some higher-
level evolutionary affinities [13]. Because the distinction
between the three primary kingdoms is widely recognized
[14,16] and is clear in the trees for most protein families [17],
trans-kingdom horizontal transfers of fused genes can be
more reliably detected with the proposed approach. There-
fore, we concentrated on the evolutionary histories of gene
fusions that are shared by at least two of the three primary
kingdoms.

As the framework for this analysis, we used the database of
clusters of orthologous groups (COGs) of proteins [18,19],
which contains sets of orthologous proteins and domains
from complete microbial genomes (32 genomes at the time
of this analysis; see Materials and methods). Domain fusions
represented in some genomes by stand-alone versions of the
fusion components are split in the COG database so that
each fusion component can be assigned to a different COG.
Whenever distinct domains of a fusion protein belong to
separate COGs, the corresponding COGs are said to be
fusion-linked [3]. A search of the COGs database revealed
405 pairs of fusion-linked COGs. The vast majority (87%) of
fusion links include fusion present in only one primary
kingdom (Table 1). Only 52 pairs of fusion-linked COGs

Table |

Phyletic patterns of gene fusions

Kingdom profile* Number of fusion links between COGs

abe 3
ab- 27
-be 20
a-e |
a-- 82
-b- 215
--e 56
Total 405

*a, Archaea; b, Bacteria; e, Eukaryota.
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Figure |

Phyletic patterns of fusion-linked COGs. Each pair of COGs is represented by a double column. The dark-gray rectangles indicate fusions, the light-gray
rectangles indicate that the fusion components are represented by stand-alone genes in the given genomes, and the white rectangles indicate that there is
no representative of the given COG in the given genome. Where one rectangle in a double column is light gray and the other is white, the genome in
question has a representative of only one of the pair of fusion-linked COGs. Species abbreviations are as listed in Materials and methods.

included fusions represented in two or three kingdoms
(Table 1), and for reasons discussed above, we chose these
pairs of COGs for an evolutionary analysis of gene fusions.

Figure 1 shows a genome-COG matrix that reveals the
phyletic (phylogenetic) patterns of the presence or absence
of the orthologs across the spectrum of the sequenced
genomes [18] for each of the 52 pairs of fusion-linked COGs
containing cross-kingdom fusions. When assessed against
the topology of the tentative species tree based on the con-
catenated alignments of ribosomal proteins [13], fusions
showed a scattered distribution in phyletic patterns
(depicted by columns in Figure 1). For example, the fusion
between COG1788 and COG2057 (o and B subunits of acyl-
CoA:acetate CoA transferase) is seen in the bacteria
Escherichia coli, Deinococcus radiodurans and Bacillus
halodurans, and in the archaea Aeropyrum pernix,

Thermophilus acidophilum and Halobacterium sp. Simi-
larly, the fusion between COG1683 and COG3272 (uncharac-
terized, conserved domains) was found in the bacteria
Pseudomonas aeruginosa and Vibrio cholerae, and in the
archaeon Methanobacterium thermoautotrophicum. In
each of these cases, with the species tree used as a reference,
the bacteria involved are phylogenetically distant from each
other and more so from the archaea, and non-fused versions
of the two domains exist within the same bacterial lineages
and in archaea (Figure 1). These observations emphasize the
central question of this work: are the fusions between the
same pair of domains in different species independent or are
they best explained by HGT?

Figure 2 shows the pair of phylogenetic trees for the fusion-
linked COGs 1788 and 2057. In both trees, the fusion com-
ponents from E. coli and B. halodurans (YdiF and BH3898,
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Figure 2

Phylogenetic trees for fusion-linked COGs: o and 3 subunits of acyl-CoA:acetate CoA transferase. Fusion components are denoted by shading and by a
number after an underline (_| for the amino-terminal domain and _2 for the carboxy-terminal domain). The three primary kingdoms are color-coded as
indicated in the figure. The RELL bootstrap values are indicated for each internal branch. (a) a subunit (domain) (COG1788); (b) B subunit (domain)
(COG2057). The proteins are designated using the corresponding systematic gene names followed (after the underline) by the abbreviated species

names. Species abbreviations are as in Materials and methods and Figure |.

respectively) confidently group with the archaeal fusion
components, to the exclusion of the non-fused orthologs.
This position of the E. coli and B. halodurans fusion com-
ponents is unexpected and is in contrast to the placement
of the orthologs from other gamma-proteobacteria and
Gram-positive bacteria, as well as non-fused paralogs from
the same species (AtoA/D and BH2258/2259, respectively)
within the bacterial cluster. These observations strongly
suggest that the gene for fused subunits of acyl-CoA:acetate
CoA transferase was disseminated horizontally between
E. coli, B. halodurans, and archaea. The presence of non-
fused paralogs in both these bacterial species appears to be
best compatible with gene transfer from archaea to bacte-
ria. In contrast, the fusion of the pair of domains from the
same COGs seen in D. radiodurans seems to be an inde-
pendent event because, in both trees, the D. radiodurans
branch is in the middle of the bacterial cluster
(Figure 2a,b). Thus, the history of this pair of fusion-linked
COGs appears to involve horizontal transfer of the fused
gene between bacteria and archaea (and possibly also
within kingdoms), as well as at least one additional, inde-
pendent fusion event in bacteria.

Figure 3 shows the phylogenetic trees for the two domains of
phosphoribosylformylglycinamidine (FGAM) synthase, a
purine biosynthesis enzyme. The components of this fusion,
which is found in proteobacteria and eukaryotes, form a
tight cluster separated by a long internal branch from the
non-fused bacterial and archaeal orthologs. This tree topol-
ogy suggests HGT between bacteria and eukaryotes, possibly
a relocation of the fused gene from the pro-mitochondrion to
the eukaryotic nuclear genome or, alternatively, gene trans-
fer from eukaryotes to proteobacteria. An additional aspect
of the evolution of this gene is the apparent acceleration of
evolution upon gene fusion, which is manifest in the long
branch that separates the proteobacterial-eukaryotic cluster
from the rest of the bacterial and archaeal species
(Figure 3a,b).

The fusion-linked COGs 1605 and 0077 (chorismate mutase
and prephenate dehydratase, respectively) show a more
complicated history, with distinct fusion events resulting in
different domain architectures (see legend to Figure 4). The
presence, in both trees, of two distinct clusters of fusion
components and the isolated fusion in Campylobacter jejuni
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Figure 3

Phylogenetic trees for fusion-linked COGs: phosphoribosylformylglycinamidine (FGAM) synthase. (a) Synthetase domain (subunit) (COGO0046);
(b) glutamine amidotransferase domain (subunit) (COGO0047). Protein designations are as in Figure 2.

suggest at least three independent fusion events, two of
which apparently were followed by horizontal dissemination
of the fused gene (Figure 4a,b). The single archaeal fusion,
the Arachaeoglobus fulgidus protein AF0227, belongs to
one of these clusters and shows a strongly supported affinity
with the ortholog from the hyperthermophilic bacterium
Thermotoga maritima (Figure 4a,b). Given the broad distri-
bution of this fusion in bacteria, horizontal transfer of the
bacterial fused gene to archaea is the most likely scenario.

The pair of fusion-linked COGs 0777 and 0825 (o and B
subunits of acetyl-CoA carboxylase, respectively) shows
unequivocal clustering of the fusion components from
numerous archaeal and bacterial species, which indicates a
prevalent role for HGT in the evolution of this fusion
(Figure 5a,b). Moreover, archaea are scattered among bac-
teria, suggesting multiple HGT events. However, an appar-
ent independent fusion is seen in Mycobacterium
tuberculosis (Figure 5a,b). It could be argued that, in cases

like those in Figure 5, where there is a sharp separation (a
long, strongly supported internal branch in each of the
trees) between the fusion components and stand-alone pro-
teins, the COGs involved needed to be reorganized, to form
one COG consisting of fusion proteins only and two sepa-
rate COGs consisting of stand-alone proteins. Formally, this
would eliminate the need for HGT as an explanation of the
tree topology for any of these new COGs. However, this
solution (even if attractive from the point of view of classifi-
cation) does not seem to be correct in light of the principle
of orthology that underlies the COG system: it appears that,
in both of the COGs involved, the fusion components and
stand-alone proteins are bona fide orthologs, as judged by
the high level of sequence conservation and by the fact that,
in the majority of species involved, they are the only ver-
sions of this key enzyme.

The results of phylogenetic analyses of the 51 cross-kingdom
fusion links are summarized in Tables 2 and 3 and the
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Phylogenetic trees for fusion-linked COGs: chorismate mutase and prephenate dehydratase. (a) Chorismate mutase (COG1605); (b) prephenate

dehydratase (COGO0077). Protein designations are as in Figure 2. The protein AF0227contains a prephenate dehydrogenase domain in addition to the
chorismate mutase and prephenate dehydratase domains.
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Phylogenetic trees for fusion-linked COGs: a and 3 subunits of acetyl-CoA carboxylase. (a) B subunit (domain) (COGO0777); (b) o subunit (domain)
(COGO0825). Protein designations are as in Figure 2. The proteins DRA0310 and PA1400, in addition to the domains corresponding to the a and 3

subunits of acetyl-CoA carboxylase, contain a biotin carboxylase domain and a biotin carboxyl carrier protein domain. The clustering of these proteins in
phylogenetic trees almost certainly reflects HGT between the respective bacterial lineages.
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Table 2 (continued from the previous page)

Gene juxtapositionf Evolutionary scenario

Fusion

Principal mode
of evolutiont

CcoGB Protein function Kingdom

Protein function

COGA

pattern*®

One fusion event, fused gene

Pyro

Paby, Mtub, Ecol

HGT

ab

Ni,Fe-hydrogenase IlI
component G

COG3262

Ni,Fe-hydrogenase llI
large subunit

COG3261

transfer from bacteria to archaea

Fused gene transfer among
bacteria, archaea, and

eukaryotes

Mthe, Pyro, Paby

Aero, Scer,

HGT

abe

GMP synthase

COGO0519

GMP synthase -
Glutamine

COGO0518

most bacteria

-PP-ATPase domain

amidotransferase

domain

Fused gene transfer from

archaea to bacteria
(a-proteobacteria)

Hbsp, Mjan, Aero,

Aful, Mthe, Taci,

HGT

abe

Pyruvate:ferredoxin

COGI013

Pyruvate:ferredoxin

COG0674

Aqua, Tmar, Mtub,

Hpyl

Pyro, Paby, Scer,

oxidoreductase and

oxidoreductase and

Syne, Ecol, Vcho,
Cjej, Tpal

related 2-oxoacid:ferredoxin

oxidoreductases,
beta subunit

related 2-oxoacid:ferredoxin

oxidoreductases,
alpha subunit

*Abbreviations: a, archaea, b, bacteria, e, eukaryotes; a dash indicates that the given kingdom is not represented in at least one of the fusion-linked COGs. TAF, ancestral fusion, HGT, horizontal gene
transfer, IFE, independent fusion events. fIn several cases, the indicated genes are separated by one to three genes or their order is switched compared to that of the fusion components. $Paby,

Pyrococcus abyssi, an archaeal genome not included in the master set of genomes analyzed in this study. TLlac, Lactococcus lactis, a bacterial genome not included in the master set of genomes analyzed in

this study. 'Ccre, Caulobacter crescentus, a bacterial genome not included in the master set of genomes analyzed in this study. ¥Hbsp, Halobacterium sp., an archaeal genome not included in the master set

of genomes analyzed in this study.
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Additional data. In 31 of the 51 links, an inter-kingdom hori-
zontal transfer of the fused gene appeared to be the evolu-
tionary mechanism by which the fusion entered one of the
kingdoms. In contrast, only 14 fusion-linked pairs of COGs
show evidence of independent fusion in two kingdoms, and
in just two cases, the fusion seems to have been inherited
from the last universal common ancestor. The latter two sce-
narios were distinguished on the basis of the parsimony
principle, that is, by counting the number of evolutionary
events (fusions or fissions) that were required to produce the
observed distribution of fusion components and stand-alone
versions of the domains involved across the tree branches.
Accordingly, it needs to be emphasized that we can only infer
the most likely scenario under the assumption that the prob-
abilities of fusion and fission are comparable. It cannot be
ruled out that some of the scenarios we classify as indepen-
dent fusions in reality reflect the existence of an ancestral
fused gene and subsequent multiple, independent fissions.
The detection of ancestral domain fusions may call for the
unification of the respective COG pairs in a single COG, with
the species in which fission occurred represented by two dis-
tinct proteins.

Examination of the genomic context of the genes that encode
stand-alone counterparts of the fusion components showed
that, in 25 of the 51 cases, these genes were juxtaposed in
some, and in certain cases, many prokaryotic genomes
(Table 2). This suggests that evolution of gene fusions often,
if not always, passes through an intermediate stage of juxta-
posed and co-regulated, but still distinct, genes within known
or predicted operons. In addition, some of the juxtaposed
gene pairs might have evolved by fission of a fused gene.

The results of the present analysis point to HGT as a major
route of cross-kingdom dissemination of fused genes. Hori-
zontal transfer might be even more prominent in the evolu-
tion of fused genes within the bacterial and archaeal
kingdoms. This notion is supported by the topologies of
some of the phylogenetic trees analyzed, which show
unexpected clustering of bacterial species from different lin-
eages (note, for example, the grouping of D. radiodurans
with P. aeruginosa in Figure 5). Massive HGT between
archaea and bacteria, particularly hyperthermophiles, has
been suggested by genome comparisons [20-24]. However,
proving HGT in each individual case is difficult, and the sig-
nificance of cross-kingdom HGT has been disputed [25,26].
With gene fusions, the existence of a derived shared character
(fusion) supporting the clades formed by fusion components
and the concordance of the independently built trees for each
of the fusion components make a solid case for HGT.

The apparent independent fusion of the same pair of genes
(or, more precisely, members of the same two COGs) on
multiple occasions during evolution might seem unlikely.
However, we found that one-fourth to one-third of the gene
fusions shared by at least two kingdoms might have evolved
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Table 3

Summary of evolutionary scenarios for cross-kingdom gene
fusions

Evolutionary mode* Number of fusion-linked COG pairs

Cross-kingdom horizontal 31
transfer of a fused gene

Independent fusion events 14
Ancestral fusion

Uncertain

Total 51

*As indicated in Table 2, the evolutionary scenarios for some of the
analyzed COGs included both cross-kingdom horizontal transfer and
apparent independent gene fusion within one of the kingdoms.

through such independent events, and probable additional
independent fusions were noted among bacteria. This could
be due to the extensive genome rearrangement characteristic
of the evolution of prokaryotes [27,28], and to the selective
value of these particular fusions, which tend to get fixed once
they emerge.

Materials and methods

The version of the COG database used in this study included
the following complete prokaryotic genomes. Bacteria: Aae,
Aquifex aeolicus; Bap, Buchnera aphidicola; Bbu, Borrelia
burgdorfert; Bsu, Bacillus subtilis; Bhal, Bacillus halodurans;
Cje, Campylobacter jejuni; Cpn, Chlamydophila pneumoniae;
Ctr, Chlamydia trachomatis; Dra, Deinococcus radiodurans;
Eco, Escherichia coli; Hin, Haemophilus influenzae; Hpy,
Helicobacter pylori; Mge, Mycoplasma genitalium; Mpn,
Mycoplasma pneumoniae; Mtu, Mycobacterium tuberculosis;
Nme, Neisseria meningitidis; Pae, Pseudomonas aeruginosa;
Rpr, Rickettsia prowazekii; Syn, Synechocystis sp.; Tma, Ther-
motoga maritima; Tpa, Treponema pallidum; Vch, Vibrio
cholerae; Xfa, Xylella fastidiosa. Eukaryote: Sce, Saccha-
romyces cerevisiae. Archaea: Ape, Aeropyrum pernix; Afu,
Archaeoglobus fulgidus; Hbs, Halobacterium sp.; Mja,
Methanococcus jannaschii; Mth, Methanobacterium ther-
moautotrophicum; Pho, Pyrococcus horikoshii; Pab, Pyrococ-
cus abysst; Tac, Thermoplasma acidophilum.

COGs containing fusion components from at least two of the
three primary kingdoms, were selected for phylogenetic
analysis. COGs containing 60 or more members were
excluded because of potential uncertainty of orthologous
relationship between members of such large groups [18].
Multiple alignments were generated for each analyzed COG
using the T-Coffee program [29].

Phylogenetic trees were constructed by first generating a dis-
tance matrix using the PROTDIST program and the Dayhoff
PAM model for amino-acid substitutions and employing this

matrix for minimum evolution (least-square) tree building
[30] using the FITCH program. The PROTDIST and FITCH
programs are modules of the PHYLIP software package [31].
The tree topology was then optimized by local rearrange-
ments using PROTML, a maximum likelihood tree-building
program, included in the MOLPHY package [32]. Local
bootstrap probability was estimated for each internal branch
by using the resampling of estimated log-likelihoods (RELL)
method with 10,000 bootstrap replications [33]. The gene
order in prokaryotic genomes was examined using the
‘Genomic context’ feature of the COG database.

Additional data files

Phylogenetic trees for 82 individual COGS presented as 52
pairs of trans-kingdom fusion-linked COGs are available
with the online version of this paper. Bootstrap values (per-
centage of 1,000 replications) are indicated for each fork.
Archaeal proteins are designated by black squares, bacterial
proteins by gray squares and eukaryotic proteins by empty
squares. Fusion components are denoted by _1, _2, _3, etc.
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