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A B S T R A C T   

Objectives: To establish a clinical radiomics nomogram that differentiates malignant and non- 
malignant pleural effusions. 
Methods: A total of 146 patients with malignant pleural effusion (MPE) and 93 patients with non- 
MPE (NMPE) were included. The ROI image features of chest lesions were extracted using CT. 
Univariate analysis was performed, and least absolute shrinkage selection operator and multi
variate logistic analysis were used to screen radiomics features and calculate the radiomics score. 
A nomogram was constructed by combining clinical factors with radiomics scores. ROC curve and 
decision curve analysis (DCA) were used to evaluate the prediction effect. 
Results: After screening, 19 radiomics features and 2 clinical factors were selected as optimal 
predictors to establish a combined model and construct a nomogram. The AUC of the combined 
model was 0.968 (95% confidence interval [CI] = 0.944–0.986) in the training cohort and 0.873 
(95% CI = 0.796–0.940) in the validation cohort. The AUC value of the combined model was 
significantly higher than those of the clinical and radiomics models (0.968 vs. 0.874 vs. 0.878, 
respectively). This was similar in the validation cohort (0.873, 0.764, and 0.808, respectively). 
DCA confirmed the clinical utility of the radiomics nomogram. 
Conclusion: CT-based radiomics showed better diagnostic accuracy and model fit than clinical and 
radiological features in distinguishing MPE from NMPE. The combination of both achieved better 
diagnostic performance. These findings support the clinical application of the nomogram in 
diagnosing MPE using chest CT.   

1. Introduction 

Pleural effusion is an excess of fluid in the pleural cavity that is usually due to an imbalance in the rate of normal pleural effusion 
production and/or absorption [1]. Pleural effusion is associated with a range of potential causes, including physical trauma or systemic 
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diseases (such as inflammation, infection, or cancer) [2]. When evaluating patients with pleural effusion, the first step is to distinguish 
between inflammatory (exudative) and noninflammatory (transudative) effusions [3]. If an exudative effusion is present, further 
diagnostic procedures such as cytopathology, pleural biopsy, and sometimes even thoracotomy must be performed to make a definite 
diagnosis and to allow specific treatment of pleural disease [4]. Light’s criteria have been used to distinguish exudative and tran
sudative effusions since 1972 [4]. Accordingly, exudative effusion is diagnosed if any of the following conditions are met: total protein 
level >3 g/100 mL or pleural fluid/serum total protein ratio >0.5, pleural fluid/serum lactate dehydrogenase (LDH) ratio >0.6, and 
pleural fluid LDH greater than two-thirds of the upper limit of normal serum LDH levels [4–7]. 

Malignant effusions are exudates that meet at least one of these criteria, and malignant disease is one of the main causes of pleural 
effusions [7]. More than 90% of malignant effusions are due to metastasis, usually from primary tumors in the lung or breast [7–9]. In 
clinical practice, the focus is on differentiating malignant pleural effusion (MPE) from non-malignant pleural effusion (NMPE). 
Cytological analysis of pleural effusion is the simplest and definitive method for diagnosing MPE. However, the sensitivity of cyto
logical analysis is between 40% and 70% because malignant cells may be absent, overlooked, or incorrectly identified in the sample 
[10–12]. 

Chest computed tomography (CT) scan with contrast media is an important means to detect pleural effusion. If pleural effusion has 
complex ultrasonographic features, such as septation and localization, that may suggest parapulmonary effusions or malignancy, CT is 
generally recommended [13]. CT scans of the chest can provide clues to potential pathology (e.g., pulmonary infiltration, mass or 
embolism, mediastinal lymph-node involvement, or pericardial involvement) in patients with pleural effusion [14]. Radiomics 

Abbreviations and acronyms 

LDH lactate dehydrogenase 
DCA decision curve analysis 
OR odds ratio 
CI confidence interval 
VIF variance inflation factor 
ICCs inter- and intra-class correlation coefficients 
SLDHPADA serum lactate dehydrogenase/pleural effusion adenosine deaminase 
PCEA1 pleural effusion/serum carcinoembryonic antigen 
NMPE non-MPE 
MPE malignant pleural effusion  

Fig. 1. The flow diagram of study.  
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involves the extraction of high-throughput quantitative features from digitized radiological images [15]. These features can be applied 
in clinical decision support systems or to develop meaningful imaging biomarkers for classifying pathological subtypes and predicting 
specific genomic patterns, clinical outcomes, treatment response, and survival in various diseases to improve diagnostic, prognostic, 
and predictive accuracy [16]. Radiomics have been widely used in the oncology [17–19]. However, to our knowledge, radiomics has 
not been used to differentiate MPE and NMPE. 

In this study, we developed a clinical radiomics nomogram to distinguish MPE from NMPE for improved diagnosis and timely 
treatment. 

2. Materials and methods 

2.1. Patients 

The personal information of the patients included in the study was strictly protected. During data collection, the identity of the 
patients is anonymized, so we only number them, and we do not expose the personal information of the patients in the paper. Because 
of the retrospective nature of this study, patients’ identities were anonymized, and therefore informed consent was waived, which is a 
feature of observational studies and has been done in several previous articles. However, an ethics approval number was obtained from 
the study institution. The inclusion criteria were as follows: (1) patients who underwent low-dose CT scan; (2) the CT images were of 
sufficient quality for interpretation; (3) the malignant tissue in the pleural space had been visualized by pleural biopsy, cytopathology, 
or autopsy for the diagnosis of malignant effusions [4,7]; and (4) clinical data, including age, sex, and smoking history, were available. 
The exclusion criteria were as follows: (1) other serious liver or kidney diseases, (2) thoracentesis not performed, and (3) missing 
clinical baseline data. 

A total of 239 patients (146 with MPE and 93 with NMPE) were enrolled in the study. Our MPE patients included not only patients 
with lung cancer, but also patients with other cancers, such as gastrointestinal tumors, breast malignancies, and liver malignancies. 
Among them, lung cancer accounted for 73.97%. All patients were treated after CT scanning. The time interval between treatment and 
CT scanning was within two weeks. The flow diagram of the study is shown in Fig. 1. Baseline clinical data included age, sex, smoking 
history, body mass index, pleural effusion cytology, and pleural effusion albumin, pleural effusion LDH, pleural effusion pondus 
hydrogenii, pleural effusion/serum carcinoembryonic antigen (PCEA1), serum lactate dehydrogenase/pleural effusion adenosine 
deaminase (SLDHPADA), white blood cell, red blood cell, hemoglobin, platelet, and neutrophil, Lymphocyte, neutrophil/lymphocyte, 
platelet/lymphocyte, neutrophil/lymphocyte × platelet, and C-reactive protein levels. 

2.2. CT protocol 

All patients underwent chest unenhanced low-dose CT scans on a 64-row Discover CT750HD (GE Healthcare) scanner. The 
coverage area extended from the entrance of the thoracic cavity to the diaphragm. Following the institutional guidelines for low-dose 
CT scanning, all chest CT studies were performed with specified parameters (5 mm slice thickness, 100 kVp tube voltage, automatic 
tube current modulation technique, and 1.375 helical pitch) to achieve an image noise index of 1113 HU. The CT dose index volume 
was 1.67 ± 0.83 mGy, and the dose length product was 41.54 ± 22.78 mGy × cm. 

Fig. 2. ROI segmentation. (A and D) Original CT image of a patient with pleural effusion. (B and E) Layer-by-layer delineation of pleural effusion 
lesions on CT images. (C and F) 3D ROI of pleural effusion lesions. 
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2.3. Radiomics workflow and imaging analyses, segmentation, and feature extraction 

The radiomics workflow used in this study is divided into the following parts: image acquisition, region of interest (ROI) seg
mentation, radiomics feature extraction, feature selection, model construction in the training cohort, and performance evaluation of 
the radiomics model. 

For each patient, the ROI was acquired using ITK-SNAP 3.8.0 (ITK-SNAP Home (itksnap.org)) by a radiologist (10 years of 
experience in CT imaging) and then confirmed by another radiologist (>20 years of experience in CT imaging). If there were different 
interpretations, a final consensus was reached through group discussion. 

All images were sketched at the same window width and level (window width 300 HU, window level 30 HU). We imported dicom 
files into ITK-SNAP for ROI delineation. To ensure consistency in lesion ROI selection and to avoid bias, we selected the region 
containing the pleural effusion, including the top, bottom, and largest levels of pleural effusion, and then we connected each level 
(Fig. 2). As shown in Fig. 2A and D are the original CT image of pleural effusion, and Fig. 2B and E are the maximum plane of pleural 
effusion selected by us. We successively depicted the top contour, the maximum horizontal plane contour, the bottom contour and the 
several contours between the top and the bottom on each CT image, and finally connected each contour to form 3D ROI (Fig. 2C and F). 
The 3D active contour segmentation is implemented [20], and the right side is the 3D model obtained by our final connection. If the 
patient presented with bilateral pleural effusions, our image delineation was performed simultaneously on both sides to include all 
areas as much as possible. We used inter- and intra-class correlation coefficients (ICCs) to evaluate the consistency and reproducibility 
of the results. We randomly selected images from 50 patients. A total of 239 subjects were randomly divided into groups directly, and 
random numbers were generated by random number table for randomization, and no restrictions, intervention or adjustment were 
made during the implementation. ROI selection was performed by readers 1 and 2. After two weeks, the same procedure was repeated 
by reader 1. A higher ICC value indicates higher repeatability and vice versa. Based on the 95% confidence interval of the ICC estimate, 
values of less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 indicated poor, moderate, good, and 
excellent reliability, respectively [21]. Therefore, features with ICCs≤0.75 were considered to be less consistent with features, and so 
they were removed. When the ICCs were >0.75, feature extraction had a good consistency. ROI selection of the remaining images was 
performed by reader 1. 

Table 1 
Baseline characteristics of all patients.  

Characteristics MPE (n = 146) NMPE (n = 93) P value 

Gender, n (%)   0.436 
Female 54 (22.6%) 29 (12.1%)  
Male 92 (38.5%) 64 (26.8%)  

Smoking, n (%)   0.783 
No 62 (25.9%) 37 (15.5%)  
Yes 84 (35.1%) 56 (23.4%)  

Cytology, n (%)   <0.001 
No* 102 (42.7%) 93 (38.9%)  
Yes* 44 (18.4%) 0 (0%)  

PLDH1, n (%)   0.762 
No 78 (32.6%) 47 (19.7%)  
Yes 68 (28.5%) 46 (19.2%)  

PCEA1, n (%)   <0.001 
No 50 (20.9%) 65 (27.2%)  
Yes 96 (40.2%) 28 (11.7%)  

SLDHPADA, n (%)   <0.001 
No 22 (9.2%) 64 (26.8%)  
Yes 124 (51.9%) 29 (12.1%)  

Age, median (IQR) 68 (57.25, 74) 57 (42, 68) <0.001 
BMI, median (IQR) 22.15 (19.75, 23.88) 20.96 (19.72, 22.86) 0.066 
PALB, median (IQR) 40.5 (33.2, 47.2) 44.5 (24.6, 49.5) 0.808 
PLDH, median (IQR) 443 (245.5, 989) 468 (205, 1180) 0.908 
pH, median (IQR) 7.1 (7, 7.2) 7.1 (6.8, 7.2) 0.849 
WBC, median (IQR) 6.88 (5.34, 9.02) 6.12 (4.53, 7.82) 0.026 
RBC, median (IQR) 3.91 (3.47, 4.44) 4 (3.39, 4.32) 0.441 
HGB, median (IQR) 117.5 (101, 132) 118 (96, 130) 0.415 
PLT, median (IQR) 244.5 (178.5, 319) 233 (164, 339) 0.845 
N, median (IQR) 4.88 (3.41, 6.8) 4.4 (3.23, 5.36) 0.026 
L, median (IQR) 1.12 (0.84, 1.53) 1.01 (0.72, 1.44) 0.272 
NLR, median (IQR) 4.27 (2.49, 7.31) 4 (2.68, 6.56) 0.581 
PLR, median (IQR) 205.05 (147.96, 301.23) 232.61 (158.02, 302.56) 0.331 
SII, median (IQR) 988.87 (539.81, 1805.87) 1035.45 (586.27, 1592.22) 0.885 

Abbreviations: No*, No cancer cells were detected; Yes*, Detection of cancer cells; PLDH1, The lactate dehydrogenase level of pleural effusion was 
>500 U/L; PCEA1, Pleural effusion/serum carcino-embryonic antigen ＞1; SLDHPADA, Serum lactate dehydrogenase/pleural effusion adenosine 
deaminase ＞20; BMI, Body mass index; IQR, Interquartile range; pH, Pondus hydrogenii; WBC, Blood white blood cell; RBC, Red blood cell; HGB, 
Hemoglobin; PLT, Platelet; N, Neutrophil; L, Lymphocyte; NLR, Neutrophil/lymphocyte; PLR, Platelet/lymphocyte; SII, Neutrophil/lymphocyte ×
platelet. 
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In order to eliminate the influence of different sources of data on the results, image normalization has been a standard procedure for 
radiomics. All images were resampled (voxel size 1 × 1 × 1 mm) and normalized before extracting radiomics features. Z-score was used 
to normalize the image data to achieve zero mean and unit variance in the training and validation cohorts, with the following format: 
z = (x − μ)/σ (x: sample value; μ: population mean; σ: population standard deviation). Radiomics features were extracted using 
PyRadiomics, an open-source radiomics toolkit [22]. Radiomics feature sets can be divided into several families, including statistical, 
intensity histogram-based, intensity-volume histogram-based, morphological, local intensity, and texture features [23]. The Imaging 
Biomarker Standardization Initiative (IBSI) is an independent international collaborative organization dedicated to the standardiza
tion of imaging biomarkers, and our radiomics is IBSI compliant [23]. A total of 1687 quantitative radiomics features were extracted 
from the CT images of each patient. 

3. Model development and classification 

3.1. Clinical model 

The clinical baseline data for MPE and NMPE are shown in Table 1. Univariate analysis was performed to identify clinical features 
with p < 0.05 between MPE and NMPE. Multivariate logistic regression analysis was performed to evaluate multicollinearity using the 
variance inflation factor (VIF), and factors with VIF >10 were excluded from the regression model. Finally, p < 0.01 was considered as 
an independent predictor, and the prediction model of clinical factors was established. 

3.2. Radiomics model 

IPMs 2.4.0 (GE Healthcare) software was used for data preprocessing and feature selection. The datasets were randomly assigned to 
either the training or test cohorts in a ratio of 7:3. All cases in the training cohort were used to train the prediction model. All cases in 
the test cohort were used to independently evaluate the model performance. Variables with zero variance were eliminated before the 
analysis, and missing values were filled in with medians. The data were standardized and processed with the Z-score. 

First, the ICCs >0.75 feature was preserved. Second, features with p < 0.05 were selected using univariate logistic analysis. Third, 
multivariate logistic analysis was used to further identify the most useful features, and a stepwise selection method was used for feature 
selection. Fourth, the independent risk predictors were retained (p < 0.05). Finally, a logistic-based rad-score model was built on the 
basis of the established optimal feature subsets of the training dataset. 

In addition, we constructed a combined model by integrating two selected clinical factors and radiomics features from the clinical 
model. Five-fold cross-validation was performed in all radiomics signature-building procedures. The radiomics signature was tested in 
an independent validation cohort, and its discrimination performance was evaluated using ROC curve analysis and quantified using the 
AUC [24]. 

Finally, the two selected clinical factors were combined with the radiomics score to construct a clinical radiomics nomogram using 
a multivariate logistic regression analysis. 

3.3. Statistical analyses 

ROC curves were generated to evaluate the performance of the machine learning model. Accuracy, sensitivity, specificity, and AUC 
were calculated. All statistical analyses in this study were performed using R 4.1.2 (R: The R Project for Statistical Computing (r- 
project.org)) and SPSS 26.0 (SPSS Software, IBM). Differences between patient groups (responders and non-responders) in charac
teristic variables and clinical parameters were assessed using the Mann–Whitney U test for continuous variables and the chi-square test 
for categorical variables. A two-tailed p-value of less than 0.05 was considered statistically significant. Decision curve analysis (DCA), a 
statistical method used to assess whether a model has utility to support clinical decision making, can be used to determine which of the 
two models leads to the best decision. Therefore, it is an essential validation tool on top of measures such as identification and 
calibration. 

4. Results 

4.1. Establishment of the clinical model 

According to the inclusion and exclusion criteria, 239 eligible patients with MPE and NMPE were included in this study, including 
146 with MPE and 93 with NMPE. All baseline characteristics of the patients are shown in Table 1. In the training cohort, two in
dependent predictors were screened using univariate and multivariate logistic regression analyses, and the differences between MPE 
and NMPE were statistically significant (p < 0.01): PCEA1 (odds ratio (OR) = 0.226, 95% confidence interval (CI) = 0.083–0.614, p =
0.004) and SLDHPADA (OR = 0.122, 95% CI = 0.043–0.349, p < 0.001). We further present the clinical characteristics of MPE/NMPE 
in the training and validation cohorts in Tables 1a and 1b, respectively. 

4.2. Establishment of the radiomics model 

A total of 1687 features were obtained from each ROI. The top 19 radiomics features are listed in Table 2. 
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The rad-score for each patient was calculated using the following formula: 

Rad − score = 0.8299 + 0.1365 × original firstorder Kurtosis+

0.2048× original glszm LargeAreaLowGrayLevelEmphasis+

0.2602×wavelet LLH glcm Correlation−

0.3582×wavelet LHL firstorder Kurtosis−

0.4819×wavelet LHH firstorder Kurtosis−

0.2312×wavelet HLL glcm MCC+

0.7749×wavelet HHH glcm Imc1+

0.2251× square glszm SizeZoneNonUniformityNormalized−

0.5247× squareroot firstorder Kurtosis+

0.5890× squareroot gldm LargeDependenceLowGrayLevelEmphasis+

0.0969× exponential glcm Imc1−

0.3188× gradient gldm SmallDependenceLowGrayLevelEmphasis+

Table 1A 
Baseline characteristics of training cohort.  

Characteristics MPE (n = 102) NMPE (n = 44) P value 

Gender, n (%)   0.396 
Female 62 (42.5%) 30 (20.5%)  
Male 40 (27.4%) 14 (9.6%)  

Smoking, n (%)   0.327 
No 56 (38.4%) 28 (19.2%)  
Yes 46 (31.5%) 16 (11%)  

Cytology, n (%)   0.891 
No* 73 (50.0%) 31 (21.2%)  
Yes* 29 (19.9%) 13 (8.9%)  

PLDH1, n (%)   0.103 
No 43 (29.5%) 25 (17.1%)  
Yes 59 (40.4%) 19 (13%)  

PCEA1, n (%)   0.463 
No 69 (47.3%) 27 (18.5%)  
Yes 33 (22.6%) 17 (11.6%)  

SLDHPADA, n (%)   0.089 
No 90 (61.6%) 34 (23.3%)  
Yes 12 (8.2%) 10 (6.8%)  

Age, median (IQR) 67 (56.25, 73) 69 (59.75, 76.75) 0.167 
BMI, median (IQR) 21.694 (19.648, 24.69) 22.584 (20.152, 23.677) 0.707 
PALB, median (IQR) 40.8 (32, 47.5) 40.5 (35.95, 46.475) 0.700 
PLDH, median (IQR) 397.5 (243, 985.75) 563.5 (297, 981) 0.492 
PH, median (IQR) 7.1 (7, 7.2) 7 (6.95, 7.2) 0.468 
WBC, median (IQR) 6.805 (5.2025, 9.015) 6.985 (5.545, 9.005) 0.981 
RBC, mean ± sd 3.8715 ± 0.77401 3.9932 ± 0.62535 0.359 
HGB, mean ± sd 114.75 ± 23.274 119.41 ± 19.017 0.208 
PLT, median (IQR) 247.5 (180.25, 328.75) 231.5 (167, 305) 0.317 
N, median (IQR) 4.88 (3.37, 6.7875) 4.88 (3.4825, 6.9075) 0.644 
L, median (IQR) 1.16 (0.88, 1.5975) 0.985 (0.78, 1.3775) 0.071 
NLR, median (IQR) 3.6194 (2.3398, 6.8066) 5.1104 (3.1063, 8.365) 0.093 
PLR, median (IQR) 204.49 (143.03, 293.06) 218.12 (153.76, 312.35) 0.462 
SII, median (IQR) 930.05 (519.17, 1741.1) 1034.1 (589.75, 2101.1) 0.459 

Abbreviations: No*, No cancer cells were detected; Yes*, Detection of cancer cells; PLDH1, The lactate dehydrogenase level of pleural effusion was 
>500 U/L; PCEA1, Pleural effusion/serum carcino-embryonic antigen ＞1; SLDHPADA, Serum lactate dehydrogenase/pleural effusion adenosine 
deaminase ＞20; BMI, Body mass index; IQR, Interquartile range; pH, Pondus hydrogenii; WBC, Blood white blood cell; RBC, Red blood cell; HGB, 
Hemoglobin; PLT, Platelet; N, Neutrophil; L, Lymphocyte; NLR, Neutrophil/lymphocyte; PLR, Platelet/lymphocyte; SII, Neutrophil/lymphocyte ×
platelet. 
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0.3103× gradient glszm LargeAreaHighGrayLevelEmphasis+

0.8623× lbp 3D m2 glszm GrayLevelNonUniformity+

Table 1B 
Baseline characteristics of validation cohort.  

Characteristics MPE (n = 65) MPE (n = 28) P value 

Gender, n (%)   0.536 
Female 19 (20.4%) 10 (10.8%)  
Male 46 (49.5%) 18 (19.4%)  

Smoking, n (%)   0.390 
No 24 (25.8%) 13 (14%)  
Yes 41 (44.1%) 15 (16.1%)  

Cytology, n (%)   0.874 
No* 63 (67.7%) 28 (30.1%)  
Yes* 2 (2.2%) 0 (0%)  

PLDH1, n (%)   0.603 
No 34 (36.6%) 13 (14%)  
Yes 31 (33.3%) 15 (16.1%)  

PCEA1, n (%)   0.439 
No 47 (50.5%) 18 (19.4%)  
Yes 18 (19.4%) 10 (10.8%)  

SLDHPADA, n (%)   0.536 
No 19 (20.4%) 10 (10.8%)  
Yes 46 (49.5%) 18 (19.4%)  

Age, median (IQR) 61 (43, 69) 52.5 (38.5, 63.25) 0.084 
BMI, median (IQR) 21.05 (20.245, 22.647) 20.64 (18.409, 23.116) 0.212 
PALB, median (IQR) 44.5 (28, 50.1) 44.55 (24.175, 48) 0.578 
PLDH, median (IQR) 405 (253, 958) 627 (172.5, 1413.5) 0.782 
PH, median (IQR) 7.1 (7, 7.2) 7.1 (6.8, 7.225) 0.645 
WBC, median (IQR) 6.12 (4.36, 7.59) 6.22 (4.7125, 7.885) 0.477 
RBC, median (IQR) 4.07 (3.39, 4.32) 3.925 (3.4175, 4.395) 0.927 
HGB, median (IQR) 118 (96, 129) 116 (98.75, 130.5) 1.000 
PLT, median (IQR) 214 (159, 339) 248.5 (186.5, 323.75) 0.377 
N, median (IQR) 4.33 (3.05, 5.36) 4.73 (3.41, 5.355) 0.456 
L, median (IQR) 0.97 (0.71, 1.31) 1.335 (0.795, 1.6675) 0.101 
NLR, median (IQR) 4.027 (2.6765, 7.0615) 3.5382 (2.6973, 5.4911) 0.350 
PLR, median (IQR) 233.63 (166.99, 291.55) 210.46 (155.05, 349.28) 0.760 
SII, median (IQR) 1072.4 (643.66, 1675) 835.31 (498.58, 1255.7) 0.289 

Abbreviations: No*, No cancer cells were detected; Yes*, Detection of cancer cells; PLDH1, The lactate dehydrogenase level of pleural effusion was 
>500 U/L; PCEA1, Pleural effusion/serum carcino-embryonic antigen ＞1; SLDHPADA, Serum lactate dehydrogenase/pleural effusion adenosine 
deaminase ＞20; BMI, Body mass index; IQR, Interquartile range; pH, Pondus hydrogenii; WBC, Blood white blood cell; RBC, Red blood cell; HGB, 
Hemoglobin; PLT, Platelet; N, Neutrophil; L, Lymphocyte; NLR, Neutrophil/lymphocyte; PLR, Platelet/lymphocyte; SII, Neutrophil/lymphocyte ×
platelet. 

Table 2 
Radiomic features selection from the CT in the training cohort.  

Feature Selected Group Coef. 

original_firstorder_Kurtosis Firstorder 0.1365 
original_glszm_LargeAreaLowGrayLevelEmphasis GLSZM 0.2048 
wavelet_LLH_glcm_Correlation GLCM 0.2602 
wavelet_LHL_firstorder_Kurtosis Firstorder − 0.3582 
wavelet_LHH_firstorder_Kurtosis Firstorder − 0.4819 
wavelet_HLL_glcm_MCC GLCM − 0.2312 
wavelet_HHH_glcm_Imc1 GLCM 0.7749 
square_glszm_SizeZoneNonUniformityNormalized GLSZM 0.2251 
squareroot_firstorder_Kurtosis Firstorder − 0.5247 
squareroot_gldm_LargeDependenceLowGrayLevelEmphasis GLDM 0.5890 
exponential_glcm_Imc1 GLCM 0.0969 
gradient_gldm_SmallDependenceLowGrayLevelEmphasis GLDM − 0.3188 
gradient_glszm_LargeAreaHighGrayLevelEmphasis GLSZM 0.3103 
lbp_3D_m2_glszm_GrayLevelNonUniformity GLSZM 0.8623 
lbp_3D_m2_glszm_ZoneVariance GLSZM 0.3474 
lbp_3D_k_firstorder_Skewness Firstorder 0.1411 
lbp_3D_k_glcm_ClusterShade GLCM 0.3996 
lbp_3D_k_glcm_MCC GLCM − 0.1229 
lbp_3D_k_glszm_LowGrayLevelZoneEmphasis GLSZM 0.5653  
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0.3474× lbp 3D m2 glszm ZoneVariance+

0.1411× lbp 3D k firstorder Skewness+

0.3996× lbp 3D k glcm ClusterShade−

0.1229× lbp 3D k glcm MCC+

0.5653 × lbp 3D k glszm LowGrayLevelZoneEmphasis 

In the training cohort, a significant difference was observed in the radiomics scores between the MPE and NMPE groups (p < 0.05). 
This was also true for the validation cohort (p < 0.05). The AUC and accuracy of the radiomics features were 0.878 (95% CI =
0.833–0.918) and 0.796 in the training cohort and 0.808 (95% CI = 0.713–0.894) and 0.722 in the validation cohort, respectively. 

ROC curves were used to evaluate the performance of the established models (Table 3). The ROC curve showed that the clinical 
radiomics model (combined model) had a good performance and applicability. The AUC was 0.968 (95% CI = 0.944–0.986) in the 
training cohort and 0.873 (95% CI = 0.796–0.940) in the validation cohort. Fig. 3 presents the AUC curves and DCA of the three models 
in the training and validation cohorts. Fig. 3A and C shows the ROC curves and DCA curves of the three models in the training cohort. 
Fig. 3B and D shows the ROC curves and DCA curves of the three models in the validation cohort. DCA proved that the combined model 
had a good clinical application performance. 

4.3. Nomogram 

R software (version 4.1.2) was used to construct the clinical radiomics nomogram by combining the two independent predictors of 
clinical factors (PCEA1 and SLDHPADA) and the constructed radiomics score in the training cohort (Fig. 4A) and validation cohort 
(Fig. 4C). The nomogram included three variables, PCEA1, SLDHPADA and radiomics score. The line segment corresponding to each 
variable was marked with scales, representing the range of values of the variable, and the length of the line segment reflected the 
contribution of the factor. The score in the figure represents the corresponding single item score of each variable at different values, 
and the total score represents the total score of the corresponding single item score after the values of all variables are added up. The 
bottom is the predicted probability. The closer the predicted calibration curve is to the standard curve, the better the predictive power 
of the nomogram is. Fig. 4B and D shows the calibration curve. In the training cohort (Fig. 4B), the VIFs of the three variables in the 
model were 1.297, 1.401 and 1.480, respectively, and there was no multicollinearity. The C-index of the model was 0.947 
(0.915–0.978), indicating high accuracy. The results of the fit test showed p > 0.05, indicating that there was no significant difference 
between the predicted and observed values, so the model fit was good. In the validation cohort (Fig. 4D), the VIFs of the three variables 
were 1.029, 1.044 and 1.016, respectively, and it was considered that there was no multicollinearity in the three variables. The C-index 
of the model was 0.831 (0.730–0.933), with moderate accuracy. The model fitted well, with p > 0.05 of the goodness-of-fit test. 

5. Discussion 

In this study, we developed and validated a combined model with better predictive performance in distinguishing MPE from NMPE 
than those of clinical and radiomics models. The results of this study support the potential clinical application of the nomogram 
constructed by combining independent clinical predictors and radiomics scores in the diagnosis of MPE in patients using chest CT. 

MPE is a common manifestation of pleural involvement in a variety of cancers, such as lung and breast cancers, typically indicating 
that the tumor has metastasized or progressed to an advanced stage [25–27]. Once patients with cancer develop MPE, their quality of 
life affected, and their survival time is shortened. Studies have shown that the median survival of patients with MPE varies from 3 to 12 
months [28]. Patients with NMPE, such as parapneumonic effusion and tuberculous pleural effusion [29], can usually be cured 
clinically with timely treatment [30]. Therefore, early and accurate differentiation of MPE and NMPE is important for the development 
of clinical diagnosis and treatment plans for MPE and for improving patient prognosis. 

Researchers have been trying to create effective methods to distinguish MPE from NMPE, but there has been no perfect method. For 
example, the scoring system constructed by Wang et al. did not incorporate the variable of time of diagnosis into the logistic regression, 
and the broad applicability is limited because the detection of fluid/serum levels of CEA is not routine around the world [31]. Other 
researchers have combined the Raman bands of PE with orthogonal partial least squares discriminant analysis to distinguish between 

Table 3 
Performance of the clinical model, radiomics model, and combined model in the training cohort and validation cohort.  

Different Models Training Cohort (n = 167) Test Cohort (n = 72) 

AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC 

Clinical model 0.874 (0.828, 0.916) 0.608 0.954 0.743 0.764 (0.660, 0.857) 0.432 0.857 0.597 
Radiomics model 0.878 (0.833, 0.918) 0.873 0.677 0.796 0.808 (0.713, 0.894) 0.864 0.500 0.722 
Combined model 0.968 (0.944, 0.986) 0.912 0.923 0.916 0.873 (0.796, 0.940) 0.818 0.857 0.833 

Abbreviations: AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; 95% CI, 95% confidence. 
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MPE and NMPE [32]. The sensitivity and specificity were 92.2% and 93.8%, respectively. In addition, some researchers have 
established a scoring system for the differential diagnosis of MPE and BPE based on five PET-CT parameters [33]. Due to the high cost 
and strict requirements for medical equipment, the above methods cannot be promoted and applied in most primary hospitals. 
Therefore, it is important to design an inexpensive method that can accurately distinguish between MPE and NMPE. 

The role of biomarkers in the diagnosis of MPE has been extensively studied [34]. However, which biomarkers should be 
considered for MPE diagnosis remain controversial. Traditional biomarkers include CEA, CA125, CA19-9, CA15-3, CYFRA 21–1, and 
NSE; however, their sensitivity and/or specificity are low, and their value in definitive diagnosis is limited [35]. In the construction of 
this study’s clinical model, we selected PCEA1 and SLDHPADA as independent predictors through univariate and multivariate ana
lyses. This finding is consistent with the conclusions of several previous studies. For example, Wang et al. [31] constructed a scoring 
system to distinguish between MPE and NMPE through multiple regression analysis and found that effusion/serum CEA had high 
diagnostic significance in the differentiation of MPE and NMPE, with an AUC value of 0.787. Additionally, Hackner et al. found that 
pleural effusion/serum CEA was a useful predictor of MPE, with a sensitivity of 85% and a specificity of 92% [36]. Concerning 
SLDHPADA, Verma et al. concluded in a retrospective analysis that the cut-off value of serum LDH:pleural ADA >20 was highly 
predictive of malignancy in patients with exudative pleural effusion, with high sensitivity and specificity [37]. 

In this study, in addition to selecting clinical biomarkers, we combined them with radiomics features. By integrating 2 clinical 
features and 19 imaging features, we constructed a new nomogram model to predict MPE and NMPE. In this study, 19 radiomics 
features that differed between MPE and NMPE were selected, and these features could not be captured by the naked eye. Quantitative 
image features based on intensity, shape, size, volume, and texture can provide information about the tumor phenotype and micro
environment that can be correlated with clinical outcome data and used in evidence-based clinical decision support systems [15]. 
Among the currently available prediction methods, nomograms based on multiple markers have both high accuracy and good 
discrimination in diagnostic performance, which is convenient for clinical applications [38]. 

In the training cohort, our study demonstrated that the combined model was superior to both clinical and radiomics models. This 
implies that incorporating clinical factors into the radiomics model can improve the predictive performance for MPE and NMPE. The 
sensitivity and accuracy of the combined model were 0.912 and 0.916, respectively, which were higher than those of the clinical and 

Fig. 3. ROC curves and the decision curve analysis of the three models (A) ROC curves of the three models in the training cohort. (B) ROC curves of 
the three models in the validation cohort. (C) DCA curves of the three models in the training cohort. (D) DCA curves of the three models in the 
validation cohort. 
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radiomics models. However, the specificity of the combined model was lower than that of the clinical model and higher than that of the 
radiomics model. In the validation cohort, the specificity of the combined model was equal to that of the clinical model and higher than 
that of the radiomics model. Taken together, the combined model demonstrated better discriminative power than the clinical and 
radiomics models. DCA showed that the combined model had more net benefits than radiomics and clinical models. Therefore, the 
nomogram constructed one the basis of both clinical and imaging features can help clinicians distinguish between MPE and NMPE to a 
certain extent and make effective clinical decisions. 

Our study had three major limitations. First, this was a retrospective study, and our findings need to be validated in future pro
spective studies. Second, our study suggests that effusion/serum CEA and serum LDH/effusion ADA can be used to predict MPE; 
however, owing to the heterogeneity of detection methods, the best cut-off value is not recommended. Finally, to solve the problem of 
model overfitting, we used five-fold cross validation in the process of training the model, but the sample size was limited because our 
sample was from a single medical center. Therefore, further validation with a larger number of patients is needed. 

6. Conclusions 

CT-based radiomics showed better diagnostic accuracy and model fit than clinical and radiological features for distinguishing MPE 
from NMPE. The combination of both achieved better diagnostic performance. These findings support the potential clinical application 
of the nomogram in the diagnosis of patients with MPE using chest CT. 
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