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Abstract

Down Syndrome (DS), the most common cause of genetic intellectual disability, is characterized 

by over-expression of the APP and DYRK1A genes, located on the triplicated chromosome 

21. This chromosomal abnormality leads to a cognitive decline mediated by Amyloid-β (Aβ) 

overproduction and tau hyper-phosphorylation as early as the age of 40.

In this study, we used the Ts65Dn mouse model of DS to evaluate the beneficial effect of a 

DNA vaccination against the Aβ1–11 fragment, in ameliorating Aβ-related neuropathology and 

rescue of cognitive and behavioral abilities. Anti-Aβ1–11 vaccination induced antibody production 

and facilitated clearance of soluble oligomers and small extracellular inclusions of Aβ from the 

hippocampus and cortex of Ts65Dn mice. This was correlated with reduced neurodegeneration 

and restoration of the homeostatic phenotype of microglial and astroglial cells. Vaccinated Ts65Dn 

mice performed better in spatial-learning tasks, exhibited reduced motor hyperactivity typical for 

this strain, and restored short-term memory abilities.

Our findings support the hypothesis that DS individuals may benefit from active immunotherapy 

against Aβ from a young age by slowing the progression of dementia.
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1. Introduction

Down Syndrome (DS) or trisomy 21, is the most common chromosomal abnormality found 

in humans and the most prevalent genetic cause of intellectual disability, affecting 1 in 

850–1000 infants (Lejeune et al., 1959; Shin et al., 2009). The Amyloid precursor protein 

(APP) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) genes, 

located within the triplicated human chromosome 21 (Hsa21) (Korenberg et al., 1990; 

Rueda et al., 2012) are overexpressed in DS individuals. This results in Alzheimer’s disease 

(AD)-like neuropathology that can be found as early as 17-years of age (Burger and Vogel, 

1973) and in the vast majority of patients over 40 (Mann, 1988). AD is cerebrally manifested 

by accumulation of extracellular deposits of Amyloid-β (Aβ) in form of plaques (Goedert, 

2015), neuritic plaques (Mattson, 2004), elevated levels of neurotoxic Aβ oligomers 

(Benilova et al., 2012), cerebral amyloidic angiopathy (Ghiso et al., 2010) and intraneuronal 

accumulation of hyperphosphorylated tau protein in from of tangles (Goedert, 2015). 

These neuropathological features promote neuronal loss, brain atrophy and severe cognitive 

impairments (Mattson, 2004). Oligomeric Aβ induces membrane-associated oxidative stress 

that impairs synaptic plasticity and causes neuritic and tau hyperphosphorylation (Olkhanud 

et al., 2012). Accumulation of Aβ triggers harmful inflammatory responses in microglia 

(Walker and Lue, 2015; Yin et al., 2017) and astrocytes (Garwood et al., 2017; Liddelow 

et al., 2017; Verkhratsky et al., 2010) which in turn promote infiltration of Aβ-specific T 

cells into the brain (Ferretti et al., 2016). Similarly to heritable forms of AD, DS features 

elevated levels of soluble Aβ oligomers, accumulation of extracellular Aβ and neuritic 

plaques, cerebral amyloid angiopathy, intracellular tangles and cerebral inflammation, all 

promoting neuronal loss, white matter degeneration and cognitive decline (Head et al., 

2016). However, distinct genetic background, including life-long overexpression of APP 

and DYRK1A, distinct DS from sporadic and heritable AD, leading to a unique microglial 

phenotype in these patients (Wilcock et al., 2015).

The Ts65Dn mouse model of DS encompasses a partial trisomy of mouse chromosome 

16 (Mmu 16), which includes 92 genes orthologous to Hsa21 (Davisson et al., 1993). The 

cognitive and behavioral phenotype of Ts65Dn mice includes delayed motor acquisition, 

impaired coordination (Costa et al., 1999; Escorihuela et al., 1995), hyperactivity, reduced 

attention (Coussons-Read and Crnic, 1996; Escorihuela et al., 1995; Holtzman et al., 1996; 

Reeves et al., 1995) and impaired hippocampal-dependent functions such as contextual fear 

conditioning, working memory and long-term spatial memory (Belichenko et al., 2007; 

Demas et al., 1996; Escorihuela et al., 1998; Fernandez and Garner, 2008; Martinez-Cue et 

al., 2002; Reeves et al., 1995; Sago et al., 2000; Salehi et al., 2009).

The cerebral abnormalities found in Ts65Dn include reduced brain volume (Aldridge et al., 

2007; Belichenko et al., 2007; Bianchi et al., 2010b; Chakrabarti et al., 2007; Contestabile 

et al., 2008; Llorens-Martin et al., 2010; Lorenzi and Reeves, 2006; Martinez-Cue et al., 
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2002), reduced neuronal density (Bianchi et al., 2010b; Contestabile et al., 2007; Insausti 

et al., 1998; Kurt et al., 2004; Lorenzi and Reeves, 2006; Rueda et al., 2010), impaired 

neurogenesis (Bianchi et al., 2010a; Bianchi et al., 2010b; Chakrabarti et al., 2007; Clark et 

al., 2006; Rueda et al., 2005; Trazzi et al., 2011), reduced density and impaired morphology 

of dendritic spines and increased synaptic cleft (Belichenko et al., 2009; Belichenko et 

al., 2007; Belichenko et al., 2004; Dierssen et al., 2003; Popov et al., 2011), increased 

number of inhibitory synapses and reduced number of excitatory synapses (Belichenko 

et al., 2004; Kurt et al., 2004; Rueda et al., 2010), increased number of GA-BAergic 

neurons (Perez-Cremades et al., 2010), and impaired hippocampal long-term potentiation 

(Kleschevnikov et al., 2004; Siarey et al., 1997). Importantly, although Ts65Dn mice exhibit 

age-related increase in APP (Seo and Isacson, 2005) and Aβ (Netzer et al., 2010) levels in 

the cortex and hippocampus, they do not show plaques pathology (Lomoio et al., 2009). 

Previous reports however, indicate the presence of small amyloidic extracellular inclusions 

in the deep granular cell layer of the cerebellum of Ts65Dn mice (Lomoio et al., 2009).

Microglial cells play a crucial role in the pathogenesis of AD along with other 

neurodegenerative conditions. Little is known, however, about the microglial response in 

DS. Similarly to AD, DS is characterized by morphological and functional alteration in 

reactive microglia (Xue and Streit, 2011). A recent study, showed a unique microglial 

phenotype in human DS specimen, distinct from microglia in sporadic forms of AD 

(Wilcock et al., 2015), manifested by elevated levels of the M1 markers, IL-1β, IL-6, TNFα, 

the M2a markers, CHI3L1, IL-1Ra, and the M2b markers, CD86, FCGR1.

In addition to microglial cells, astrocytes play a central role in the pathogenesis of AD 

(Garwood et al., 2017; Guenette, 2003; Liddelow et al., 2017; Rodriguez-Arellano et al., 

2016; Verkhratsky et al., 2010) and DS (Chen et al., 2014; Lockrow et al., 2012; Lu et 

al., 2011; Sebastia et al., 2004). Astrocytes contribute to Aβ clearance and are involved 

in maintaining tissue homeostasis (Garwood et al., 2017; Guenette, 2003; Liddelow et al., 

2017; Sollvander et al., 2016; Wyss-Coray et al., 2003). However, oligomeric Aβ promotes 

astrocyte-mediated inflammation through the secretion of inflammatory molecules such 

as IL-1β, nitric oxide synthase (iNOS) and in turn, overproduction of nitric oxide (NO) 

(White et al., 2005). S100β, expressed by a subtype of mature astrocytes that ensheath 

blood vessels (Wang and Bordey, 2008), is triplicated in DS (Chen et al., 2014). Previous 

reports showed that S100β overexpression induces the expression of iNOS and stimulates 

NO generation by astrocytes (Chen et al., 2014; Hu et al., 1996). Under brain injury and 

neurodegenerative diseases, reactive microglia promote A1-reactive astrocytes (Liddelow et 

al., 2017), which in turn can further promote neurodegeneration by secretion of neurotoxins 

and complement components that drive synapses degeneration. A1 astrocytes also lose their 

ability to maintain tissue homeostasis by promoting neuronal growth, neuronal survival and 

synapse formation (Liddelow et al., 2017).

As DS can be diagnosed as early as in utero, and since Aβ burden is a significant 

contributing factor to the DS neuropathology, individuals with DS can benefit from Aβ

directed immunotherapies at an early age. To test whether an active anti-Aβ immunization 

(Morgan et al., 2000; Movsesyan et al., 2008; Schenk et al., 1999) can exert a therapeutic 

effect in DS, we vaccinated Ts65Dn and healthy control mice with Aβ-CoreS, a vaccine 
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shown to be beneficial in the 3xTgAD mouse model of AD (Olkhanud et al., 2012). This 

vaccine induces the expression of an Aβ1–11 peptide fused to the Hepatitis-B surface antigen 

(HBsAg), a primary component of the Hepatitis-B virus (HBV) vaccine (Zhao et al., 2006). 

This vaccine also contains the Hepatitis-B capsid antigen (HBcAg) to provide a T helper 

response that promotes antibody production by B-lymphocytes. Ts65Dn mice and healthy 

controls were immunized at 6 months of age and were tested for various cognitive behaviors 

(i.e. spatial memory, short-term memory, exploratory behavior and anxiety threshold, Supp. 

Table 1). Mice were sacrificed at 15 m of age for biochemical and histological analysis. 

Vaccinating Ts65Dn mice facilitated clearance of cerebral soluble oligomers and small 

extracellular inclusions of Aβ and reduced serum and Aβ levels. Furthermore, we found 

normalization in the levels of hyperphosphorylated tau in the hippocampus of vaccinated 

mice, along with restoration of the homeostatic phenotype of microglial and astroglial cells. 

Vaccinated Ts65Dn mice performed better in long-term spatial-learning and memory tasks, 

exhibited reduced motor hyperactivity typical for this strain, and retained hippocampal

dependent short-term memory capacity.

2. Materials and methods

2.1. Study design

This study aims at targeting Aβ-related neuropathology and cognitive decline in a mouse 

model of DS (Reeves et al., 1995). In contrast to sporadic Alzheimer’s disease (AD), DS 

can be detected as early as in-utero. As the majority of DS individuals will develop AD-like 

neuropathological features by early adulthood (Burger and Vogel, 1973), we hypothesized 

that vaccinating DS mice against Aβ at a young age might slow the progression of Aβ

related pathologies. Unlike sporadic AD, AD-related pathology in DS patients exhibits 

an early onset with rapid progression (Lockrow et al., 2012; Mann, 1988; Nelson et al., 

2001). It is therefore essential to develop early-intervention treatments that target Aβ-related 

pathology for DS. The Ts65Dn mouse model of DS was selected due to its high face 

validity. The appropriate background strain was selected in accordance with the Jackson 

Laboratories instructions. All experiments were controlled both by a sham-treatment and 

wildtype controls. Vaccinated mice are indicated using the abbreviation /V (i.e. Ts65Dn/V), 

and sham-treated control mice using /C (i.e. Ts65Dn/C). Sample size was determined 

according to the convention in behavioral testing and was set to 12-randomly allocated mice 

per group. For all learning tasks, data collection concluded when no further improvement 

was observed for two consecutive days. All the behavioral paradigms were performed in 

a blinded manner at 3–4 different time points. Details of all behavioral testing are found 

in supplementary Table 1. The endpoint of the experiment was set to 15 months of age to 

ensure full neuropathological assessment prior to premature death due to trisomy (Davisson, 

2005).

2.2. Animals

Ts(1716)65Dn, (Ts65Dn), a widely used mouse model for Down-syndrome, encompass a 

partial trisomy of Mmu16 and Mmu17, containing 92 genes orthologous to Hsa21 and over

expresses mouse APP and DYRK1A (Reeves et al., 1995; Rueda et al., 2012). Four weeks

old male Ts65Dn mice, and their appropriate background strain (B6EiC3Sn.BLiAF1/J) were 
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purchased from the Jackson Laboratories (Bar Harbor, ME) (Ts65Dn JAX stock #005252, 

JAX stock B6EiC3Sn.-BLiAF1/J #003647). Animals were housed in a reversed 12:12hr 

cycle. Animal care and experimental procedures followed Bar Ilan University’s guidelines 

and were approved by the Bar Ilan University Animal Care and Use Committee.

2.3. Aβ-CoreS vaccine

Aβ-CoreS is a DNA vaccination based on the pVAX1 expression vector (Olkhanud et 

al., 2012), containing DNA coding the N-terminus-Aβ1–11 fused to a Hepatitis-B surface 

antigen (HBsAg), a central component of the hepatitis B virus (HBV). Aβ-CoreS also 

contains a T-helper epitope of a Hepatitis-B core antigen (HBcAg) which originates from the 

capsid antigen of HBV to facilitate antibody production (Pyrski et al., 2017). The Aβ-CoreS 

plasmid has a total length of ~3.8 Kb, with a vaccine construct length of 824 bp. As a 

control treatment, an expression vector (pUC19, New England Biolabs) containing HBsAg 

was used. This plasmid is ~4.2 Kb long, with a sham construct length of 680 bp.

2.4. DNA microcarriers and cartridges preparation

Gold particles (Bio-Rad Laboratories, Hercules, CA 94547, USA) were used as 

microcarriers for the high-helium-pressure delivery of DNA vaccination. Microcarrier 

loading quantity (MLQ), the amount of gold particles, was set to 0.5 mg per target according 

to the manufacturer’s recommendation for in vivo delivery. The amount of DNA loaded per 

mg of microcarriers is referred to as the DNA loading ratio (DLR), was set to 1 μg/mg 

DNA/gold particles, giving 0.5 mg of gold particles and 0.5 μg of DNA per cartridge. 

Cartridge preparation was conducted according to the manufacturer’s protocol (BIO-RAD 

Helios gene gun system instruction manual, #165–2431 and #165–243). Briefly, spermidine, 

CaCl2, polyvinylpyrrolidone solutions and gold particles were added to the purified DNA (at 

a concentration of 500 ng/μl) to bind it to the gold particles. The DNA-gold mixture was 

injected to plastic tubes and dried using a gentle stream of nitrogen gas. Gold-DNA coated 

tubes were cut into 1 cm-long cartridges. Cartridges were stored in a desiccator at 4 °C until 

use.

2.5. Vaccine administration

Immunization was administered 3 times starting at the age of 6 m at a dose of 1 μg of DNA 

per immunization episode. Mice abdomen skin was shaved, cleaned with ethanol (70%) and 

dried. DNA was delivered to the mice abdomen skin using the Helios gene gun (Bio-Rad 

Laboratories, Hercules, CA 94547, USA) attached to a compressed helium tank of grade 4.5 

(> 99.995%), at 300 psi, according to manufacturer’s protocol.

2.6. Oligomeric murine Aβ peptide preparation

Recombinant rat/mouse Aβ1–42 peptide (#ab120959, Abcam, Cambridge, UK), was 

dissolved in 1,1,1,3,3,3-hexafluoro-propanol (HFIP), lyophilized and brought up in DMSO 

to 1 mg/ml according with manufacturer’s protocol. To induce oligomerization, monomeric 

Aβ solution was incubated in low-salt buffer (10 mM phosphate buffer, 10 mM NaCl, Ph 

7.4) for 24 h at 4 °C (Ahmed et al., 2010).
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2.7. Western blot for Ag-Ab interaction

Oligomeric murine-Aβ1–42 solution was diluted in SDS-PAGE sample buffer, boiled at 95 

°C for 10 min and loaded to 15% (w/v) Tris-glycine polyacrylamide gels. Electrophoresed 

peptides were transferred to a PDVF (IPVH00010 Immobilon-P Membrane, PVDF, 0.45 

μm, Mercury) membrane and blocked for unspecific binding using 5% skim milk diluted in 

0.1% (v/v) PBS-Tween20 (P9416–50ML, Sigma, St. Louis, MO, USA). Next, serum from 

either Aβ-CoreS-vaccinated or naïve mice, diluted to 1:50 in blocking buffer were added 

for overnight incubation at 4 °C. Unbound antibodies were washed 3 times in PBS-T (0.1% 

Tween 20) for 5 min and membrane was incubated with HRP-conjugated goat anti mouse 

IgG secondary antibody (Cat# 115–035-003, Peroxidase AffiniPure Goat Anti-Mouse IgG, 

Jackson immunoreasearch, PA, USA) diluted at 1:10,000 in blocking buffer for 1 h at room 

temperature (RT). Ab-Ag bindings were detected by applying ECL (ECL kit, 20–500-120, 

Biological industries, Israel).

2.8. Antibody titer

Specific anti-Aβ1–11 antibody production was quantified by an indirect ELISA. 96-well high 

binding microplates (Microlon, 655061, Greiner bio-one, Monroe, NC, USA) were covered 

with 50 μl of recombinant mouse Aβ1–42 peptide solution (Amyloid-beta peptide (1–42) 

[mouse/rat], 120959, Abcam, Cambridge, UK) in carbonate/bicarbonate coating buffer (pH 

9.6) to a concentration of 3 μg/ml. Plates were incubated overnight at 4 °C, washed 3 times 

with 0.1% PBS-Triton and blocked with 2% BSA (A7906, Sigma, St. Louis, MO, USA) for 

1 h at RT. Plates were washed 3 times with PBS-T and incubated serum samples diluted at 

1:100–1:12500 for 1 h at RT. Standard curve was carried out using known concentrations of 

primary goat-anti-mouse Aβ1–16 antibody (50–500 ng/ml, ab126873, Abcam, Cambridge, 

UK). Plates were washed 3 time in PBS-T and incubated with HRP-conjugated goat anti

mouse IgG secondary antibody diluted at 1:5000, (115–035-003, Peroxidase AffiniPure 

Goat Anti-Mouse IgG, Jackson immunoreasearch, PA, USA) or goat anti-rabbit secondary 

antibody of standard curve wells (111–035-003, Peroxidase AffiniPure Goat Anti-Rabbit 

IgG, Jackson Immunoresearch, PA, USA) for 1 h at RT. Plates were washed and 3,3′,5,5′

tetramethylbenzidine (TMB) substrate (00–4201-56, Affimetrix eBioscience, San Diego, 

CA, USA) was added. Colorimetric reaction was stopped by adding 50 μl of 2 M H2SO4 

solution (339741, Sigma-Aldrich, St. Louis, MO, USA), and OD was measured at 450 nm 

using a spectrophotometer.

2.9. Immunoglobulin isotyping

To measure levels of specific anti Aβ IgG1, IgG2a, IgG2b, IgG3, IgM, and IgA, a 

similar indirect ELISA protocol was conducted with the addition of specific anti-mouse

immunoglobulin antibodies (ISO-2, Sigma-Aldrich, St. Louis, MO, USA) diluted at 1:1000, 

incubated for 1 h at RT. Next, donkey anti-goat secondary antibody (705–035-003, 

Peroxidase AffiniPure Donkey Anti-Goat IgG, Jackson Immunoresearch, PA, USA) diluted 

at 1:5000 was applied for 1 h at RT. Colorimetric reaction was stopped by adding 50 μl of 2 

M H2SO4 solution (339741, Sigma-Aldrich, St. Louis, MO, USA), and OD was measured at 

450 nm using a spectrophotometer.
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2.10. Elevated zero maze

Anxiety was monitored using the elevated zero maze (EZM), a ring-shaped 65 cm-high 

table, divided into closed and opened sections. The ring is 7 cm wide and has an outer 

diameter of 60 cm. The closed sections are confined by 20 cm-high walls and a semi

transparent ceiling, whereas the opened sections have a 0.5 cm high curbs at the edges, to 

prevent animals from falling. Illumination was kept at 1300 lx and trial duration was 5 min. 

Animal presence in the open/closed sections of the elevated zero maze were monitored using 

video tracking.

2.11. Open field

Exploratory behavior was quantified using the Open field test a 40 × 40 cm square arena. 

The outer 8 cm were defined as the area periphery, and the 24 × 24 cm inner square as the 

center. Illumination was kept at 1300 lx. Mice were allowed to freely explore the arena for 5 

min.

2.12. Radial arm water maze

Spatial learning capacity was tested using the radial arm water maze (RAWM), constructed 

of a 150 cm of diameter pool, with eight 10 cm-wide, 60 cm-long radial arms, and a 

12 × 12 cm platform located at the end of one arm. Water was kept opaque using white 

non-toxic paint, at a constant temperature of 27 ± 0.5 °C and illumination of ~20 lx. 

For habituation, mice were given 90 s to find a visible platform, 3 trials a day, for four 

consecutive days. Animals that did not manage to locate the target were put on the platform 

by the experimenter. All animals had 60 s of resting on the platform.

In the acquisition phase, mice were required to search for a hidden platform located 1.5 

cm underneath water line. Four different visible extra-maze cues were presented the walls, 

at equal distances from its center. Mice were placed in the central zone of the maze and 

were allowed 90 s to find the platform. This trial repeated 3 times daily, until no significant 

improvement in performance was identified. Twenty-four hours following acquisition, a 

probe test was conducted, in which the platform was removed from the pool. Mice were 

given 60 s and one trial to explore the pool.

2.13. Barnes maze

Spatial learning capacity was assessed using the Barnes maze (Barnes, 1979; Barnes et al., 

1980; Bimonte-nelson; Bonaccorsi et al., 2013; Illouz et al., 2016a), a circular table, 105 

cm high and a diameter of 92 cm. Eighteen holes are located at the perimeter of the table 

at equal distances, each with a diameter of 5 cm. One hole (the target hole) leads to an 

escape chamber in which the animal can hide. Illumination was measured at the center of 

the table and maintained at 1300 lx to encourage the animals’ motivation to search for the 

target hole. During the habituation phase, which lasted one day, the animal was placed in 

a cylinder at the center of the maze. Five seconds later, the cylinder was removed, and the 

mouse was allowed to explore the environment for 120 s. Mice that found the target hole 

were able to enter the escape chamber; mice that did not find it within this period of time 

were placed back in the cylinder, now located above the target hole. In this phase mice were 

given one trial only. Four extra-maze visual cues were presented on the walls surrounding 
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the Barnes table. In the spatial acquisition phase, mice were given 120 s per trial to find the 

target hole, for three trials per day, with an inter-trial interval of 10 min. This procedure was 

repeated daily until no significant improvement in performance was identified. Following 

spatial acquisition, a probe test was conducted with closed holes and no escape chamber. 

Animals were given a single 60 s to explore the environment. Following the probe test, the 

target hole and escape chamber were rotated 180° from the original target location. Similar 

to the spatial acquisition phase, mice were given 3 non-sequential trials, 120 s each, to find 

the new escape chamber.

2.14. Spatial strategy analysis

Spatial search strategies in the Barnes maze were analyzed using the BUNS algorithm 

(Illouz et al., 2016a; Illouz et al., 2016b). In brief, a support vectors machine (SVM) (Boser 

et al., 1992; Vapnik, 1998) classifier was applied to classify performance of mice in the 

Barnes task into spatial strategies to quantify their cognitive capacity at a higher resolution.

2.15. T-maze

We utilized a variant of the T-maze spontaneous alternation test modified from (Deacon 

and Rawlins, 2006). Briefly, T-maze arms were 30 cm long and 15 cm wide, walls were 

15 cm high, covered by different black and white patterns. Mice were given 3 trials with 

an intertrial interval of 2hrs, each trial consisted of 2 stages: During acquisition, mice were 

released from the starting chamber and were given the opportunity to enter one of the target 

arms. A trial was ended when the animals spent more than 2 s with all 4 limbs inside one of 

the target arms. Next, mice were allowed to stay in the chosen arm for 30 s, followed by a 

repetitive trial in which alternation rate was measured.

2.16. Novel object recognition test

Short-term memory was assessed using the novel object recognition (NOR) test as 

previously described (Leger et al., 2013). In short, mice were placed in a 40 × 40 cm arena 

with two different objects. In the first trial, mice were allowed to explore their environment 

for 10 min. In the second trial, one of the objects was replaced by a visually different object. 

Time spent near the two objects was measured as animals with intact short-term memory are 

expected prefer the novel object.

2.17. Serum collection

Blood was extracted from the facial vein using a glass cannula and incubated for 30 min at 

RT to clot. Samples were then centrifuged at 1000×g for 8 min at 4 °C. Clear serum was 

stored at −20 °C for further analysis.

2.18. Brain sample collection

Mice were anesthetized using Ketamine-Xylazine (100 mg/kg, Vetoquinol, France, 10 

mg/kg, Eurovet, The Netherlands, respectively) and perfused with PBS. Hemibrains were 

then separated for histological and biochemical analysis. For Histology, hemibrains were 

transferred to 4% paraformaldehyde (PFA) and stored at 4 °C for 48 h. Following fixation, 

tissues were transferred to a gradient of 20% and 30% sucrose aqueous solutions for 24 
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h each. Hemibrains were then dissected into 40 μm-thick slices using a microtome and 

stored in a cryoprotectant solution (containing 30% glycerol and 35% ethylene glycol) at 

−20 °C until use. For biochemical analysis, cerebral cortex and hippocampi were separated, 

snap-froze on dry ice and stored at −80 °C until use. For Aβ quantification using ELISA, 

soluble and insoluble protein fractions were purified using our previously published protocol 

(Illouz et al., 2017). Briefly, tissues were mechanically homogenized in 0.1% SDS-RIPA 

buffer (150 mM NaCl, 5 mM EDTA, 50 mM Tris-base, 1% NP-40, 0.5% Na-deoxycholate, 

0.1% SDS in aqueous solution), 15 μl per 1 mg tissue, incubated on ice for 30 min followed 

by centrifugation for 90 min at 17,000g at 4 °C. Supernatant, containing RIPA-soluble 

fraction of mouse Aβ1–40 and Aβ1–42 was removed and stored at −20 °C. The centrifuged 

pellet, containing the insoluble fraction was incubated for 30 min in Trifluoroaceticacid 

(TFA, > 99%, 200–929-3, Sigma-Aldrich, St. Louis, MO) at RT. Next, samples were dried 

under a gentle stream of nitrogen gas to 10% of the original volume, re-suspended in PBS, 

neutralized with 1 N NaOH and centrifuged again at 17,000×g for 90 min at 4 °C. The 

supernatant, containing RIPA-insoluble fraction was removed and stored at −20 °C. Total 

protein concentration was determined using the BCA method (Cat# 23225, ThermoFisher 

Scientific, Waltham, MA, USA).

2.19. Thioflavin-S staining

β-Sheet conformations were detected using a Thioflavin-S staining protocol, adapted from 

Rajamohamedsait and Sigurdsson (2012). In brief, 40 μm-thick brain sections were rinsed in 

0.1% PBS-Triton and incubated with 1% Thioflavin-S aqueous solution for 15 min. Sections 

were dehydrated through incubation in serial ethanol solutions: 70%, 80%, 95% and 100% 

for 2 min each.

2.20. Measuring Aβ40/42 levels using sELISA

Soluble and insoluble levels Aβ1–40 and Aβ1–42 in the serum and brain-tissue were 

conducted using our previously published sandwich-ELISA protocol (Illouz et al., 2017). 

In brief, 96-well polystyrene microplates (Microlon, 655061, Greinerbio-one, Monroe, 

NC) were covered with 50 μl of anti-mouse-N-terminus Aβ1–16 (ab126873, Abcam) at a 

concentration of 5 μg/ml in carbonate-bicarbonate buffer (pH = 9.6) and incubated overnight 

at 4 °C. Plates were washed 5 times in PBS-T solution (0.1% Triton-x in PBS) and blocked 

with 2% BSA solution in PBS. 50 μl of serum or tissue homogenate were applied to each 

well, and incubated for 90 min at RT. Plates were then washed 5 times in PBS-T, and 

the following detection antibodies were added: Anti-Aβ1–40 antibody (ab20068, Abcam) 

diluted at 1:500 or anti Aβ1–42 antibody (05–831, Millipore, Billerica) at 1:2500, and 

incubated for 90 min at RT. Next, plates were washed 5 times in PBS-T and secondary goat

anti-mouse IgG HRP-conjugated antibody was added (115–035-003, Peroxidase AffiniPure 

Goat Anti-Mouse, Jackson immunoreasearch, PA, USA) at a dilution of 1:5000. Plates were 

washed 5 times with PBS-T and 50 μl of 3,3′,5,5′-tetramethylbenzidine (TMB) substrate 

(00–4201-56, Affimetrix eBioscience, San Diego, CA, USA) was added. The color reaction 

was allowed to develop for 3 min and was stopped by adding 50 μl of 2 M H2SO4. Optical 

density (OD) was measured at 450 nm using a spectrophotometer.
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2.21. Measuring p-Ser396-tau levels using sELISA

A similar sELISA protocol was applied for the quantification of phosphor-Serine-396 

tau protein in the cortex and hippocampus. We used chicken-anti-tau (ab75714, Abcam, 

Cambridge, UK) as coating antibody and rabbit-anti-phosphor-ser396-tau (ab109390, 

Abcam, Cambridge, UK) as detection antibody.

2.22. Immunohistochemistry

40 μm-thick hemibrains were rinsed 5 times in 0.1% PBS-Triton for 5 min. Nonspecific 

bindings were blocked using 20% normal horse serum in PBS-T for 1 h at RT. For 

Aβ staining, antigen retrieval was conducted using 75% formic acid for 2 min, at RT. 

Primary antibody was then applied and incubated overnight at 4 °C. The following primary 

antibodies were used: mouse-anti-Aβ1–40 (ab20068 Abcam, Cambridge, UK) diluted at 

1:200, mouse-anti-Aβ1–42 (05–831 Millipore, Billerica, MA) diluted at 1:2500, mouse

anti-NeuN (MAB377, Billerica, MA) diluted at 1:10,000, rabbit-anti-Iba1 (019–19741, 

WAKO, Japan) diluted at 1:1000, rat-anti-CD68 (ab53444, Abcam, Cambridge, UK) diluted 

at 1:2500, rat-anti-Clec7a (mabg-mdect, Invivogen, San Diego, CA) diluted at 1:50, rat

anti-4D4 and rabbit-anti-P2RY12, generously provided by O. Butovsky (Ann Romney 

Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, 

Harvard Medical School, Boston, MA 02115), diluted at 1:4000, 1:200, respectively. 

Astrocytes were visualized using a rabbit-anti-GFAP antibody (M0761, Agilent, Santa 

Clara, CA) diluted at 1:7,500, rabbit-anti-S100β (ab52642, Abcam, Cambridge, UK) diluted 

at 1:7500 and Rat-anti-C3 (ab11862, Abcam, Cambridge, UK) diluted at 1:50. For all 

astrocytic staining, antigen retrieval was performed by incubating brain slices in citrate 

buffer (pH = 6) for 20 min. Next, sections were rinsed 5 times in PBS-T for 5 min and 

fluorescence-tagged secondary antibodies were applied for 1 h at RT: Goat-anti-Mouse IgG 

(Alexa-488/568, 1:1000, Invitrogen, OR, U.S.A.), Goat-anti-Rabbit IgG (Alexa-488/568, 

1:1000, Invitrogen), Goat-anti-Rat IgG (Alexa-488/568, 1:1000, Invitrogen). Slices were 

then stained with Hoechst 33,342 (H3570, Invitrogen) diluted at 1:1000.

2.23. Stereological analysis of cells in the CNS

2.23.1. Microglial and astroglial cells—The hippocampus was outlined according 

to the Paxinos atlas of the mouse brain. Quantification of stained cells was evaluated by 

stereological counts using the optical dissector method as described previously (West et al., 

1991). Optical fractionator sampling was carried out using a Leica DM6000 microscope 

(Leica Microsystems, Germany) coupled to a controller module and a high-sensitivity 3CCD 

video camera system (MBF Biosciences, VT), and an Intel Xeon workstation (Intel, CA). 

Sampling was implemented using the Stereo Investigator software (MBF Biosciences). 

Analyzed brain sections spanned from −0.94 mm to −4.04 mm from Bregma. Every 

9th to 10th section (360–400 μm apart) was used for quantification from each animal. 

Counting frame size was set to 100 × 100 μm. The total number of positive cell population 

was estimated based on the section volume and extrapolated for the total volume of the 

hippocampus. An experimenter blind to all treatment groups performed the stereological 

counts. Microglial number of branches per cell and branches complexity were assessed 

using the WIS-NeuroMath algorithm (Rishal et al., 2013). Image fluorescence intensity was 
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calculated per pixel, filtered for noise reduction and normalized to the number of cells using 

MATLAB (MathWorks, Natick Massachusetts).

2.23.2. Neuronal cells—The retrosplential cortex was outlined according to the Paxinos 

atlas of the mouse brain. Analyzed brain sections spanned from −1.35 mm to −2.05 mm 

from Bregma. Quantification of stained cells was evaluated by stereological counts as 

described above, with counting frame size was set to 50 × 50 μm. Calculation of total 

number of cells was conducted as describe above.

2.24. Statistical analysis

The data presented as mean ± SEM were tested for significance in the unpaired t-test with 

equal variances, one-way ANOVA, repeated-measures (RM) two-way ANOVA, two-sample 

Kolmogorov-Smirnov test, Pearson’s correlation coefficient or the χ2 test for independence. 

post-hoc tests were conducted using the Tukey or Bonferroni corrections. All error bars 

represent SEM were calculated as std(x)
n  for numeric variables, and as p(1 − p)

n  for binomial 

variables. Outliers were identified using the Robust regression and outlier removal (ROUT) 

method with coefficient Q = 1% (Motulsky and Brown, 2006). Significant results were 

marked according to conventional critical P values: *P < 0.05, **P < 0.01, ***P < 0.001, 

****P < 0.0001.

2.25. Data availability

All the data support the findings of this study are available from the corresponding author 

upon request.

3. Results

3.1. Ts65Dn mice exhibit reduced cognitive capacity

To assess the efficacy of the AβCore-S vaccination in the Ts65Dn DS mouse model, we first 

conducted a baseline behavioral assessment on Ts65Dn and WT mice at 3 m of age prior 

to immunization (n = 24 per group, Fig. S1A). Ts65Dn mice exhibited a higher fraction 

of time spent in the open arms of an elevated zero maze compared with WT mice (0.37 ± 

0.02 and 0.26 ± 0.01 respectively, P < 0.001, Fig. S1B), suggesting higher anxiety threshold 

in these mice. While covered distance (Fig. S1C, P > 0.05), movement speed (Fig. S1D, 

P > 0.05) and number of zone crosses between the open and closed arms (Fig. S1E, P > 

0.05) did not differ in the elevated zero maze, covered distance (P < 0.01, Fig. S1F) and 

mean speed (P < 0.01, Fig. S1G) were higher among Ts65Dn mice compared with WT mice 

in the open field arena. Despite this, no strain differences were observed in time spent in 

the corners, periphery or center zones of the open field (P = 0.59, Fig. S1H), suggesting 

that the exploratory behavior is intact at the age of 3 m. These data are consistent with 

previous reports of a motor-hyperactivity in the Ts65Dn mice (Faizi et al., 2011). To obtain 

a baseline for hippocampal-dependent spatial capacity, mice were initially tested using the 

radial arm water maze. However, our observations indicate that young Ts65Dn mice are 

severely impaired in this task. Latency to reach the platform and total distance travelled 

were dramatically higher in Ts65Dn mice throughout the acquisition phase (latency: 41.36 
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± 3.56 s and 9.34 ± 0.86 s, respectively, P < 0.0001, Fig. S2A; distance: 3.49 ± 0.34 m and 

1.29 ± 0.13 m, respectively, P < 0.01, Fig. S2B. Data relates to the last acquisition day). 

Accordingly, Ts65Dn mice exhibited lower path efficiency to the platform (0.35 ± 0.03 and 

0.71 ± 0.3 respectively, P < 0.0001, at the last day of acquisition, Fig. S2C). Swimming 

speed of Ts65Dn mice was significantly lower compared with WT mice (0.08 ± 0.004 and 

0.14 ± 0.003 m/s, respectively, P < 0.0001, Fig. S2D). Additionally, reference memory (RM) 

error rate at the last day of the radial arm water maze acquisition task was higher in Ts65Dn 

mice compared with WT mice (2.1 ± 0.21 and 0.65 ± 0.11 errors, respectively, P < 0.0001, 

Fig. S2E, G). However, while working memory (WM) error rate was initially higher in 

Ts65Dn mice, there was no significant difference between the strains by the last day of 

acquisition (P = 0.18, Fig. S2F, G).

Since we established that Ts65Dn mice exhibit an inherent deficit in the radial arm water 

maze swimming task, we further assessed the spatial learning capacity of Ts65Dn mice in 

the Barnes maze, a non-water-based task that assesses spatial learning (Fig. S3A). Latency 

to reach the target hole did not differ between Ts65Dn and WT mice (P = 0.98, Fig. 

S3B), however the distance travelled was significantly higher in the Ts65Dn group on days 

2–4 (P < 0.01, P < 0.0001 and P < 0.05 respectively, Fig. S3C). In addition, the mean 

traveling speed of Ts65Dn mice was higher on acquisition days 2–7 (P < 0.05 on day 2, P 

< 0.0001 on days 3–7, Fig. S3D), and their path efficiency was lower (0.46 ± 0.03 and 0.64 

± 0.03 on the last day, P < 0.001, Fig. S3E). Elevated speed and lowered path efficiency 

along with equal latencies reflects a lower spatial memory acquisition in the Ts65Dn strain, 

as these mice compensate their lack of orientation with traveling at a higher speed (Fig. 

S3B-E). RM errors were higher in Ts65Dn mice (P < 0.0001, Fig. S3F), while WM error 

rates did not differ between strains (P = 0.16, Fig. S3G), suggesting that Ts65Dn mice 

may also compensate their reduced spatial capacity by numerous entries to random holes. 

To confirm this, we performed a spatial strategy analysis with the Barnes maze UNbiased 

Strategy classification (BUNS) algorithm (Illouz et al., 2016a). The BUNS analysis revealed 

that while WT mice mostly used the direct and corrected search strategies (30.5 and 25% 

respectively, Fig. S3H, left panel) on the last day of acquisition, Ts65Dn mice used these 

strategies at a lower rate (16.67 and 24.24% respectively, Fig. S3H, right panel) with serial 
search as the prominent strategy (28.78%, Fig. S3H, right panel). Importantly, the cognitive 

scores of Ts65Dn mice, reflecting their ‘spatial IQ’, were significantly lower throughout 

the acquisition task compared with WT mice (0.61 ± 0.03 and 0.78 ± 0.027 respectively, 

P < 0.01, Fig. S3I). Qualitative presentation of mice’ spatial location using heat maps and 

trajectory plots reveals a prolonged period spent in the center of the maze at the beginning 

of trials followed by a direct approach to the target hole by WT but not Ts65Dn mice (Fig. 

S3J). In the probe test, both strains exhibited a Gaussian-like distribution of hole-entries 

centered around the target hole (Fig. S3K, left and middle panels). As a result, the difference 

in entropy (Δ entropy) between these distributions and a theoretical uniform distribution 

(yielding the maximal entropy) were similar (Fig. S3K, right panel).

We next assessed memory retention in a reversal task of the Barnes maze, which presents a 

higher difficulty level under identical external spatial cues. Latency to reach the new target 

was surprisingly lower in Ts65Dn mice in days 2–4 compared with WT mice (20.52 ± 1.62 

and 30.43 ± 1.86 s, respectively, on the last day, P < 0.05, Fig. S4A), suggesting effective 
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long-term spatial plasticity in Ts65Dn mice. With the exception of the first day (4.89 ± 0.52 

m for DS, 2.44 ± 0.14 m for WT, P < 0.0001, Fig. S4B), distance did not differ between 

strains (P = 0.52, Fig. S4B), however Ts65Dn mice travelled at a higher speed than WT 

mice throughout the experiment (0.1 ± 0.007 m/s and 0.05 ± 0.003 m/s, respectively, on the 

last day, P < 0.0001, Fig. S4C). Path efficiency, RM and WM error rates did not differ in 

the reversal task (P > 0.05, Fig. S4D-F respectively). BUNS analysis revealed that although 

WT mice exhibited direct and corrected search strategies at higher rate than Ts65Dn mice 

(34 and 18% (combined), respectively, Fig. S4G) the most prevalent strategies among both 

strains was serial search (54 and 51%, respectively, Fig. S4G), reflecting a higher cognitive 

demand in the reversal than in the acquisition task. Although higher in the WT group, 

cognitive scores did not significantly differ in this task (P = 0.058, Fig. S4G, right panel). 

Heat maps and trajectory plot support the strategies indicated by the BUNS analysis (Fig. 

S4H).

The baseline cognitive assessments indicate that Ts65Dn mice exhibit (a) higher anxiety 

threshold, (b) motor hyper activity and elevated travelling speed (c) motor deficit in 

swimming tasks and (d) cognitive impairment in spatial learning tasks, compared with the 

WT group (Figs. S1–S4).

3.2. Ts65Dn mice vaccinated with AβCore-S generate Aβ-specific IgM and IgG responses

At 6 m of age, Ts65Dn and WT mice were immunized using a Helios gene-gun with the 

AβCore-S vaccine, containing Aβ1–11 fused to the HBsAg epitope. A vaccine construct 

containing the HBsAg component alone served as sham-control treatment. Mice were 

vaccinated three times with 14d intervals (Fig. 1A). To characterize vaccine-induced 

antibodies, blood was collected at 12 days following the last boost and was used for the 

detection of oligomeric murine Aβ1–42 in western blotting. Antibodies found in the sera 

of vaccinated WT mice, effectively bound Aβ1–42 oligomers (63 kDa, 100 kDa, 121.5–

126 kDa, Fig. 1B). In contrast to most AD transgenic mouse strains that encompass a 

mutated human APP, PS1 or PS2, TsDn65 mice expresses an extra copy of the endogenous 

murine APP gene. Cross reactivity of the human and murine variants of the AβCore-S 

vaccine was tested with recombinant murine and human Aβ1–42 (m/hAβ) using ELISA. 

No cross reactivity between hAβ1–42 peptide to antibodies against mAβ1–11, or between 

mAβ1–42 peptide and antibodies against hAβ1–11 were detected (Fig. S5A, B, respectively), 

suggesting high specificity of the AβCore-S vaccine.

Following immunization, at the age of 6 m, specific anti-Aβ IgG serum levels were 

measured using ELISA. Antibody titer of Ts65Dn mice peaked at 5.45 ± 1.4 μg/ml, and 

remained high until 9 m of age (P < 0.0001, Fig. 1C). Vaccinated WT mice produced higher 

IgG levels compared with Ts65Dn (11.12 ± 0.62 μg/ml and 5.45 ± 1.4 μg/ml respectively; 

P < 0.0001, Fig. 1C), which remained high until 15 m. Importantly, specific anti-Aβ IgM 

levels were higher in vaccinated Ts65Dn mice immediately after immunization, compared 

with vaccinated WT mice (0.98 ± 0.05 and 0.35 ± 0.12, respectively, P < 0.0001, Fig. 1D). 

IgM levels remained high until 12 m in Ts65Dn mice (P < 0.01, Fig. 1D) and 15 m in 

WT mice (P < 0.001, Fig. 1D). Interestingly, an age-dependent elevation of anti-Aβ IgM 

was found in the serum of sham-vaccinated WT mice at 9 m of age (P < 0.001, Fig. 1D) 

Illouz et al. Page 13

Brain Behav Immun. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and in 12 m-old sham-vaccinated Ts65Dn mice (P < 0.05, Fig. 1D). To further characterize 

the humoral immune response elicited by the AβCore-S vaccine, we measured levels of 

Aβ-specific IgG1, IgG2a, IgG2b, IgG3 and IgA isotype levels. IgG1 and IgG2b were the 

most prevalent isotypes among both WT (P < 0.0001, Fig. 1E) and Ts65Dn mice (P < 

0.0001 and P < 0.001 respectively, Fig. 1F) immediately after immunization. In WT but not 

Ts65Dn mice, high IgG3 antibodies were also present in the serum at 6 m (P < 0.01, Fig. 

1E). IgG2a were present in both strains with no significant differences (P = 0.24, Fig. 1E, F), 

and no detectable IgA production was observed (P = 0.97, Fig. 1E, F).

Since an age-dependent decrease in Aβ-Specific antibody level was observed, anti-HBsAg 

IgG and IgM production was also measured (Fig. 1G, H, respectively). Post immunization, 

anti HBsAg-IgG levels increased to a range of 1.3–2.3 OD, (P < 0.001, Fig. 1G) and 

remained high until 15 m of age in WT mice (range of 0.93–1.23 OD, P < 0.05, Fig. 1G) 

and 12 m in Ts65Dn mice (range of 1.01–1.04 OD, P < 0.01, Fig. 1G). A similar effect was 

found for HBsAg-specific IgM, which peaked at 6 m of age (range of 0.5–0.84 OD, P < 

0.0001, Fig. 1H) and remained elevated until 12 m across all experimental groups (range of 

0.39–0.49 OD, P < 0.01, Fig. 1H). These results indicate integrity of the humoral immune 

response of Ts65Dn mice.

3.3. Vaccination with AβCore-S ameliorates long-term spatial memory impairments in 
Ts65Dn mice

Following immunization, mice were tested repeatedly in a variety of behavioral and 

cognitive tasks (Sup. Table 1, Fig. S6A). To test exploratory behavior post-vaccination, 

mice were tested in the open field arena. Sham-vaccinated Ts65Dn mice travelled a longer 

distance compared with WT mice (22.52 ± 2.88 m and 11.96 ± 0.71 m, respectively, P 

< 0.01, Fig. S6B). No such effect was found between vaccinated Ts65Dn mice and their 

WT controls (P = 0.19, Fig. S6B). This is possibly due to reduced motor hyper-activity in 

vaccinated mice, as sham-vaccinated Ts65Dn mice travelled at a higher speed compared 

to controls (0.07 ± 0.009 and 0.04 ± 0.002 m/s, respectively, P < 0.01, Fig. S6C). Time 

spent in the corner, periphery and center of the open field arena did not differ between 

groups (P = 0.96, Fig. S6D), suggesting that exploratory response is intact in 6 m-old 

Ts65Dn mice. Anxiety assessment using the elevated zero maze revealed a strain but not a 

treatment effect, as both vaccinated and sham-vaccinated Ts65Dn mice exhibited a greater 

fraction of time spent in the open zones compared with WT controls (0.34 ± 0.04, 0.34 

± 0.02 for Ts65Dn mice, respectively, 0.24 ± 0.02, 0.18 ± 0.01 for WT, respectively, P < 

0.0001, Fig. S6E), suggesting higher anxiety threshold in Ts65Dn mice. No difference in 

open-close zone-crossing was observed between groups (P = 0.48, Fig. S6F). Strain effects 

were also found for distance and speed as Ts65Dn travelled a longer distance at a higher 

speed compared with WT mice (P < 0.05, Fig. S6G, H).

We next tested the spatial learning capacity of the mice using the Barnes maze at 9 m 

(Fig. 2A). Similarly to their performance at the age of 3 months, latency to reach the target 

and travel distance did not differ between groups (P = 0.2, Fig. 2B and P = 0.12, Fig. 

S7A, respectively). Both Ts65Dn groups exhibited elevated speed and lower path efficiency 
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compared with WT mice (P < 0.01, Fig. S7B and P < 0.01, Fig. S7C), suggesting that spatial 

accuracy is impaired in these mice due to hyperactivity.

RM but not WM errors were elevated in Ts65Dn mice compared to WT mice throughout 

the acquisition phase (P < 0.01 and P = 0.38, Fig. S7D, E, respectively). Spatial strategy 

analysis revealed that while on the last day of acquisition Ts65Dn mice utilized direct and 

corrected strategies at a rate of 17%, WT mice used these strategies in 38.5% of the trials 

(Fig. S7F). This was reflected in lower cognitive score in Ts65Dn mice by the fifth and last 

days (0.3–0.35 and 0.52–0.53, respectively, P < 0.05, Fig. S7F, heat maps and trajectory 

plots in Fig. S7G).

In the probe test, sham-vaccinated Ts65Dn mice exhibited higher number of RM errors 

compared with sham-vaccinated WT mice (16.8 ± 0.12 and 11.38 ± 1, P < 0.01, Fig. 

2C), while vaccinated Ts65Dn mice showed no such elevation (P = 0.99, Fig. 2C). A 

similar effect was observed in working memory errors between sham-vaccinated Ts65Dn 

and sham-vaccinated WT mice (29.7 ± 5.82 and 9 ± 1.2, respectively, P < 0.001, Fig. 

2D). Interestingly, these mice also exhibited a lower fraction of entries to the target hole 

compared with all other groups (P < 0.05, Fig. 2E). Distribution of entries to holes in the 

Barnes table was near-Gaussian for vaccinated Ts65Dn mice and both WT groups, and 

near-uniform for sham-vaccinated Ts65Dn (P < 0.0001, Fig. 2F). This is reflected in a 

lower difference of entropies between the empirical distribution and a theoretical uniform 

distribution, compared to all other groups (Fig. 2F). This finding suggests that vaccinating 

Ts65Dn mice with AβCore-S can ameliorate the spatial memory decline found in the 

Ts65Dn strain.

3.4. Vaccination with AβCore-S prevents short-term memory decline in Ts65Dn mice

Next, mice were tested for short-term memory using the spontaneous-alternation T-maze 

and the novel object recognition test (Fig. 3A). At 12 m, sham-treated Ts65Dn mice were 

outperformed in the T-maze task by vaccinated Ts65Dn mice WT controls (0.38 ± 0.08 

and 0.64–0.71 ± 0.076, respectively, P < 0.01, Fig. 3B). The alternation rate of vaccinated 

Ts65Dn mice was similar to that of WT mice (0.69 ± 0.08 and 0.71 ± 0.07, respectively, 

P = 0.99, Fig. 3B). Consistent with these results, a lower cumulative discrimination index 

was found in sham-vaccinated Ts65Dn mice throughout the course of the novel object 

recognition test, compared with all other groups (−0.15 ± 0.31, 0.8–1.17 ± 0.23, at 60 s, 

respectively, P < 0.01, Fig. 3C). Vaccinated Ts65Dn mice however, performed normally in 

this task. These data indicate that short-term memory was rescued in vaccinated Ts65Dn 

mice.

3.5. AβCore-S reduces Aβ1–40 and Aβ1–42 serum levels and promotes clearance of Aβ1–
40 and Aβ1–42 from the brain in Ts65Dn mice

To assess the efficacy of the AβCore-S vaccine in targeting Aβ1–40 and Aβ1–42, serum levels 

of these peptides were measured at base-line (3 m) and every 3 m following immunization 

(Fig. 4A). Levels of Aβ1–40 in the sera of Ts65Dn mice were higher compared to WT mice 

at 3 m (6.62 ± 3.38 ng/ml and 1.36 ± 1.3 ng/ml, respectively, P < 0.05, Fig. 4B). Similarly, 

serum levels of Aβ1–42 were also higher in these mice at 3 m of age (4 ± 2.04 ng/ml and 
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1.1 ± 1.1 ng/ml, respectively, P < 0.05, Fig. 4C). Following immunization, serum levels of 

both Aβ1–40 and Aβ1–42 were lower in vaccinated Ts65Dn mice, which reached significance 

level at the age of 15 m compared with sham-vaccinated Ts65Dn mice (9.23 ± 1.82 ng/ml 

and 13.83 ± 1.18 ng/ml respectively for Aβ1–40; 8.23 ± 1.76 ng/ml and 13.15 ± 1.1 ng/ml, 

respectively for Aβ1–42. P < 0.05, Fig. 4B, C). Serum Aβ1–40 and Aβ1–42 were lower in WT 

controls compared with sham-treated mice at the age of 15 m (6.24 ± 0.66 ng/ml and 13.83 

± 1.18 ng/ml respectively for Aβ1–40, P < 0.001; 6.3 ± 0.69 ng/ml and 13.15 ± 1.1 ng/ml 

respectively for Aβ1–42, P < 0.01, Fig. 4B, C), but not compared to vaccinated Ts65Dn mice 

(P = 0.77 for Aβ1–40, P = 0.83 for Aβ1–42 Fig. 4B, C).

Number of Thioflavin-S+ markers was assessed in the cerebral cortex and hippocampus of 

Ts65Dn and WT mice from 15 m old mice. The number of Thioflavin-S+ markers was 

lower in the cortex of vaccinated Ts65Dn mice compared with sham-vaccinated Ts65Dn 

mice (14.76 ± 9.73 and 21.19 ± 14.22 markers/mm2 Respectively, P < 0.05, Fig. 4D, E). No 

significant differences were observed in the hippocampus (P = 0.99, Fig. 4D).

Next, cortical and hippocampal levels of Aβ1–40 and Aβ1–42 were quantified using sELISA 

as previously described (Illouz et al., 2017). Cortical level of soluble Aβ1–40 were higher 

in sham-vaccinated Ts65Dn mice compared with WT controls (6.13 ± 3.93 ng/ml and 0.93 

± 0.57 ng/ml, respectively, P < 0.05, Fig. 5A). No difference was observed in the levels 

of soluble Aβ1–40 levels in the hippocampus (P = 0.66, Fig. 5A). Vaccinated Ts65Dn mice 

showed no difference in soluble Aβ1–40 compared with WT controls in either the cortex (P = 

0.79, Fig. 5A) or hippocampus (P = 0.97, Fig. 5A).

Soluble levels of Aβ1–42 were elevated in sham-vaccinated Ts65Dn mice compared with WT 

mice in both the cortex (2.6 ± 0.59 ng/ml and 0.51 ± 0.51 ng/ml, respectively, P < 0.05 

Fig. 5B) and hippocampus (2.01 ± 0.43, 0.2 ± 0.2 ng/ml, respectively, P < 0.05 Fig. 5B). 

However, there was no difference between vaccinated Ts65Dn mice and their WT controls 

(P = 0.06 in the cortex, P = 0.94 in the hippocampus, Fig. 5B). Furthermore, levels of 

insoluble Aβ1–40 were lower in the cortex and hippocampus of vaccinated Ts65Dn mice 

compared with sham-vaccinated Ts65Dn mice (Cortex: 7.66 ± 1.77 ng/ml and 32.48 ± 3.63 

ng/ml, respectively P < 0.001; Hippocampus: 5.08 ± 0.78 ng/ml and 13.51 ± 2.3 ng/ml, 

respectively, P < 0.01, Fig. 5C). Accordingly, tissue levels of insoluble Aβ1–40 showed 

no difference between vaccinated Ts65Dn mice and WT controls (P = 0.81 in the cortex, 

P = 0.65 in the hippocampus, Fig. 5C). Additionally, vaccinated Ts65Dn mice exhibited 

reduced levels of insoluble Aβ1–42 in the cortex and the hippocampus, compared with sham

vaccinated Ts65Dn mice (Cortex: 4.99 ± 0.86 ng/ml and 28.73 ± 3.46 ng/ml, respectively, 

P < 0.001, Fig. 5D; Hippocampus: 4.83 ± 0.53 ng/ml and 13.83 ± 2.71 ng/ml, Respectively, 

P < 0.01, Fig. 5D). No difference was observed in either cortical or hippocampal levels of 

insoluble Aβ1–42 between vaccinated Ts65Dn mice and controls (P = 0.65 in the cortex, P = 

0.64 in the hippocampus, Fig. 5D).

Immunohistochemical staining for Aβ1–40 revealed lower pixel intensity (PI) in the cortex 

and hippocampus of vaccinated Ts65Dn mice compared with sham-vaccinated Ts65Dn mice 

(0.12 ± 0.01 and 0.31 ± 0.04 PI, in the cortex, 0.24 ± 0.03 and 0.43 ± 0.05 PI, in the 

hippocampus, respectively, P < 0.01, Fig. 5E). Additionally, a strong correlation between 
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cortical and hippocampal Aβ1–40 expression levels was observed (r = 0.7, P < 0.01, Fig. 5E, 

right panel). Similarly, we found reduced Aβ1–42 signal in the cortex and hippocampus of 

vaccinated Ts65Dn mice compared with sham-vaccinated Ts65Dn mice (0.02 ± 0.009 and 

0.05 ± 0.009 PI, in the cortex, respectively, P < 0.05, 0.14 ± 0.02 and 0.23 ± 0.02 PI, in the 

hippocampus, respectively, P < 0.01, Fig. 5F). A moderate correlation between cortical and 

hippocampal signal intensity of Aβ42 was found (r = 0.55, P < 0.01, Fig. 5F).

To further investigate the impact of the AβCore-S vaccine on AD-like neuropathology found 

in DS patient, we measured levels of phosphorylated tau (S396) in the cortex. Hippocampal 

but not cortical pS396-tau levels of sham-vaccinated Ts65Dn mice were elevated compared 

to WT controls (0.71 ± 0.27 and 0.28 ± 0.03 OD, respectively, P < 0.05, Fig. 5G). This is 

in line with previous reports of DYRK1A overexpression in hippocampal CA1 pyramidal 

neurons of DS patients (Wegiel et al., 2011). Vaccinated Ts65Dn mice did not show 

difference in cortical or hippocampal levels of p-S396-tau, compared to WT mice (P = 

0.98 in the cortex, P = 0.91 in the hippocampus, Fig. 5G).

3.6. Vaccination with AβCore-S reduces cortical neurodegeneration in Ts65Dn mice

Along with neurodevelopmental alterations during embryonic stages, DS individuals suffer 

from early AD-associated neurodegeneration of the hippocampus, amygdala and cortex 

(Kesslak et al., 1994; Krasuski et al., 2002; Teipel et al., 2004; Teipel et al., 2003). 

In Ts65Dn mice, APP overexpression, together with associated neuroinflammation and 

oxidative stress, has been implicated in the degeneration of cholinergic and noradrenergic 

neurons (Millan Sanchez et al., 2012). We next inquired whether vaccination-derived 

reduction in Aβ levels is associated with restricted neurodegeneration in immunized 

Ts65Dn mice. Cortical thickness of vaccinated and sham-treated Ts65Dn mice was reduced 

compared with vaccinated WT controls (776.6 ± 9.6 and 832.6 ± 9.48 μm, respectively, 

P < 0.05, Fig. 6A), independently of treatment (P = 0.98, Fig. 6A). Additionally, dentate 

gyrus (DG) area did not differ between strains or treatments (P = 0.59, Fig. 6B). Next, 

neuronal density was assessed using unbiased stereological analysis of NeuN+ neurons in 

the retrosplenial cortex, as Ts65Dn mice were identified for cholinergic circuitry deficit in 

the retrosplenial cortex (Chen et al., 2009). Importantly, the neuronal density of sham-treated 

Ts65Dn mice was lower compared to sham-treated and vaccinated WT controls (147.8 ± 

6.59, 196.5 ± 9.39 and 198.3 ± 7.33 × 103 cells/mm3, respectively, P < 0.05, Fig. 6C, D). 

The neuronal density among vaccinated Ts65Dn mice was also reduced, however this effect 

did not reach significance level compared with WT controls of both groups (166 ± 6.559, 

196.5 ± 9.39 and 198.3 ± 7.33 × 103 cells/mm3, respectively, P = 0.06, Fig. 6C, D). These 

data indicate that the relief in amyloidic burden in vaccinated Ts65Dn mice has a mild 

positive effect on neuronal integrity in the retrosplential cortex.

3.7. Vaccination with AβCore-S alters microglia protein expression profile and promotes 
homeostatic microglial phenotype

Microglia have recently been implemented in neurodegenerative and other CNS-related 

pathologies, as activation of these cells under pathological states and loss of their 

homeostatic function may contribute to neuronal and synapses loss by promoting harmful 

inflammation in the brain parenchyma (Bisht et al., 2016; Colonna and Butovsky, 2017; 
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Keren-Shaul et al., 2017; Yin et al., 2017). It has also been reported that DS individuals, 

as well as mouse models of DS, exhibit a unique microglial gene expression signature 

that is distinct from familial and sporadic AD (Wilcock et al., 2015; Xue and Streit, 

2011). We characterized the phenotype of microglial cells by measuring the expression 

of pan-microglial, homeostatic and reactive microglia markers. To examine the broad 

population of microglial cells, we used the Ionized calcium binding adaptor molecule 

1 (Iba1), a member of the calcium-binding group of proteins (Korzhevskii and Kirik, 

2016), uniformly distributed in the cytoplasm and processes of ramified microglia. 

Iba1 takes part in reorganizing the cytoskeleton and altering the configuration of the 

plasmalemma, processes that occur during phagocytosis (Kawai et al., 2005; Kohler, 

2007; Korzhevskii and Kirik, 2016). For homeostatic microglial cells we used the 4D4 

and P2RY12 markers. 4D4, a newly discovered microglia-specific marker of unknown 

function, expressed specifically at the extremity of the cells’ ramified processes (Bisht et al., 

2016). Purinergic receptor P2RY12 (G-protein coupled, 12), another homeostatic microglial 

marker, is downregulated under ischemic and neurodegenerative conditions (Bisht et al., 

2016; Keren-Shaul et al., 2017; Lou et al., 2016). Finally, we used CD68 and Clec7a as 

markers for reactive microglial cells. CD68, a transmembrane protein present in monocytes 

and tissue macrophages, belongs to the lysosome-associated membrane protein family and 

is indicative of phagocytic activity (Korzhevskii and Kirik, 2016; Walker and Lue, 2015). 

Clec7a (Dectin-1) is a C-type lectin receptor, that is associated with plaque-related microglia 

(Keren-Shaul et al., 2017; Osorio and Reis e Sousa, 2011).

Ts65Dn mice did not exhibit higher numbers of hippocampal Iba1+ cells when compared 

with WT mice (14.42 × 103 ± 0.58 × 103 and 13.25 × 103 ± 0.55 × 103 respectively, P > 

0.05, Fig. 7A). Compared with sham-vaccinated WT mice, vaccinated WT mice exhibited 

reduced levels of Iba1+ cells in the hippocampus (13.25 × 103 ± 0.55 × 103 and 8.71 

× 103 ± 0.86 × 103 respectively, P < 0.05, Fig. 7A). Vaccinated Ts65Dn mice exhibited 

nonsignificant reduction in the numbers of Iba1+ cells within the hippocampus compared 

with sham-treated Ts65Dn mice (9.9 × 103 ± 0.21 × 103 and 14.42 × 103 ± 0.58 × 103 

respectively, P = 0.07, Fig. 7A). This effect implies that the AβCore-S vaccine reduces 

microgliosis in both WT and Ts65Dn aging brains. Importantly, we found that the number 

of Iba1+CD68+ microglial cells in the hippocampus of vaccinated Ts65Dn and WT mice 

(9.01 × 103 ± 0.2 × 103 and 7.99 × 103 ± 0.8 × 103, respectively, Fig. 7B, D and E) was 

lower compared with sham-vaccinated Ts65Dn and WT mice (13.77 × 103 ± 0.73 × 103 

and 12.64 × 103 ± 0.52 × 103 respectively, P < 0.05, Fig. 7B, D and E). In addition, CD68 

expression was reduced in vaccinated Ts65Dn and WT mice (0.12 ± 0.002 and 0.1 ± 0.002 

respectively, Fig. 7C-E), compared to sham-vaccinated Ts65Dn and WT mice (0.14 ± 0.004 

and 0.12 ± 0.002 respectively, Fig. 7C-E, P < 0.05 for Ts65Dn, P < 0.001 for WT). These 

results suggested that the AβCore-S vaccine shifts the polarity of microglial cells toward a 

homeostatic rather than pathologic phenotype, regardless of DS-related pathology. To clarify 

this, we next assessed the morphology of microglial cells using the homeostatic microglia 

marker 4D4 (Bisht et al., 2016), expressed intensively at the extremity of microglial 

processes. Vaccinated Ts65Dn and WT mice exhibit elevated expression of 4D4 (0.39 ± 0.01 

and 0.42 ± 0.02 respectively, Fig. 7F, H and I) compared with sham-vaccinated Ts65Dn and 

WT mice (0.31 ± 0.01 and 0.32 ± 0.01 respectively, Fig. 7F, H and I, P < 0.05 for Ts65Dn, P 
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< 0.001 for WT). Interestingly, microglial cells in vaccinated mice of both strains exhibited 

a higher number of branches per cell (Ts65Dn: 8.73 ± 0.39; WT: 7.65 ± 0.23, Fig. 7G-I) 

compared with unvaccinated mice (Ts65Dn: 6.47 ± 0.22; WT: 6.18 ± 0.17, P < 0.0001. 

Fig. 7G-I). Reduced ramification in sham-vaccinated mice is consistent with higher CD68 

expression and implies elevated age-related microglial activation in these mice. To confirm 

this, we also assessed levels of Clec7a, a marker recently reported to be upregulated in Aβ 
plaque-associated reactive microglia (Keren-Shaul et al., 2017). Clec7a expression intensity 

was reduced in vaccinated Ts65Dn and WT mice (0.14 ± 0.02 and 0.16 ± 0.01 respectively, 

Fig. 7J-L) compared to sham-vaccinated Ts65Dn and WT mice (0.22 ± 0.02 and 0.27 ± 

0.02, P < 0.05, P < 0.01, respectively, Fig. 7J-L). Finally, expression level of P2RY12, 

a marker of homeostatic microglia, were assessed, as this marker severely downregulated 

in reactive microglia found in the brains of AD mouse models (Keren-Shaul et al., 2017; 

Moore et al., 2015). While no difference was noted in the number of P2RY12+ microglial 

cells between groups (P = 0.33, Fig. 7M, O and P), P2RY12 expression levels were lower 

in sham-vaccinated Ts65Dn mice, compared with vaccinated Ts65Dn mice (0.43 ± 0.009 

and 0.49 ± 0.01, respectively, P < 0.01 Fig. 7N-P). In contrast, no difference in P2RY12 

expression level was noted between sham and vaccinated WT mice (0.5 ± 0.01, 0.49 ± 0.01, 

respectively, P = 0.95, Fig. 7N-P). The concomitant up-regulation of the reactive markers 

CD68 and Clec7a and the down regulation of P2RY12, along with reduced ramification in 

sham-treated Ts65Dn mice suggests that the AβCore-S vaccine reduces microglial activation 

and promotes microglial homeostasis in the brain parenchyma.

3.8. Vaccination with AβCore-S reduces S100β+ and C3+ astrocytes reactivity in the 
cortex and hippocampus of Ts65Dn mice

Astrocytes and microglial reactivity, both contribute to the pathogenesis of AD (Garwood 

et al., 2017; Guenette, 2003; Liddelow et al., 2017; Rodriguez-Arellano et al., 2016; 

Verkhratsky et al., 2010) and DS (Chen et al., 2014; Lockrow et al., 2012; Lu et al., 

2011; Sebastia et al., 2004). Astrocytes are involved in Aβ clearance and promote tissue 

homeostasis (Garwood et al., 2017; Guenette, 2003; Liddelow et al., 2017; Sollvander 

et al., 2016; Wyss-Coray et al., 2003). However, oligomeric Aβ induces the secretion of 

inflammatory molecules from astrocytes, such as IL-1β, iNOS and in turn, overproduction 

of NO (White et al., 2005). Individuals with DS, exhibit chronic inflammation with 

increased astrocytic activation, expressed as elevation in S100β and GFAP expression, also 

found in Ts65Dn mice (Lockrow et al., 2012; Lu et al., 2011), coupled with IL-1β and 

TNF-α cytokine release (Lockrow et al., 2012). S100β overexpression correlates with the 

pattern of regional neuropathology and neuritic plaques in AD (Hu et al., 1996; Lu et 

al., 2011). Importantly, the S100B gene is located on the triplicated Hsa21, and thus are 

being overexpressed in DS individuals. However, it is not triplicated in the Ts65Dn model. 

Additionally, a recent study has shown that neurodegeneration-related reactive astrocytes 

(A1 phenotype), upregulate the expression of complement component 3 (C3) (Liddelow 

et al., 2017). To examine the effect of the AβCore-S vaccine on astrocytic phenotype in 

Ts65Dn mice, we conducted stereological analysis of GFAP+, S100β+ and C3+ cells in the 

cortex and the hippocampus. The number of GFAP+ cells in the hippocampus did not differ 

between vaccinated and sham-treated Ts65Dn mice (3.59 ± 0.26 and 3.98 ± 0.23 cells/100 

μm2, respectively, P = 0.68, Fig. 8A) and resembled the number of cells found in vaccinated 
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and sham-treated WT mice (3.77 ± 0.24 and 3.82 ± 0.26 cells/100 μm2, respectively, P 

= 0.74, Fig. 8A). However, hippocampal GFAP intensity levels was higher in vaccinated 

and sham-treated Ts65Dn mice (0.43 ± 0.01 and 0.44 ± 0.01, respectively, Fig. 8B, C) 

compared with vaccinated and sham-treated WT mice (0.12 ± 0.0043 and 0.16 ± 0.0067, 

respectively, P < 0.0001, Fig. 8B, C). Consistently with previous report (Chen et al., 2014), 

this finding suggests that while astrocytes in Ts65Dn mice are more activated than their WT 

counterparts, the vaccination did not altered the basal GFAP expression in both strains.

Quantifying S100β+ cells, we found higher number of S100β+ cells in the hippocampus 

of vaccinated and sham-treated Ts65Dn mice (4.96 ± 0.23 and 4.98 ± 0.21 cells/100 μm2, 

respectively, Fig. 8D) compared with vaccinated and sham-treated WT mice (2.9 ± 0.23 

and 3.59 ± 0.22 cells/100 μm2, P < 0.001). This result suggests the astrogliosis is taking 

place in Ts65Dn hippocampi. Surprisingly, vaccinating Ts65Dn mice significantly reduced 

S100β expression compared with sham-treated Ts65Dn mice (0.24 ± 0.01 and 0.63 ± 0.02 

a.u, respectively, P < 0.0001, Fig. 8E, F). Overexpression of S100β, previously reported in 

this strain (Lu et al., 2011), as well as in DS individuals (Griffin et al., 1989; Hu et al., 

1996), is thought to promote tissue damage via inflammation. A reduction of this marker in 

vaccinated mice is therefore an evidence of tissue homeostasis.

Similar effects were observed in the cortex, as vaccinated and sham-treated Ts65Dn 

exhibited increased numbers of S100β+ cells (4.69 ± 0.27 and 4.55 ± 0.28 cells/100 μm2, 

respectively, Fig. 8G) compared with vaccinated but not sham-treated WT mice (3.48 ± 

0.22 and 3.92 ± 0.24, P < 0.05, P = 0.23, respectively, Fig. 8G). Sham-treated Ts65Dn 

mice exhibited higher S100β intensity in the cortex compared with vaccinated Ts65Sn mice 

(0.66 ± 0.02 and 0.54 ± 0.02, respectively, P < 0.001 Fig. 8H, I) and healthy controls. 

Additionally, vaccinated Ts65Dn mice exhibited similar S100β intensity as vaccinated and 

sham-treated controls (0.54 ± 0.02 and 0.53 ± 0.01, 0.49 ± 0.01, P = 0.67, Fig. 8H, I).

We next examined the expression of complement component 3 (C3), a marker recently 

reported to be expressed on A1-neurodegeneration-related reactive astrocytes. Sham-treated 

Ts65Dn mice exhibit a higher number of C3+ astrocytes within the GFAP+ astrocytes 

population in the hippocampus, compared with vaccinated Ts65Dn mice (0.9 ± 0.1 and 

0.81 ± 0.02, respectively, P < 0.05, Fig. 8J), and healthy controls (0.8 ± 0.02 and 0.76 ± 

0.02, respectively, P < 0.01, Fig. 8J). Importantly, elevated fraction of C3 expressing cells 

was accompanied by higher C3 expression in sham-treated Ts65Dn mice compared with 

vaccinated mice (0.34 ± 0.02 and 0.17 ± 0.01 a.u., respectively, P < 0.0001 Fig. 8K, L), and 

WT controls (0.15 ± 0.01 and 0.11 ± 0.01 a.u., respectively, P < 0.0001 Fig. 8K, L).

These results suggest that while not affecting the number of GFAP+ or S100β+ 

astrocytes, the AβCore-S vaccine reduced the expression levels of both S100β+ and C3+ 

neurodegeneration-related reactive astrocytes.

4. Discussion

In the current study, Ts65Dn mouse model of human Down syndrome were immunized 

against murine Aβ1–11 and assessed whether it exerts a beneficial effect on various aspects 
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of cognition, i.e. exploratory behavior, anxiety, long-term spatial memory and short-term 

memory. Additionally, we investigated the therapeutic effects of the AβCore-S vaccine 

in reducing neuropathological hallmarks of Alzheimer’s disease, which contributes to the 

pathogenesis of Down syndrome. Among these, are elevation in cerebral soluble-Aβ levels, 

accumulation of insoluble Aβ, tauopathy, microglial and astroglial activation.

The Ts65Dn strain provides a powerful tool in modeling the detrimental effect of Aβ 
overexpression found in human DS patients. This is due to the context in which Aβ 
being overexpressed and accumulated. First, the chromosomal abnormality originates in 

the early stages of embryonic development leading to elevated levels of APP and Aβ in 

the brain throughout life, rather than in late stages as found in AD. In addition, APP is 

overexpressed in the Ts65Dn model along with a milieu of Hsa21-located genes, providing 

a unique transcriptome and proteome in which insoluble Aβ accumulation initiates in early 

adulthood. In contrast to most AD mouse models, Ts65Dn mice encompass overexpression 

of the endogenous murine APP rather than an exogenous human Aβ.

Ts65Dn mice exhibit a complex behavioral phenotype which affects the assessment of 

their cognitive behavior. Indeed, the observed hyperactivity affected performance of the 

mice in the Barnes maze task. Hyper-movement can interfere with spatial learning, as the 

animal predominantly adopts cognitive but non-spatial strategies such as random search. 

This phenotype, however, is markedly different from the impairment of Ts65Dn mice in 

water-based tasks.

Ts65Dn mice perform normally in open environments, as they spend normal fractions 

of time in the center and periphery of the open field arena, suggesting their exploratory 

behavior is intact. However, we found an age-consistent elevation in exploring the 

anxiogenic zones of the elevated zero maze, evidencing higher anxiety threshold in these 

mice. This finding can directly influence their performance in the Barnes maze, in which 

the animal is motivated to find a hiding chamber by being exposed to a moderate-stressful 

environment.

Latency to reach the target hole in the Barnes maze was similar in Ts65Dn and WT mice 

at baseline measurement as well as post-immunization at 9 m of age, suggesting absence of 

anxiety interference or abnormality in motivation. Accordingly, walking speed of Ts65Dn 

mice was consistently higher and their path efficiency was lower than of WT. To address 

this dissonance, we tested mice in the probe test and in a following reversal task. These 

paradigms demand higher cognitive resources, thus most of the treatment effects emerged 

within these tests. Second, a deeper understanding of the animals’ cognitive state can 

be obtained by analyzing their searching strategy more carefully. To do so, we applied 

the BUNS classifier, providing us with further insights regarding their performance in 

the Barnes maze. Overall, the BUNS results indicate that the equal latencies we found 

earlier did not reflect similar learning capacities of Ts65Dn and WT mice, but rather a 

compensation strategy utilized by Ts65Dn mice. That is, these mice used lower spatial 

strategies (i.e. serial search) to enhance their chance of finding the target in the unlearned 

environment.
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The AβCoreS vaccine, induces the expression of an Aβ1–11 peptide fused to the Hepatitis

B surface antigen (HBsAg) (Olkhanud et al., 2012). The construct also contains the 

Hepatitis-B capsid antigen (HBcAg) to provide a T helper response that promotes antibody 

production by B-lymphocytes. DNA vaccines allow controlling antigen-encoding genes 

by strong mammalian promoters on the plasmid backbone (Khan, 2013). They induce 

antigen presentation in the context of both major histocompatibility complex-1 (MHC-I) 

and MHC-2, produce a wider range of immune responses and a long-term persistent of 

immunogenicity, in comparison with conventional protein-based compounds. Additionally, 

DNA vaccine are inexpensive, more stable, safer and easy to use (Khan, 2013).

Unlike most familial AD mouse models, Ts65Dn do not develop plaque pathology, but 

rather overexpress soluble oligomers or small inclusion of insoluble proteins in β-sheet 

conformation (Lomoio et al., 2009). Importantly, we showed that AβCore-S-induced 

antibodies can bind Aβ neurotoxic oligomers. Immunization with AβCore-S resulted in 

a transient, high-titer elevation of serum anti-Aβ IgG and IgM. Antibodies were detectable 

up to 6 m after vaccination. Importantly, we found that vaccinated WT mice produced 

higher level of IgG than Ts65Dn, that also decayed over a longer period. In opposite, we 

found that Ts65Dn mice produced higher levels of IgM than vaccinated control. Lower 

levels and faster declining of IgG levels together with higher presence of IgM in Ts65Dn 

mice, may reflect an immune deficiency in antibody production, specifically in class switch 

mechanism, however this hypothesis need to be further examined. Importantly, we found 

age-dependent elevation of naturally occurring IgM antibodies (Dodel et al., 2011) in all 

experimental groups, in a treatment-independent manner. The Aβ-CoreS vaccine targets 

the endogenous murine Aβ peptide, which is being expressed by WT as well as Ts65Dn 

mice, and is likely to accumulate with age. Such age-dependent elevation might explain the 

production of natural autoantibody.

While both Ts65Dn and WT mice produced equivalent levels of anti-Aβ specific IgG1, 

IgG2a and IgG2b isotypes, WT mice also exhibited increased IgG3 levels. Importantly, 

IgG1, IgG2b and IgG3 facilitate FcγRn cascade and IgG2b also facilitates FcγRIV cascade.

Interestingly, a different pattern was found for anti-HBsAg antibody production. HBsAg, 

which serves to prime the immune response, elicited a longer response across all 

experimental groups, presumably due to its larger antigen and higher immunogenicity 

compared with endogenous murine Aβ. Importantly, HBsAg-specific IgG and IgM levels 

did not differ drastically between WT and Ts65Dn, compared with specific anti-Aβ 
antibodies, suggesting the differential immune response might be associated with different 

Aβ levels found in WT and Ts65Dn mice, rather than a deficiency in class switch 

mechanism.

We found that vaccinating Ts65Dn mice with the Aβ-CoreS vaccine rescues specific 

aspects of behavior and cognition, previously reported to be impaired in these mice. 

Short-term memory, dramatically impaired in Ts65Dn mice, was spared post immunization, 

as vaccinated Ts65Dn mice performed similarly to WT controls in the T-maze and Novel

object recognition tasks. Sham-treated Ts65Dn mice showed a lower alternation rate in 

the T-maze, reflecting reduced short-term memory capacity to encode their last choice. 
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Supporting this finding, sham-treated mice also showed no preference for the novel object in 

the novel object recognition test. In contrast, immunized Ts65Dn mice performed similarly 

to healthy controls.

Spatial long-term memory deficit was also improved post-immunization, as sham-treated 

mice exhibited higher reference and working memory errors and a vast usage of non-spatial 

searching strategies in the Barnes maze. Vaccinated Ts65Dn mice navigated the environment 

more efficiently than sham-treated mice, resulting in a stronger memory formation of the 

target location. This is reflected in a Gaussian-like distribution of hole entries in the probe 

test of the Barnes maze, centered around the target hole. By comparison, sham-treated 

mice visit the Barnes maze holes in a uniform manner, reflecting a deficit in hippocampus

dependent long-term memory formation at 9 m of age. Interestingly, this is an age-dependent 

effect, as naïve 3 m-old Ts65Dn mice exhibit no such deficit. Finally, we found that motor 

hyperactivity, characterizing Ts65Dn mice, was reduced after immunization.

In association with these behavioral and cognitive effects, we found higher clearance 

of serum and cerebral Aβ levels, lower hyperphosphorylation of tau protein, reduced 

neurodegeneration and lower inflammatory phenotype presented by microglial and astroglial 

cells. Soluble Aβ species, reflecting extracellular oligomers, were reduced in vaccinated 

Ts65Dn mice to similar levels found in WT mice. Previous reports, suggested that 

large extracellular aggregates are not essential for neurodegeneration-induced cognitive 

decline, but rather small Aβ neurotoxic oligomers are held responsible (Gandy et al., 

2010; Petersen et al., 2013; Sengupta et al., 2016). Indeed, the Ts65Dn mice lack plaque 

pathology, but exhibit elevated levels of soluble Aβ and small insoluble inclusions. The 

main histological characteristic of Aβ in Ts65Dn mice is diffused expression, probably 

representing the soluble fraction of Aβ, along with small-sized ThioflavinS+-reactive foci, 

reflecting extracellular inclusions. In association with Aβ clearance, a reduction in disease

related cortical neurodegeneration was also evident in vaccinated Ts65Dn mice. Targeting 

inflammatory activity by Minocycline administration inhibits microglia activation, prevents 

neuronal loss and improves working and reference memory in Ts65Dn mice (Hunter et al., 

2004). Since vaccination-induced Aβ clearance dampens inflammatory markers in microglia 

and astrocytes, this is a potential pathway that contributes to neuronal survival in vaccinated 

Ts65Dn mice. Moreover, targeting oxidative stress by antioxidants such as vitamin E, 

also increases cell density in the DG and reduces cholinergic pathology found in this 

strain (Lockrow et al., 2009). As the AβCore-S vaccine targets oligomeric Aβ species that 

promotes oxidative stress, this is also a possible pathway by which neuronal protection was 

obtained.

It is well established that the pathogenesis of AD, as well as of other neurodegenerative 

diseases, is tightly associated with microglial phenotype (Colonna and Butovsky, 2017; Jay 

et al., 2015; Keren-Shaul et al., 2017; Yin et al., 2017). Phagocytosis of Aβ-deposits is 

largely done by reactive microglial cells, in a process that is facilitated by antigen–antibody 

binding. On the other hand, hyper-activation of these cells may promote inflammatory 

environment in the brain parenchyma by secretion of pro-inflammatory cytokines, loss of 

homeostatic functions, recruitment of monocyte-derived macrophages and infiltration of 

cytotoxic T lymphocytes, all leading towards neurodegeneration.
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Our results indicate that transient vaccination against Aβ in Ts65Dn mice facilitates 

Aβ clearance, reduces microgliosis in the hippocampus, and helps restore microglial 

homeostatic features. That is, reduction of microglial hyperactivation, enhanced branching 

of microglia cells, and elevation of homeostatic markers. It is important to note that since 

the Ts65Dn strain lacks the presence of large Aβ plaques, which characterize AD models, 

the microglial phenotype in this strain does not resemble other AD mouse models. First, 

the morphology of microglia in Ts65Dn mice is characterized by small-soma with ramified 

processes, rather than amoeboid, as can be seen in fully activated microglia (Caldeira et 

al., 2014). Second, we did not identify strain-related microgliosis or overexpression of 

pathologic markers, but rather a treatment-related alteration in cell number and ramification. 

Importantly, we did find strain and treatment-related restoration of microglial homeostatic 

phenotype in treated Ts65Dn mice. Despite the differences in Aβ pathology and microglial 

phenotype, vaccinating 3xtg-AD mice, a plaque-expressing mouse model of AD, against 

Aβ yielded a reduction in amyloidic load, along with a reduced astrogliosis and microglial 

activation (Movsesyan et al., 2008). This effect might be related to lower amounts of 

oligomeric Aβ post immunization, as in the case of vaccinated Ts65Dn mice. Due to 

the differences in Aβ pathology in DS, deeper understanding of microglial alterations 

post immunization in Ts65Dn mice, require a comprehensive transcriptomic analysis. The 

observation that the same vaccine against Aβ1–11 can reduce the levels of Aβ in both an 

AD model which exhibits plaques formation, as well as a DS model which exhibits diffused 

Aβ expression, is important with respect to its efficacy in different preclinical AD and DS 

models, as well as in clinical manifestations of Aβ-related pathology.

Glial cells change their morphology and phenotype during normal aging to partially 

resemble reactive disease-associated microglial and astroglial cells (Boisvert et al., 2018; 

Krasemann et al., 2017; Spittau, 2017). Such alterations, coupled with age-induced 

neuroinflammation, create an environment which is permissive to synapse elimination and 

neuronal damage (Boisvert et al., 2018; von Bernhardi et al., 2015). Thus, vaccination 

with the AβCore-S construct reversed age-related microgliosis by upregulating homeostatic 

markers in microglia in both WT and Ts65Dn mice.

Reactive astrocytes, a characteristic of both AD and DS, exhibit higher levels of reactive 

oxygen species (ROS) and lower levels of synaptogenesis-related molecules (Chen et al., 

2014). Conditionedmedia from DS-derived astrocytes confers toxicity to neurons and fails to 

promote neuronal ion channel maturation and synapse formation. Moreover, A1 astrocytes 

in DS lose the ability to promote neuronal growth, neuronal survival and synapse formation, 

failing to maintain tissue homeostasis (Liddelow et al., 2017). Also, reactive microglia 

induce A1-reactive astrocytes that secrete neurotoxins and complement components, 

promoting synapses degeneration (Liddelow et al., 2017). Levels of S100β are augmented 

in astrogliosis, and several reports have associated increased levels of S100β with the 

pathophysiology of degenerative and infectious/inflammatory brain disorders (Donato, 2001; 

Heizmann et al., 2002; Mrak and Griffin, 2001, 2004; Van Eldik and Wainwright, 2003). 

Since the human S100B gene maps to Hsa21 and is triplicated in DS (Chen et al., 2014), 

S100β is overexpressed in these patients. It has been found that S100β levels in severely 

affected brain regions of AD patients are higher than in age-matched control samples 

(Donato, 2001; Heizmann et al., 2002; Mrak and Griffin, 2001). Notably, the S100B gene 
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is not triplicated in the Ts65Dn strain, but nevertheless exhibits higher expression in these 

mice possibly due to increased astrogliosis and disease-related reactivity. Astrocytes release 

S100β constitutively (Shashoua et al., 1984), and S100β release is augmented upon exposure 

of astrocytes to serotonin agonists (Whitaker-Azmitia et al., 1990), glutamate (Ciccarelli 

et al., 1999) or tumor necrosis factor-α (Edwards and Robinson, 2006). Once released, 

S100β can affect neurons, astrocytes, and microglia with different effects, depending on its 

concentration via engagement of the receptor for advanced glycation end products in large 

part (Donato, 2007).

We identified a reduction in the reactivity of S100β+ astrocytes in both the hippocampus and 

cortex of vaccinated Ts65Dn mice, consistent with reduced microglial activation in these 

mice. Both these observations provide evidence for the homeostatic effect of the AβCoreS 

vaccine.

In the adult normal brain, astrocytes exhibit a stellate morphology and show a slow rate of 

renewal (Farina et al., 2007; Skaper, 2007; Williams et al., 2007). However, in case of a 

brain insult, astrocytes rapidly retract their cytoplasmic processes, proliferate, and migrate 

to the site(s) of damage, giving rise to reactive gliosis (Farina et al., 2007; Skaper, 2007; 

Williams et al., 2007). These changes are largely dependent on alteration of the blood–brain 

barrier and are mediated by serum factors and locally released cytokines.

An increasing body of evidence suggests that S100β might have a role during neurogenesis, 

participating in astrocyte maturation (Raponi et al., 2007), and in migration of granule cell 

precursors (Hachem et al., 2007). Indeed, neurogenesis is severely compromised in DS from 

early developmental stage, featuring impaired neuronal precursor proliferation, slowing of 

cell cycle and altered differentiation (Rueda et al., 2012). Ts65Dn mice exhibit reduced 

neural precursor proliferation in the sub-ventricular zone (SVZ) (Ishihara et al., 2010; Rueda 

et al., 2012) and extended cell cycle in the CA3 at embryonic stages (Chakrabarti et al., 

2007) and in the DG at early postnatal life (Contestabile et al., 2007). Additionally, cell 

proliferation is reduced in the SVZ of Ts65Dn mice from birth to adulthood (Bianchi et al., 

2010a; Bianchi et al., 2010b; Trazzi et al., 2011). Finally, we found increased expression 

of complement 3 (C3) among astrocytes from sham-treated Ts65Dn mice. C3 is one of 

the most characteristic and highly upregulated genes in A1 astrocytes and is not expressed 

by ischemic A2 reactive astrocytes. Among human AD patients, 60% of GFAP-positive 

astrocytes are also positive for C3 (Liddelow et al., 2017), and therefore these cells probably 

play an integral role in disease initiation and progression. In MS, C3 astrocyte were found 

near demyelination lesions, and in close proximity with CD86-reactive microglia (Liddelow 

et al., 2017).

As a result of life-long overexpression of the APP and DYRK1a genes, DS individuals 

suffer from AD-related dementia in the vast majority of the cases over 40y. Therefore, 

targeting AD-related pathology, using the AβCore-S vaccine has the potential to slow the 

disease progression and the emergence of AD-related dementia. Indeed, age-dependent 

spatial-learning deficiency was alleviated in vaccinated Ts65Dn mice, as their performance 

in the Barnes maze imply a better hippocampal-dependent coding of the environment. 

Interestingly, we found age-related elevation in serum Aβ1–40 and Aβ1–42 among sham
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treated Ts65Dn mice. This effect was moderated in vaccinated Ts65Dn mice. Thus, 

targeting Aβ throughout life resulted in reduced levels at 15 m of age. As the phenotype 

of microglial cells changes during life (Krasemann et al., 2017), we also found treatment

related effects of the AβCore-S vaccine on specific microglial markers and morphology. 

Levels of reactive markers, CD68 and Clec7a, were lower in vaccinated mice, and levels 

of homeostatic markers, 4D4 and P2RY12 were higher, compared with sham-treated mice. 

Additionally, reduced C3 expression by GFAP-positive astrocyte in the hippocampus of 

vaccinated Ts65Dn mice provides an evidence for therapeutic effect of the AβCore-S 

vaccine in reducing cellular reactivity and promoting restoration of homeostasis in the brain 

parenchyma.

5. Conclusions

In this study, we found that AD-related neuropathology and cognitive impairments found 

in the Ts65Dn mouse model of DS, can be ameliorated by a transient vaccination with the 

1–11 fragment of murine Aβ. Since the origin and manifestation of AD-like neuropathology 

found in DS are largely different from sporadic and familial AD, especially in the onset of 

Aβ accumulation, we believe that DS individuals may benefit from active immunotherapy 

against Aβ from a young age.
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Fig. 1. 
Vaccination with AβCore-S DNA vaccine at 6 months induces anti-Aβ IgM and IgG 

production in Ts65Dn and WT mice with high affinity to oligomers of murine Aβ. (A) 

Ts65Dn and WT mice were vaccinated at the age of 6 m with either AβCore-S or sham 

treatment for three times in a 14d interval. Total IgG, IgM and IgA titers as well as IgG 

subclasses were assessed every 3 months using indirect ELISA. (B) Antibodies found in the 

sera of AβCore-S-vaccinated mice effectively bind various Aβ42 oligomers (63,100,121.5–

126 kDa), as assessed in western blot, compared to naïve serum (C) Total anti-Aβ IgG 

antibodies were significantly increased after immunization in both Ts65Dn (P < 0.0001) and 

WT (P < 0.0001) compared to baseline. Antibody levels remained high in the age of 12 m 

in Ts65Dn mice (P < 0.05) and 15 m (P < 0.001) in WT mice (D) Vaccinated Ts65Dn mice 

produce a higher IgM titer compare with their base line as well as with vaccinated WT mice. 

IgM levels remain high in this group until the age of 15 m. However, an age-dependent 

elevation in IgM levels was observed in both control groups. (E) IgG subclasses and IgA 

levels over time in vaccinated WT mice. IgG1 (P < 0.0001), IgG2b (P < 0.0001) and IgG3 

(P < 0.001) were higher immediately after immunization and decreased to baseline by 9 

m (F) IgG subclasses and IgA levels over time in vaccinated Ts65Dn mice. IgG1 (P < 

0.0001) and IgG2b (P < 0.001) were higher immediately after immunization and decreased 

to baseline by 9 m (G) Anti-HBsAg IgG antibody levels increased in all groups immediately 

after immunization (P < 0.0001) and remained at high concentration until the age of 12 m 

for both Ts65Dn groups (P < 0.01) and 15 m for the WT/C, WT/V groups (P < 0.001, P < 

0.05, respectively) (H) Anti-HBsAg IgM antibody levels increased in all groups immediately 

after immunization (P < 0.0001) and remained at high concentration until the age of 12 m 

for both transgenic groups (P < 0.01) and WT/C, WT/V groups (P < 0.0001, P < 0.001, 
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respectively). Repeated-measures two-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, 

****P < 0.0001.
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Fig. 2. 
Vaccinated Ts65Dn mice obtain better results at the probe test of Barnes maze at 9 m of 

age. (A) Spatial learning capacity was assessed after immunization at 9 m of age using 

the Barnes maze. In the spatial acquisition phase (B) no difference was found for latency 

to reach the target between vaccinated, sham-vaccinated Ts65Dn mice and WT groups (P 

= 0.2). However, (C) sham treated Ts65Dn mice exhibit higher RM errors compared with 

sham-vaccinated WT mice (P < 0.01). (D) Ts65Dn mice from both groups showed a higher 

number of WM errors compared with WT mice (P < 0.05, P < 0.01, P < 0.001). (E) The 

fraction of target entries out of total hole-entries was lower for the sham-vaccinated Ts65Dn 

mice compared with all other groups (P < 0.05). (F) Distribution of hole-entries in the probe 

test of Barnes maze was closer to uniform in the sham-vaccinated Ts65Dn mice compared 

to all other groups, resulted in a lower Δ entropy (uniform – empirical distributions, P < 

0.05). Repeated-measures two-way ANOVA, One-way ANOVA, Two-sample Kolmogorov

Smirnov test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 3. 
Immunization of Ts65Dn mice with AβCore-S rescues short-term memory. (A) Short-term 

memory was assessed at 9 m of age using the spontaneous-alternation T-maze and the 

Novel object recognition test. (B) Vaccinated Ts65Dn mice exhibit a higher alternation 

rate at the T-maze compared with sham-vaccinated Ts65Dn mice and at a similar level to 

both WT groups (P < 0.01). (C) Vaccinated Ts65Dn mice showed clear preferences to the 

novel object as indicated by cumulative discrimination index, compared to sham-vaccinated 

Ts65Dn mice and in a similar manner to both WT groups (P < 0.01). Chi-squared test for 

independence, Repeated-measures Two-way ANOVA, **P < 0.01.
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Fig. 4. 
Vaccination with AβCore-S reduces serum Aβ40, Aβ42 levels and alleviate amyloidic 

burden in the cerebral cortex of 15 m-old Ts65Dn mice. (A) Serum levels of Aβ40, 

Aβ42 was assessed every 3 months using sELISA. Amyloidic burden was assessed using 

Thioflavin-S stain at 15 m of age. (B) Reduced Aβ40 levels in the sera of vaccinated 

Ts65Dn mice, after immunization and at 15 m of age compared with sham-vaccinated 

Ts65Dn mice (P < 0.05). (C) Reduced Aβ42 levels in the sera of vaccinated Ts65Dn mice, 

after immunization and at 15 m of age compared with sham-vaccinated Ts65Dn mice (P 

< 0.05). (D) Vaccinating Ts65Dn mice with AβCore-S resulted in a reduction in ThioS+ 

markers in their cerebral cortex at 15 m of age, compared with sham-vaccinated Ts65Dn 

mice (P < 0.05). Sham-vaccinated Ts65Dn mice presented a higher number of ThioS+ 

markers compared with WT mice in the cerebral cortex (P < 0.001) and hippocampus (P 

< 0.05). (E) Thioflavin-S stain of the cortex and hippocampus. Two-way ANOVA, Repeated

measures Two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 5. 
Vaccinated Ts65Dn mice exhibit lower levels of cerebral, soluble and insoluble Aβ40/42 

and S396-P-tau at 15 m of age. Tissue levels of S396-P-tau protein, soluble and insoluble 

Aβ40 and Aβ42 were measured quantitatively using sELISA (A-D, G) and IHC (E-F). (A) 

Cortical levels of soluble Aβ40 were higher in sham-vaccinated Ts65Dn mice compared 

with both WT mice (P < 0.05). (B) Cortical and hippocampal levels of soluble Aβ42 were 

higher in sham-vaccinated Ts65Dn mice compared with both WT mice (P < 0.05). (C) 

Cortical and hippocampal levels of insoluble Aβ40, were higher in sham-vaccinated Ts65Dn 

mice compared with vaccinated Ts65Dn and WT mice (P < 0.001, P < 0.01, respectively). 

(D) Cortical and hippocampal levels of insoluble Aβ42 were higher in sham-vaccinated 

Ts65Dn mice compared with vaccinated Ts65Dn and WT mice (P < 0.001, P < 0.01, 

respectively). (E) IHC analysis for Aβ40 reveals higher levels in the cortex and hippocampus 

of sham-vaccinated Ts65Dn mice compared with vaccinated Ts65Dn and WT mice (P < 

0.01, upper-left and bottom panels), with high positive correlation between measurements 

in the cortex and hippocampus (Pearson’s r = 0.7, P < 0.05, upper-right panel). (F) IHC 

analysis for Aβ42 reveals higher levels in the cortex and hippocampus of sham-vaccinated 

Ts65Dn mice compared with vaccinated Ts65Dn and WT mice (P < 0.05 for the cortex 

and P < 0.01 for the hippocampus, upper-left and bottom panels), with medium positive 

correlation between measurements in the cortex and hippocampus (Pearson’s r = 0.55, 

P < 0.05, upper-right panel). (G) Hippocampal levels of S396-P-tau protein were higher 

in sham-vaccinated Ts65Dn mice compared with sham-vaccinated WT mice (P < 0.05), 

Repeated-measures Two-way ANOVA, Pearson’s correlation coefficient, *P < 0.05, **P < 

0.01, ***P < 0.001.
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Fig. 6. 
Vaccination with AβCore-S reduces cortical neurodegeneration in 15 m-old Ts65Dn mice. 

Effects on neurodegeneration were assessed by measuring cortical thickness, dentate gyrus 

surface area and cortical neuronal density. (A) Ts65Dn exhibited reduced cortical thickness, 

regardless of treatment (P < 0.05), however (B) the surface area of the dentated gyrus 

did not differ from WT mice (P = 0.41). Importantly, (C, D) NeuN+ cell density in 

the cortex of sham-treated Ts65Dn mice was lower than measured in WT mice (P < 

0.001), whereas vaccinated Ts65Dn mice resembled healthy controls (P = 0.063). Two-way 

ANOVA, Repeated-measures Two-way ANOVA, *P < 0.05, ***P < 0.001.
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Fig. 7. 
Vaccination with AβCore-S alters microglia protein expression profile and promotes 

homeostatic microglial phenotype. Microglial protein expression phenotype was conducted 

by IHC targeting pan (Iba1, 4D4), reactive (CD68, Clec7a) and homeostatic (P2RY12) 

microglia at 15 m of age. (A) Iba1+ cell count, showing gliosis in the hippocampi sham

vaccinated Ts65Dn mice compared with vaccinated WT mice, (B) higher number of Iba1+/

CD68+ cells in the hippocampi of sham-treated Ts65Dn and WT mice compared with both 

vaccinated transgenic and WT mice, (C) CD68 fluorescent signal is higher in sham-treated 

Ts65Dn and WT mice, compared with vaccinated mice of both strains (D, E) Exemplars of 

Iba1/CD68 IHC representing higher CD68 expression in sham-treated mice, magnification 

of ×63, ×40 respectively. (F) Expression of 4D4 is elevated in vaccinated Ts65Dn and 

WT mice, compared with sham-treated mice. (G) Number of branches/cell is higher in 

vaccinated Ts65Dn and WT mice compared with sham-treated mice. (H, I) Exemplars 

of 4D4 IHC representing higher 4D4 expression in vaccinated mice compared with sham

treated mice, magnification of ×63, ×40 respectively. (J) Expression of Clec7a on microglial 

cell is higher in sham-treated Ts65Dn and WT mice, compared with vaccinated mice (K, L) 

Exemplars of Clec7a IHC, magnification of ×63, ×40 respectively. (M) Number of P2RY12+ 

cells in the hippocampus does not change between vaccinated and sham-treated Ts65Dn and 

WT mice. (N) Sham-treated Ts65Dn mice exhibit lowered expression of the homeostatic 

marker P2RY12 in hippocampal microglial cell, compared with vaccinated Ts65Dn mice 

and healthy controls. (O, P) Exemplars of P2RY12 IHC representing lowered expression 

in sham-treated Ts65Dn mice, compared with all other groups, magnification of ×63, ×40 

respectively. Repeated-measures Two-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001, 

****P < 0.0001.
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Fig. 8. 
Vaccination with AβCore-S reduces S100β+ and C3-expressing astrocytes reactivity in 

Ts65Dn mice. GFAP+, S100β+ and C3-reactive astrocytes were measured using stereology 

at 15 m of age. (A) Hippocampal GFAP+ cell counts, showing no difference between 

Ts65Dn and WT mice. (B) GFAP intensity is higher in vaccinated and sham-treated Ts65Dn 

mice compared with healthy controls. (C) Representative attaining of GFAP+ cells showing 

higher expression levels in the hippocampus of Ts65Dn mice, compared with controls, 

magnification of ×63 (left panels), ×40 (right vertical panels) (D) Hippocampal S100β+ 

cells indicate astrogliosis in vaccinated and sham-treated Ts65Dn mice compared with WT 

controls. (E) Elevated hippocampal S100β intensity signal in sham-treated Ts65Dn mice 

compared with vaccinated Ts65Dn mice and healthy controls. (F) Representative images 

of S100β+ cells showing higher expression in the hippocampus of sham-treated Ts65Dn 

mice, compared with all other groups, magnification of ×63 (left panels), ×40 (right vertical 

panels) (G) Cortical S100β+ cells indicate astrogliosis in vaccinated and sham-treated 

Ts65Dn mice compared with vaccinated but not sham-treated WT mice (H) Elevated cortical 

S100β intensity in sham-treated Ts65Dn mice compared with vaccinated Ts65Dn mice and 

healthy controls (I) Representative images of S100β+ cells indicating higher expression in 

the cortex of sham-treated Ts65Dn mice, compared with all other groups, magnification of 

×63 (left panels), ×40 (right vertical panels). (J) Sham-treated Ts65Dn mice exhibited higher 

fraction of C3-expressing GFAP + hippocampal astrocytes compared with vaccinated (P < 

0.05) and healthy controls (P < 0.01). Additionally, (K) higher C3 signal intensity was found 

in these mice compared with all other groups (P < 0.001). (L) Exemplars of C3-expressing 

GFAP + hippocampal astrocytes. Repeated-measures Two-way ANOVA, *P < 0.05, **P < 

0.01, ***P < 0.001, ****P < 0.0001.
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