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Abstract
Breast cancer has been a worldwide burden of women’s health. Although concerns have been raised for early diagnosis and timely
treatment, the efforts are still needed for precision medicine and individualized treatment. Radiomics is a new technology with
immense potential to obtain mineable data to provide rich information about the diagnosis and prognosis of breast cancer. In our
study, we introduced the workflow and application of radiomics as well as its outlook and challenges based on published studies.
Radiomics has the potential ability to differentiate between malignant and benign breast lesions, predict axillary lymph node status,
molecular subtypes of breast cancer, tumor response to chemotherapy, and survival outcomes. Our study aimed to help clinicians
and radiologists to know the basic information of radiomics and encourage cooperation with scientists to mine data for better
application in clinical practice.
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Introduction

Breast cancer has been a worldwide burden of women’s

health, with an increasing trend in incidence in recent

decades.1 As the concerns of breast cancer have been raised

to improve primary and secondary prevention, 5-year survival

of breast cancer has increased steadily in most developed

countries.2 However, the efforts for early diagnosis and timely

treatment are still warranted to reduce mortality. The concept

of Breast Imaging Reporting and Data System has been pro-

posed and widely used for more clear and uniform communi-

cation of clinicians and radiologists based on radiographic

features to evaluate the classification and gradation of tumors.

This classification remains limitations, as it greatly depends

on the experience of radiologists. Patients with a suspected

breast lesion are suggested to take a biopsy to confirm the

tumor nature before the surgery. Although biopsy can provide

gold standard of suspicious breast lesions, it still has some

limitations. As it is invasive and could not reflect the
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heterogeneity of the whole tumor that may provide uncertain

information of lesions if the tumor size is too large.

Image technologies are the most direct and convenient tools

to reflect the size, morphology, and radiographic characteris-

tics of tumors that can be utilized to diagnosis, treatment, prog-

nosis assessment, and so on. New technologies based on

different imaging modalities have emerged for precision med-

icine and individualized treatment of patients with cancer.

Since 2012, the concept of “radiomics” was firstly proposed

by a Dutch researcher and interpreted as “the extraction of

numerous features from radiographic imaging by a high-

throughput approach.”3 Radiomics is a noninvasive imaging

technology and has immense potential to obtain mineable data

and evaluate whole tumor features of imaging.4,5 The informa-

tion hidden from the assessment of human eyes can be used to

build predictive models of clinical outcomes and provide a

noninvasive and complementary method for tumor genotype.

Radiomics has shown promise to be an imaging biomarker of

different tumors in clinical practice.

Ultrasound (US), mammography, and magnetic resonance

imaging (MRI) are the most common tools for breast examina-

tion in clinical practice. In our study, we only focused on the

role of MRI in the application of radiomics. The Pubmed, Web

of Science, and Embase were searched up to April 2019 by

using search strategies. We used Mesh terms (Medical subject

heading) “breast cancer” and “magnetic resonance imaging”

and “radiomics” or “texture analyses” or “quantitative ana-

lyses,” as well as adding free words in different combination

for avoiding the omission of the related literatures. In this

study, we aimed to provide a comprehensive review which

focused on basic information and the application of radiomics

for oncologists. In addition, we concluded the major character-

istics, such as study design, the number of patients, MRI mod-

ality, magnetic field, radiomics features, and outcomes to

provide information of the studies which evaluated various

clinical applications (Tables 1-5).

The Workflow of Radiomics

Images from US, computed tomography (CT), MRI, and posi-

tron emission tomography (PET) have been widely used for

radiomics analysis in scientific fields. Ultrasound and CT pro-

vide structural features of tumors, while PET and MRI provide

functional and molecular information. Computed tomography

was firstly applied in radiomics and then MRI was the second,

and these technologies were also the most common modalities

in radiomics.3,4 As the Quantitative Imaging Network guide-

lines were established by the National Cancer Institute in 2012,

the workflow of radiomics included: (1) image acquisition and

reconstruction, (2) lesion segmentation, (3) feature extraction,

and (4) data analysis.53

The first step of radiomics analysis is the assessment of high

quality and normalized images. Most data of published studies

were retrospectively extracted from hospital-based imaging

database. It is worth noting that images with different modalities,

protocols, and reconstructions from various hospital databases

may contribute to some differences in radiomics models.54 Then

the delineation of the lesion is conducted based on standard-of-

care images. The whole tumor is segmented by manual, semi-

manual, and automatic methods.53 The process of segmentation

should be accurate, reproducible, and reliable. Manual segmen-

tation by experienced radiologists is expected to be “gold

standard,” however, it is quite time-consuming and not applica-

ble in a large database.55 Automatic and semiautomatic methods

performed better when there are great differences between the

lesion and background, and both methods have been developed

to improve the accuracy in recent decades.56

Radiomics features extracted from images are divided into

shape, intensity, texture, gradient, wavelet features, and many

more. We introduced the most common features that applied in

study researches. Shape features are based on the reconstructed

3-dimensional images to assess the geometric characteristics.55

Parameters from these features include volume, the surface-to-

volume ratio, shape, and compactness which are regarded as

vital features to evaluate the characteristics of tumors.57 For

example, with the same volume, a speculated lesion has a

higher surface-to-volume ratio compared to a round one, which

is more probably to be malignant.57 Although shape can be

transformed into a quantitative feature, it is not a specific indi-

cator to distinguish the malignant lesions from benign ones.

First-order statistics are dependent on a single-pixel intensity

value rather than relationship between neighboring pixels.

Tumor intensity histogram-based features are known as the

first-order features which include mean, median, standard

deviation, kurtosis, skewness, energy, entropy, uniformity, and

variance.57 These features are used to predict the prognosis in

the machine learning framework. For example, kurtosis is a

measure of whether data are distributed normally. Invasive

tumors are composed of more heterogenous tissues that might

be reflected by pixel values.22 Texture-based features are

known as second-order statistics and used widely in radiomics

analysis to evaluate the intertumoral heterogeneity. It has the

ability to distinguish the pixels at different spacing and angles

at adjacent or nearest-neighbor pixels calculated by using spa-

tial gray-level dependence matrices.36 Considering spatial

relationships, texture features are divided into gray-level

co-occurrence matrix (GLCM),58 gray-level run length

matrix,59 gray-level size zone matrix,60 and the neighborhood

gray-level size zone matrix.61 Wavelet features are filter trans-

forms containing the intensity and textural information and

regarded as higher order statistic.62 It shows the spatial rela-

tionship among 3 or more pixels. For example, Gabor and

Fourier extract spatial or spatial-temporal features, while Co-

occurrence of Local Anisotropic Gradient Orientations extract

the image voxel an entropy value related to the co-occurrence

matrix of gradient orientations.63,56 Some of these features

extracted from region of interst (ROI) may be redundant for

a specific task, therefore selecting useful information by using

machine algorithms is important in radiomics analysis.

Machine learning algorithms include decision trees and ran-

dom forests, support vector machines, deep neural networks,

and so on.56 Then the selected features, with reproductive,
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informative, and nonredundant characteristics, are used to eval-

uate the associations with clinical outcomes.

The Application of Radiomics

Role of MRI

Magnetic resonance imaging of breast is widely applied in

screening in high risk women, staging, evaluating curative

effect, monitoring recurrence, especially providing comple-

mentary information for uncertain findings on mammography

and ultrasonography. In recent years, diffusion-weighted ima-

ging (DWI) and dynamic contrast-enhanced (DCE) have been

used to provide functional features of breast lesions to assess

precise diagnosis. Diffusion-weighted imaging, known as a

contrast-free protocol, has been shown promise in the diagnosis

of breast cancer.64 It can reflect tissue microenvironment and

membrane integrity through depicting the diffusivity of the

tissues.65 Changes of water diffusion in tissues are associated

with pathological processes that can be calculated as apparent

diffusion coefficient (ADC).66 Previous studies have investi-

gated that DWI hold potentials to improve the detection and

biological characterization of breast cancer.67-69 Based on

DWI, several advanced modelling approaches have been eval-

uated to characterize structural anisotropy (diffusion tensor

Table 1. Studies on Differentiating Between Malignant and Benign Breast Lesions.

First Author,

Year Study Design

Number of

Patients MRI Modality

Magnetic

Field Radiomics Features Outcomes

Bahreini

et al

(2010)6

Retrospective 60 DCE-MRI 1.5 T Contour signature, Fourier

descriptor, Fourier factor.

The first classifier achieved an AUC of 0.82, specificity of

60% at sensitivity of 81%. The second classifier achieved

an AUC of 0.90, specificity of 79% at sensitivity of 81%.

Bickelhaupt

et al

(2108)7

Retrospective 222 DWI-MRI 1. 5 T First order statistics, volume

features, shape features,

texture features.

The radiomics feature model reduced false-positive results

from 66 to 20 (specificity 70.0%) at the predefined

sensitivity of greater than 98.0% in the independent test

set, with BI-RADS 4a and 4b lesions benefiting from the

analysis (specificity 74.0%; 60.0%) and BI-RADS 5

lesions showing no added benefit.

Bickelhaupt

et al

(2017)8

Prospective 50 T2WI, DWI,

DWIBS

1.5 T First-order features, volume

features, shape features,

texture features.

Radiomic classifiers consisted of 11 parameters achieved

AUC of 84.2%/85.1%, compared to 77.4% for mean

ADC and 95.9%/95.9% for the experienced radiologist

using ceMRI/ueMRI.

Holli et al

(2010)9
Retrospective 20 DCE-MRI 1.5 T Texture features. All classification methods employed were able to

differentiate between cancer and healthy breast tissue and

also invasive lobular and ductal carcinoma with

classification accuracy varying between 80% and 100%.

Hu et al

(2018)10
Retrospective 88 DCE-MRI 3.0 T Tumor size, shape, first-order

statistics of descriptor

values and high-order

texture features.

The area under the ROC curve of the prediction model

comprising ADC radiomic features was 0.79 when the

cutoff value was 0.45, and the accuracy, sensitivity, and

specificity were 80.0%, 0.813, and 0.778.

Jiang et al

(2018)11
Retrospective 205 DCE-MRI,

DWI-MRI

1.5 T Texture and morphology

features.

By using 10-fold cross-validation scheme, combined

morphological and kinetic features achieved a diagnostic

average accuracy of 0.87.

Karahaliou

et al

(2010)12

Not

mentioned

82 DCE-MRI 1.5 T Texture features (GLCM). Selected texture features extracted from the signal

enhancement ratio map achieved an area under receiver

operating characteristic curve of 0.922 + 0.029, a

performance similar to postinitial enhancement map

features (0.906 + 0.032) and statistically significantly

higher than for initial enhancement map (0.767 + 0.053)

and first postcontrast frame (0.756 + 0.060) features.

Nie et al

(2008)13
Retrospective 71 T1-weighted

3D SPGR

(RF-FAST)

1.5 T Morphological parameters

and GLCM texture

features

The ACU was 0.86.

Whitney

et al

(2019)14

Retrospective 338 DCE-MRI 1.5 T/

3.0 T

Size, shape, morphology,

texture enhancement, and

kinetic curve assessment

and enhancement variance

kinetics

Their differences in AUC-ROC by biopsy condition failed

to reach statistical significance, but we were unable

to prove equivalence using a margin of

DAUC-ROC ¼ 0.10.

Gibbs and

Turnbull

(2003)15

Retrospective 79 DCE-MRI 1.5 T Texture features On combining features obtained using textural analysis with

lesion size, time to maximum enhancement, and patient

age, a diagnostic accuracy of Az ¼ 0.92 + 0.05 was

demonstrated.

Abbreviations: ADC, apparent diffusion coefficient; AUC, area under the curve; BI-RADS, Breast Imaging Reporting and Data System; ceMRI, contrast

enhanced magnetic resonance imaging; GLCM, gray-level co-occurrence matrix; MRI-DCE, dynamic contrast-enhanced; DWI, diffusion-weighted imaging;

DWIBS, DWI with background suppression; MRI, magnetic resonance imaging; ROC, receive operating characteristics; T2WI, T2-weighted image; ueMRI,

unenhanced magnetic resonanc imaging; 3D-SPGR (RF-FAST), 3-dimensional SPGR(RF-FAST).
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imaging [DTI]), microvascularity (intravoxel incoherent

motion [IVIM]), and microstructural complexity (diffusion

kurtosis imaging) for better diagnosis of breast cancer.66 Diffu-

sion kurtosis imaging extends standard DWI to assess aniso-

tropic details of water diffusion.70 Mean diffusivity and

fractional anisotropy are parameters of DTI to reflect the aver-

age anisotropy and the degree of anisotropy.71 Intravoxel inco-

herent motion aims to evaluate tissue diffusivity and tissue

microcapillary perfusion at once based on biexponential

model.72 The following parameters are commonly used: true

molecular diffusion (D or Dt), perfusion-elated diffusion

(D*, Dp, or Df), and perfusion fraction (f, fp, or fIVIM).73 Dif-

fusion kurtosis imaging quantifies non-Gaussianity of the water

displacement distribution66 and has a higher sensitivity and spe-

cificity in cancer detection than ADCs.65 DCE is a contrast-

enhanced protocol with excellent sensitivity for the detection

of breast cancer and provides functional information about

neoangiogenesis as a specific feature of tumor.74 The sensitiv-

ities of detecting invasive cancers by using DCE-MRI are more

than 90%, while the specificities range from 20% to 100%.75,76

In addition, the enhancement patterns of benign lesions were

overlapped with malignant lesions.77 By using conventional

imaging technologies, the diagnostic value is mostly depended

on experienced radiologists. Thus radiomics with high diagnos-

tic accuracy and applicable value deserves to be evaluated.

Compared to mammography and US, MRI plays an important

role in the diagnosis of breast cancer. First, MRI has a higher

resolution of soft tissues, which is more sensitive to detect

masses.78 Second, MRI can provide information about the anat-

omy of the bilateral breast, the relationship between the tumor

and surrounding tissue, and lymph node (LN) status. Third, dif-

ferent sequences of MRI could provide functional information of

tumors, such as blood flow and breast density, and find the

heterogeneity of tumor microenvironments. Fourth, due to

the technological limitation of mammography, MRI improves

the variations in breast symmetry and masking effect to detect

cancer in dense breasts. By using hand-held US, the image qual-

ity is mostly dependent on skilled and qualified doctors, while

MRI could provide more standard and comprehensive images.

Reliable Differentiation Between Malignant and Benign
Breast Lesions

Precise diagnosis for differentiating between malignant and

benign breast lesions is necessary for follow-up treatment

options. The treatment decisions make a little different, with

Table 2. Studies on Prediction of Axillary Lymph Node Metastasis.

First

Author,

Year Study Design

Number of

Patients

MRI

Modality

Magnetic

Field Radiomics Features Outcomes

Chai et al

(2019)16
Retrospective 120 DCE-MRI 3.0 T Morphological and texture features. The accuracy/AUC of the 4 sequences was 79%/0.87,

77%/0.85, 74%/0.79, and 79%/0.85 for the T1WI,

CE2, T2WI, and DWI, respectively. When CE2 was

augmented by adding kinetic features, the model

achieved the highest performance (accuracy ¼ 0.86

and AUC ¼ 0.91).

Cui et al

(2019)17
Retrospective 102 DCE-MRI 3.0 T Morphological, NGLDM, GLRLM,

GLCM, GLGCM, Tamura, and

grayscale histogram features.

The SVM classifier performed best, with the highest

accuracy of 89.54%, and obtained an AUC of

0.8615 for identifying the lymph node status.

Dong et al

(2018)18
Retrospective 146 T2FS, DWI 1.5 T Nontexture and texture parameter

features.

Model of T2-FS yielded the highest AUC of 0.847 in

the training set and 0.770 in the validation set.

Model of DWI reached the highest AUC of 0.847 in

the training set and 0.787 in the validation set.

Combination of T2-FS and DWI features yielded an

AUC of 0.863 in the training set and 0.805 in the

validation set.

Han et al

(2019)19
Retrospective 411 DCE-MRI 1.5 T Shape features, first-order features,

textural features

The AUC of radiomic signature was 0.76 and 0.78 in

training and validation cohorts, respectively.

Another radiomic signature was constructed to

distinguish the number of metastatic LNs, which

also showed moderate performance (AUC ¼ 0.79).

Liu et al

(2019)20
Retrospective 163 DCE-MRI 1.5 T Shape features, histogram features,

texture features, and Laws

features.

In the independent validation set, combining radiomics

features and clinicopathologic characteristics, AUC

was 0.869. Using radiomic features alone in the

same procedure, the validation set AUC was 0.806.

Liu et al

(2019)21
Prospective 149 DCE-MRI 1.5 T/3.0 T First-order statistics, shape- and

size-based features, wavelet-

based features, and texture-

based features.

The value of AUC for a combined model (0.763) was

higher than that for MRI ALN status alone (0.665;

P ¼ .029) and similar to that for the radiomics

signature (0.752; P ¼ .857).

Abbreviations: ALN, axillary lymph node; AUC, area under the curve; CE2, second postcontrast phase; DCE, dynamic contrast-enhanced; DWI, diffusion-

weighted imaging; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; LNs, lymph nodes; MRI, magnetic resonance imaging; SVM,

support vector machine; T1WI, T1-weighted image; T2-FS, T2-weighted fat suppression; T2WI, T2-weighted image; NGLDM, Neighboring Gray-Level

Dependence Matrix; GLGCM, Gray Level-Gradient Co-occurrence Matrix.
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follow-up for likely benign lesions or surgery for likely malig-

nant lesions. Recent studies suggested that radiomics analysis

could provide promising conclusions for the diagnosis of breast

cancer and a better discrimination ability than conventional

parameters (Table 1).6-15 From the included studies in Table

1, area under the curve (AUC) of radiomics models could

achieve 0.79 to 0.92, with good performance in differentiating

malignant lesions from benign ones. DCE and DWI are the

most common modalities for radiomics analysis. Bickelhaupt

et al7 conducted a retrospective study extracting first-order

statistics, volume, shape, and texture features from DWI-MRI

imaging and suggested that the radiomics model (AUC¼ 0.91)

performed better than other models, including ADC median

(AUC ¼ 0.84) and apparent kurtosis coefficient median (AUC

¼ 0.87), moreover greatly increased the sensitivity and speci-

ficity of differentiating the malignant lesions from benign ones.

However, another study further compared the diagnostic accu-

racy between radiomics and experienced radiologists.8 The

results showed that by using unconstrained and constrained

MRI, expert radiologists (AUC ¼ 0.959/0.959) performed bet-

ter than radiomics models (AUC ¼ 0.842/0.851). The perfor-

mance of radiomics was desirable to reach highly experienced

radiologists in further studies. Holli et al9 investigated the tex-

ture features to distinguish healthy breast tissue and breast

cancer through DCE-MRI. The image selection of DCE-MRI

was from T1-weighted precontrast, 2 contrast-enhanced series

(contrast first and contrast last) and their subtraction series

(subtraction first and subtraction last). The classification accu-

racy of different breast tissues by using texture features from

subtracted images was 100%. Another interesting study based

on DCE extracted features from initial enhancement, postinitial

enhancement, and signal enhancement ratio (SER) parametric

maps for texture analysis.12 Compared to the initial enhance-

ment map (AUC ¼ 0.767), the SER map (AUC ¼ 0.92) and

postinitial enhancement map (AUC ¼ 0.906) achieved better

performance. Based on DCE and DWI modalities, Xinhua

Jiang et al11 found the multivariate models, combining mor-

phological and kinetic parameters and ADC values, increased

the overall accuracy to 0.90. Some researchers found that back-

ground parenchymal enhancement (BPE), which was known as

normal breast tissue enhancement on DCE-MRI, could nega-

tively affect the impact of a correct radiological diagnosis in

MRI. It might cause increased omission diagnostic rate by

obscuring malignancy or increased false-positive rates by

mimicking the appearance of breast cancer.79,80 However, L.

Losurdo et al81 explored some statistical measurements based

on full automatized analysis to identify abnormal breast tissue

based on BPE to improve diagnostic accuracy for radiologists.

In conclusion, radiomics performed high value on the differ-

entiation between malignant and benign breast lesions and

increased the sensitivity and specificity of disease diagnosis.

In addition, microcalcification is regarded as one of the main

indirect signs of malignant lesions.82 Multiscale texture analy-

sis for microcalcification diagnosis on mammography to dis-

tinguish normal/abnormal (AUC ¼ 98.46%) and benign/

malignant (AUC ¼ 94.19%) achieved excellent results.83

However, studies of radiomics focused on microcalcification

of MRI need to be evaluated in further research.

Prediction of Axillary Lymph Node Metastasis

The status of axillary LN of patients with breast cancer remains

an important role for staging and prognosis. Accurate diagnosis

of axillary lymph node metastasis (ALNM) can provide vital

information for clinicians to make follow-up treatment plans.

The gold standard of confirming ALNM status in breast cancer

cases is axillary lymph node dissection (ALND) that is

regarded as a surgical process to assess ALN status.84 Accord-

ing to the American Society for Clinical Oncology guidelines

and another randomized clinical trial reports, early stage breast

cancer with 1 or 2 sentinels lymph node metastasis (LNM)

should not take ALND that may cause a significant overtreat-

ment.85,86 The sentinel LN is the first site to receive lymphatic

drainage from primary tumors, thus sentinel LN biopsy

(SLNB) can provide valuable information to guide the

follow-up treatment. Therefore, SLNB is used as an alternative

method of ALND for patients with early stage breast cancer to

predict LNM status with high accuracy. However, both SLNB

and ALND are invasive method that may cause potential com-

plications, such as lymphedema, dysfunction of sense, pain,

nerve injury, and so on.84

Conventional imaging examinations to predict LNM is a

helpful method to improve accuracy, however, their abilities

are limited still with a high false-negative rate. Recent studies

investigated that radiomics features to predict LNM greatly

improved the accuracy and AUC (Table 2).16-21 From the

included studies in Table 2, AUC of radiomics models could

achieve 0.74 to 0.91, with good performance in predicting LN

status. Adding clinical features to the radiomics models, the

diagnostic value and AUC of combined models could increase

a lot.19,20 Chai et al16 compared 4 different sequences of MRI

including T1-weighted image (T1WI), T2-weighted image

(T2WI), DCE-MRI, and DWI-MRI to find out the best mod-

alities in predicting LN status for clinical practice. The results

showed based on morphological and texture features, the sec-

ond postcontrast phase (CE2) of DCE and the contrast enhance-

ment kinetic features achieved a better performance than others

(AUC ¼ 0.91), while radiomics features extracted from other

sequence did not outperform the combined models (AUCT1WI

¼ 0.87, AUCCE2¼ 0.85, AUCT2WI¼ 0.79, AUCDWI¼ 0.85). It

is interesting to find that all the features combined from 4

sequences adding kinetics, the diagnostic performance was not

differentiated (P ¼ .48). While Dong et al18 compared 2 radio-

mics models based on T2-weighted fat suppression (T2-FS)

and DWI, the performance to distinguish LNM status of both

models was satisfied and the diagnostic value was not different

between 2 models (for training set: AUCT2-FS ¼ 0.847,

AUCDWI ¼ 0.847; for validation set: AUCT2-FS ¼ 0.770,

AUCDWI ¼ 0.787). Most studies concentrated on intratumoral

regions, however, peritumoral features have also showed an

association with LN status in the predictive models.20 Further

researches focused on the value of peritumoral features should
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be evaluated. Radiomics was used as a noninvasive and highly

accurate method based on mathematical models to predict

ALNM and help clinicians to make therapeutic regimens for

patients.

Predicting Molecular Subtypes of Breast Cancer

Molecular subtypes of breast cancer were divided into 4 cate-

gories based on hormone status by immunohistochemical

(IHC) analyses: luminal A, luminal B, human epidermal

growth factor receptor 2 (HER2) overexpressing, and triple

negative (TN). Cases with positive estrogen receptor (ERþ)

and/or positive progesterone receptor (PRþ), negative expres-

sion of HER2, and Ki67 <14% were categorized as luminal A

breast cancer, which has a best prognosis.87-89 Cases with ER

(þ) and/or PR (þ), HER-2 (�), and Ki67 � 14% or ER (þ)

and/or PR (þ), HER2 (þ) were categorized as luminal B breast

cancer, which had high-grade tumors and higher prolifera-

tion.87,89 Cases with ER (�), PR (�), and HER2 (þ) were

classified as HER2-overexpressing breast cancer, which has a

poorer prognosis than luminal breast cancers.87-89 Cases with

ER (�), PR (�), and HER2 (�) were classified as TN breast

cancer, which has the poorest survival rate and is related to LN

involvement.87,89,90 The various subtypes have been widely

used and involved in treatment planning. However, the mole-

cular subtype is confirmed by IHC analyses on sample tissues

that may not reflect the complexity and heterogeneity of whole

tumor. Previous studies evaluated the association between MRI

features with molecular subtypes, however, the results have not

come to a consistent conclusion.91,92 Different subtypes of

breast cancer have their own biological characteristics that can

be reflected on the image. For example, HER2-overexpressing

subtype was associated with an overexpression of vascular

endothelial growth factor, which can increase angiogenesis.93

HER2-overexpressing breast cancer had a higher enhancement

value than other subtypes that could be assessed from radiomic

features. In recent years, radiomics analyses have been used to

predict the molecular subtypes of breast cancer in many stud-

ies, and it can be used as a potential biomarker to differentiate

the subtypes of breast cancer with good performance (AUC ¼
0.74 � 0.92; Table 3)22-35. Fan et al24 obtained radiomics

features and dynamic features from DCE-MRI as well as 2

clinical information to get a predictive model to distinguish

luminal A, luminal B, HER2-overexpressing, and TN. By using

24 features, the AUC values were 0.867, 0.786, 0.888, and

0.923, respectively. In this study, the luminal A cancer had low

kurtosis and skewness that were related to heterogeneity. High

values of these features were also found to be associated with

the poor response of treatment in other types of tumors.93-95 It

was consistent with another study that high-ki67 lesions tended

to have higher kinetics.30 Another study found that texture

features extracted from a quantitative ADC map and DCE

maps (washin and washout) had the ability to identify triple

negtavie breast cancer (TNBC) based on histogram analysis.35

The models achieved an AUC of 0.710 (TNBC vs luminal A),

0.763 (TNBC vs HER2 positive), and 0.683 (TNBC vs non-

TNBC). Intratumoral necrosis was dominant in TNBC, there-

fore the parameters related to washin were significantly lower

compared to other types.

Although DCE-MRI has been used widely in the classifica-

tion of breast cancer, a problem was found that a certain voxel

may reflect various kinetics features due to biological charac-

teristics. Previous studies evaluated the image decomposition

methods to identify intratumoral vascular heterogeneity that

was proved to be advantageous.23,25,96,97 Recent studies also

investigated intratumor imaging heterogeneity by using new

algorithm to separate tumors with varied enhancement patterns

for better classification of breast cancer. Fan et al25 conducted a

new algorithm (convex analysis of mixture) to separate tumors

with varied enhancement patterns. The results found that anal-

ysis of subregions had an improved performance than the entire

tumor. The present studies aimed to evaluate the potential

association between molecular subtypes and radiomics features

from MRI and we found the results were promising in the

performance of classification. Further efforts are need before

these radiomics models can be used to predict histopathological

characteristics clinically.

Prediction of Tumor Response to Chemotherapy in Breast
Cancer

Patients with advanced stage breast cancer are treated with

neoadjuvant chemotherapy (NAC) to reduce the size of tumors

before surgery in clinical practice. Considering the tumor

response to NAC, breast-conserving surgery may replace mas-

tectomy which can improve the life quality of patients.98 How-

ever, the heterogeneity of tumors contributed to different

responses to NAC, as some cases are insensitive to chemother-

apy.99 Pathological examinations were the gold standard for

the assessment of treatment outcomes, and a pathological com-

plete response (pCR) was associated with a long-time survival

benefit.100 Response Evaluation Criteria in Solid Tumors

guidelines based on the measurements of tumor size from

imaging data have been used widely to evaluate the efficiency

of chemotherapy, however, it could not reflect the complexity

of biological progress.101 Therefore, a predictive and accurate

marker is expected to be applied in adjusting therapeutic stra-

tegies for clinicians and avoiding unnecessary treatment and

reducing economic burden for patients. In recent years, some

studies reported that radiomics characteristics of MRI were

associated with tumor response to chemotherapy and provided

great clinical benefits (Table 4).36-47 In the included literatures,

DCE had been used more frequently (9/12) than DWI (3/12) to

assess response to NAC. Dynamic contrast-enhanced-MRI can

provide the tumor’s kinetic characteristics of the contrast agent

by producing pharmacokinetic maps. Based on quantitative,

multiregion analysis that identified enhancement characteris-

tics, the proposed imaging predictors achieved a better perfor-

mance (AUC ¼ 0.79) than conventional imaging predictors

(AUC ¼ 0.53) and texture features on whole tumor analysis

(AUC ¼ 0.65).46 However, the problem that extracting post-

contrast images at which time points remains ambiguous.
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Ahmed et al36 found that more textural features were signifi-

cantly different around the 1 to 3 minutes postcontrast time

points between groups (based on response, nodal status, and

TN groupings). More studies still need to verify the results for

making uniform standards for DCE-MRI in the future. A cer-

tain category of radiomics features were also used to evaluate

their predictive ability for chemotherapy response, such as

Riesz wavelets,47 entropy,41 and the histogram features.44 In

addition, previous work was focused on intratumoral region to

analyze the tumor’s physiological environment, however, peri-

tumoral region surrounded the tumor lesion has also been

found to be associated with outcomes. Braman et al37 com-

bined intratumoral and peritumoral radiomics feature for the

evaluation of pCR, yielding a maximum AUC of 0.74 within

the testing set. Combining intratumoral and peritumoral radio-

mics analysis seemed to be a more successful approach to

predict NAC. All above studies were concentrated on radio-

mics features, the clinical information added to the radiomics

features seemed to achieve a better performance for prediction.

Liu et al42 built a model named radiomics of multi-parametric

magnetic resonance imaging (RMM) combining both multi-

parametric MRI and clinical information to predict pCR to

NAC in patients with breast cancer. The RMM models

improved prognostic accuracy than clinical models and radio-

mics signatures in the primary cohort and other 3 external

validation cohort.42 Quantitative analyses extracted from MRI

provide a promising tool for predicting tumor response of

patients with advanced breast cancer and show the potential

and practical value in the clinic.

Prediction of Survival Outcomes in Patients With Breast
Cancer

Survival outcome is one of the great concerns for patients with

breast cancer. In previous studies, the characteristics of

tumors, such as histological tumor grade, LN status, stage, and

some biomarkers are common factors to evaluate the patients’

prognosis. Recently, some studies evaluated the association

between survival outcomes of patients with breast cancer and

texture features extracted from imaging (Table 5).48-52 Ima-

ging features could reflect the whole tumor’s heterogeneity

that may interpret differently with survival outcomes of

patients having breast cancer with the same stage. For exam-

ple, tumor with higher entropy and lower uniformity extracted

from T2WI and with lower entropy and higher uniformity

extracted from contrast-enhanced T1WI had poorer out-

comes.48 Park et al51 found radiomics nomogram combining

Rad-score and MRI and clinicopathological findings estimated

disease-free survival better than clinicopathological models in

patients with invasive breast cancer. Three GLCM-related fea-

tures which had different mathematical definitions were

selected. They measured various aspects of tumor texture het-

erogeneity. Previous studies have evaluated the association

between imaging features and pCR, however, pCR is not an

accurate surrogate end point for survival. Especially for those

patients having early breast cancer with breast-conserving

surgery, whether chemotherapy could bring patients more ben-

efits for survival than adverse side effects. Chan et al49 eval-

uated a radiomics model to distinguish between patients at

high risk and low risk with a long-term follow-up based on

eigentumor analysis. The eigentumors had potentials to stra-

tify patient survival after 140 months with a hazard ratio of

4.31.49 Radiomics features for assessing tumor heterogeneity

could be regarded as a useful noninvasive biomarker to predict

survival of patients with breast cancer and can provide a great

benefit for clinical management.

Outlook and Challenges

Magnetic resonance imaging has been extensively used in the

diagnosis of breast cancer, predicting malignancy of tumors,

staging, evaluating the response to chemotherapy, biopsy gui-

dance, and so on. As the high-throughput data extracted from

imaging have conducted a number of “omics” researches.

Radiomics of MRI imaging can provide large potential data

to characterize the biological features of tumors for precision

medicine. Therefore, the utilization of radiomics is hopeful to

be an imaging biomarker and noninvasive tool for early diag-

nosis and evaluation of therapeutic effect in breast cancer. In

recent years, genomics, transcriptomics, proteomics, and meta-

bolomics are used to characterize molecular biology of tumors,

which were helpful for personalized therapy.102,103 Although

lots of published studies have evaluated the application for

years, the association between other omics technologies and

radiomics in breast cancer is not very clear and need to be

explored in further researches. Integrations of multi-omics

studies can greatly increase the accuracy of diagnosis and pro-

vide individualized treatment for patients to prolong the sur-

vival time and improve the quality of life. Moreover, other new

emerging MRI technologies, such as sodium imaging,104 chem-

ical exchange saturation transfer imaging,105 blood oxygen

level-dependent,106 or arterial spin labeling MRI107 are hopeful

to provide high-quality imaging for feature extraction.

Radiomics has been applied in scientific research but no

widely in the clinic. Some obstacles have existed and need to

be improved by the perfection of technologies and methodol-

ogy. First, the sample size of radiomics analyses plays an

important role in predictive models, as the larger samples can

increase prognostic accuracy. However, the samples of most

published studies are not very large and the models should be

validated in further research. Second, because of imaging

acquisition from different machines, varied technical para-

meters and slice thickness, as well as diverse reconstruction algo-

rithms, it is difficult to acquire consistent imaging and get uniform

results that can be applied in the clinic. Third, image segmentation

includes automatic, semiautomatic, and manual methods. Auto-

matic and semiautomatic segmentation is more convenient for

large data, however, the algorithms of segmentation remain to

be evaluated.108 Manual method is time-consuming and the

results may be different because of inter- or intrareaders

variability.108
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In conclusion, we investigated the workflow and clinical

application of radiomics, as well as the outlook and challenges

based on published studies. Radiomics has the potential ability

of prediction in diagnosis between malignant and benign breast

lesions, ALN status, molecular subtypes of breast cancer,

tumor response to chemotherapy, and survival outcomes.

Radiomics has been widely used in tumor diagnosis and prog-

nosis, however, it is still in the research phase and many efforts

should be taken for clinical translation. We also have discussed

the limitations and promises of radiomics for improvement in

further research. Our study aims are to help clinicians and

radiologists to get to know the basic information of radiomics

and encourage cooperation with scientists to mine data for a

better application in clinical practice.
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