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Abstract

Breast cancer has been a worldwide burden of women'’s health. Although concerns have been raised for early diagnosis and timely
treatment, the efforts are still needed for precision medicine and individualized treatment. Radiomics is a new technology with
immense potential to obtain mineable data to provide rich information about the diagnosis and prognosis of breast cancer. In our
study, we introduced the workflow and application of radiomics as well as its outlook and challenges based on published studies.
Radiomics has the potential ability to differentiate between malignant and benign breast lesions, predict axillary lymph node status,
molecular subtypes of breast cancer, tumor response to chemotherapy, and survival outcomes. Our study aimed to help clinicians
and radiologists to know the basic information of radiomics and encourage cooperation with scientists to mine data for better
application in clinical practice.
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tumor nature before the surgery. Although biopsy can provide

gold standard of suspicious breast lesions, it still has some
limitations. As it is invasive and could not reflect the

Introduction

Breast cancer has been a worldwide burden of women’s
health, with an increasing trend in incidence in recent
decades.! As the concerns of breast cancer have been raised
to improve primary and secondary prevention, 5-year survival
of breast cancer has increased steadily in most developed
countries.” However, the efforts for early diagnosis and timely
treatment are still warranted to reduce mortality. The concept
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of Breast Imaging Reporting and Data System has been pro-
posed and widely used for more clear and uniform communi-
cation of clinicians and radiologists based on radiographic
features to evaluate the classification and gradation of tumors.
This classification remains limitations, as it greatly depends
on the experience of radiologists. Patients with a suspected
breast lesion are suggested to take a biopsy to confirm the
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heterogeneity of the whole tumor that may provide uncertain
information of lesions if the tumor size is too large.

Image technologies are the most direct and convenient tools
to reflect the size, morphology, and radiographic characteris-
tics of tumors that can be utilized to diagnosis, treatment, prog-
nosis assessment, and so on. New technologies based on
different imaging modalities have emerged for precision med-
icine and individualized treatment of patients with cancer.
Since 2012, the concept of “radiomics” was firstly proposed
by a Dutch researcher and interpreted as “the extraction of
numerous features from radiographic imaging by a high-
throughput approach.”® Radiomics is a noninvasive imaging
technology and has immense potential to obtain mineable data
and evaluate whole tumor features of imaging.*> The informa-
tion hidden from the assessment of human eyes can be used to
build predictive models of clinical outcomes and provide a
noninvasive and complementary method for tumor genotype.
Radiomics has shown promise to be an imaging biomarker of
different tumors in clinical practice.

Ultrasound (US), mammography, and magnetic resonance
imaging (MRI) are the most common tools for breast examina-
tion in clinical practice. In our study, we only focused on the
role of MRI in the application of radiomics. The Pubmed, Web
of Science, and Embase were searched up to April 2019 by
using search strategies. We used Mesh terms (Medical subject
heading) “breast cancer” and “magnetic resonance imaging”
and “radiomics” or “texture analyses” or “quantitative ana-
lyses,” as well as adding free words in different combination
for avoiding the omission of the related literatures. In this
study, we aimed to provide a comprehensive review which
focused on basic information and the application of radiomics
for oncologists. In addition, we concluded the major character-
istics, such as study design, the number of patients, MRI mod-
ality, magnetic field, radiomics features, and outcomes to
provide information of the studies which evaluated various
clinical applications (Tables 1-5).

The Workflow of Radiomics

Images from US, computed tomography (CT), MRI, and posi-
tron emission tomography (PET) have been widely used for
radiomics analysis in scientific fields. Ultrasound and CT pro-
vide structural features of tumors, while PET and MRI provide
functional and molecular information. Computed tomography
was firstly applied in radiomics and then MRI was the second,
and these technologies were also the most common modalities
in radiomics.** As the Quantitative Imaging Network guide-
lines were established by the National Cancer Institute in 2012,
the workflow of radiomics included: (1) image acquisition and
reconstruction, (2) lesion segmentation, (3) feature extraction,
and (4) data analysis.>

The first step of radiomics analysis is the assessment of high
quality and normalized images. Most data of published studies
were retrospectively extracted from hospital-based imaging
database. It is worth noting that images with different modalities,
protocols, and reconstructions from various hospital databases

may contribute to some differences in radiomics models.>* Then
the delineation of the lesion is conducted based on standard-of-
care images. The whole tumor is segmented by manual, semi-
manual, and automatic methods.> The process of segmentation
should be accurate, reproducible, and reliable. Manual segmen-
tation by experienced radiologists is expected to be “gold
standard,” however, it is quite time-consuming and not applica-
ble in a large database.’”> Automatic and semiautomatic methods
performed better when there are great differences between the
lesion and background, and both methods have been developed
to improve the accuracy in recent decades.>®

Radiomics features extracted from images are divided into
shape, intensity, texture, gradient, wavelet features, and many
more. We introduced the most common features that applied in
study researches. Shape features are based on the reconstructed
3-dimensional images to assess the geometric characteristics.>
Parameters from these features include volume, the surface-to-
volume ratio, shape, and compactness which are regarded as
vital features to evaluate the characteristics of tumors.’’ For
example, with the same volume, a speculated lesion has a
higher surface-to-volume ratio compared to a round one, which
is more probably to be malignant.’” Although shape can be
transformed into a quantitative feature, it is not a specific indi-
cator to distinguish the malignant lesions from benign ones.
First-order statistics are dependent on a single-pixel intensity
value rather than relationship between neighboring pixels.
Tumor intensity histogram-based features are known as the
first-order features which include mean, median, standard
deviation, kurtosis, skewness, energy, entropy, uniformity, and
variance.”’ These features are used to predict the prognosis in
the machine learning framework. For example, kurtosis is a
measure of whether data are distributed normally. Invasive
tumors are composed of more heterogenous tissues that might
be reflected by pixel values.?? Texture-based features are
known as second-order statistics and used widely in radiomics
analysis to evaluate the intertumoral heterogeneity. It has the
ability to distinguish the pixels at different spacing and angles
at adjacent or nearest-neighbor pixels calculated by using spa-
tial gray-level dependence matrices.>® Considering spatial
relationships, texture features are divided into gray-level
co-occurrence matrix (GLCM),’® gray-level run length
matrix,” gray-level size zone matrix,’” and the neighborhood
gray-level size zone matrix.®' Wavelet features are filter trans-
forms containing the intensity and textural information and
regarded as higher order statistic.*> It shows the spatial rela-
tionship among 3 or more pixels. For example, Gabor and
Fourier extract spatial or spatial-temporal features, while Co-
occurrence of Local Anisotropic Gradient Orientations extract
the image voxel an entropy value related to the co-occurrence
matrix of gradient orientations.®>>® Some of these features
extracted from region of interst (ROI) may be redundant for
a specific task, therefore selecting useful information by using
machine algorithms is important in radiomics analysis.
Machine learning algorithms include decision trees and ran-
dom forests, support vector machines, deep neural networks,
and so on.’® Then the selected features, with reproductive,



Ye et al

Table 1. Studies on Differentiating Between Malignant and Benign Breast Lesions.

First Author, Number of Magnetic

Year Study Design  Patients MRI Modality = Field  Radiomics Features Outcomes

Bahreini Retrospective 60 DCE-MRI 15T Contour signature, Fourier  The first classifier achieved an AUC of 0.82, specificity of
et al descriptor, Fourier factor. 60% at sensitivity of 81%. The second classifier achieved
(2010)° an AUC of 0.90, specificity of 79% at sensitivity of 81%.

Bickelhaupt Retrospective 222 DWI-MRI 1.5T First order statistics, volume The radiomics feature model reduced false-positive results
et al features, shape features, from 66 to 20 (specificity 70.0%) at the predefined
(2108)’ texture features. sensitivity of greater than 98.0% in the independent test

set, with BI-RADS 4a and 4b lesions benefiting from the
analysis (specificity 74.0%; 60.0%) and BI-RADS 5
lesions showing no added benefit.

Bickelhaupt Prospective 50 T2WL DWI, 15T First-order features, volume Radiomic classifiers consisted of 11 parameters achieved
et al DWIBS features, shape features, AUC of 84.2%/85.1%, compared to 77.4% for mean
(2017)® texture features. ADC and 95.9%/95.9% for the experienced radiologist

using ceMRI/ueMRI.

Holli er al  Retrospective 20 DCE-MRI 15T Texture features. All classification methods employed were able to
(2010)° differentiate between cancer and healthy breast tissue and

also invasive lobular and ductal carcinoma with
classification accuracy varying between 80% and 100%.

Hu et al Retrospective 88 DCE-MRI 30T Tumor size, shape, first-order The area under the ROC curve of the prediction model

(2018)° statistics of descriptor comprising ADC radiomic features was 0.79 when the
values and high-order cutoff value was 0.45, and the accuracy, sensitivity, and
texture features. specificity were 80.0%, 0.813, and 0.778.

Jiang et al  Retrospective 205 DCE-MRI, 15T Texture and morphology By using 10-fold cross-validation scheme, combined

(2018)'! DWI-MRI features. morphological and kinetic features achieved a diagnostic
average accuracy of 0.87.

Karahaliou  Not 82 DCE-MRI 15T Texture features (GLCM).  Selected texture features extracted from the signal
et al mentioned enhancement ratio map achieved an area under receiver
(2010)'? operating characteristic curve of 0.922 + 0.029, a

performance similar to postinitial enhancement map
features (0.906 + 0.032) and statistically significantly
higher than for initial enhancement map (0.767 + 0.053)
and first postcontrast frame (0.756 + 0.060) features.

Nie et al Retrospective 71 Tl-weighted 15T Morphological parameters The ACU was 0.86.

(2008)3 3D SPGR and GLCM texture
(RF-FAST) features

Whitney Retrospective 338 DCE-MRI 1.5T/ Size, shape, morphology, Their differences in AUC-ROC by biopsy condition failed
et al 30T texture enhancement, and to reach statistical significance, but we were unable
(2019)™ kinetic curve assessment to prove equivalence using a margin of

and enhancement variance AAUC-ROC = 0.10.
kinetics

Gibbs and  Retrospective 79 DCE-MRI 15T Texture features On combining features obtained using textural analysis with
Turnbull lesion size, time to maximum enhancement, and patient
(2003)"° age, a diagnostic accuracy of Az = 0.92 + 0.05 was

demonstrated.

Abbreviations: ADC, apparent diffusion coefficient; AUC, area under the curve; BI-RADS, Breast Imaging Reporting and Data System; ceMRI, contrast
enhanced magnetic resonance imaging; GLCM, gray-level co-occurrence matrix; MRI-DCE, dynamic contrast-enhanced; DWI, diffusion-weighted imaging;
DWIBS, DWI with background suppression; MRI, magnetic resonance imaging; ROC, receive operating characteristics; T2WI, T2-weighted image; ueMRI,
unenhanced magnetic resonanc imaging; 3D-SPGR (RF-FAST), 3-dimensional SPGR(RF-FAST).

informative, and nonredundant characteristics, are used to eval-
uate the associations with clinical outcomes.

The Application of Radiomics
Role of MRI

Magnetic resonance imaging of breast is widely applied in
screening in high risk women, staging, evaluating curative
effect, monitoring recurrence, especially providing comple-
mentary information for uncertain findings on mammography
and ultrasonography. In recent years, diffusion-weighted ima-
ging (DWI) and dynamic contrast-enhanced (DCE) have been

used to provide functional features of breast lesions to assess
precise diagnosis. Diffusion-weighted imaging, known as a
contrast-free protocol, has been shown promise in the diagnosis
of breast cancer.®* It can reflect tissue microenvironment and
membrane integrity through depicting the diffusivity of the
tissues.®> Changes of water diffusion in tissues are associated
with pathological processes that can be calculated as apparent
diffusion coefficient (ADC).®® Previous studies have investi-
gated that DWI hold potentials to improve the detection and
biological characterization of breast cancer.®’-°* Based on
DWI, several advanced modelling approaches have been eval-
uated to characterize structural anisotropy (diffusion tensor
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Table 2. Studies on Prediction of Axillary Lymph Node Metastasis.

First
Author, Number of MRI Magnetic
Year Study Design  Patients Modality Field Radiomics Features Outcomes
Chai et al  Retrospective 120 DCE-MRI 30T Morphological and texture features. The accuracy/AUC of the 4 sequences was 79%/0.87,
(2019)'¢ 77%/0.85, 74%/0.79, and 79%/0.85 for the TIWI,
CE2, T2WI, and DWI, respectively. When CE2 was
augmented by adding kinetic features, the model
achieved the highest performance (accuracy = 0.86
and AUC = 0.91).
Cui et al  Retrospective 102 DCE-MRI 30T Morphological, NGLDM, GLRLM, The SVM classifier performed best, with the highest
(2019)I7 GLCM, GLGCM, Tamura, and accuracy of 89.54%, and obtained an AUC of
grayscale histogram features. 0.8615 for identifying the lymph node status.
Dong et al Retrospective 146 T2FS,DWI 15T Nontexture and texture parameter ~Model of T2-FS yielded the highest AUC of 0.847 in
(2018)'8 features. the training set and 0.770 in the validation set.
Model of DWI reached the highest AUC of 0.847 in
the training set and 0.787 in the validation set.
Combination of T2-FS and DWI features yielded an
AUC of 0.863 in the training set and 0.805 in the
validation set.
Han et al  Retrospective 411 DCE-MRI 15T Shape features, first-order features, The AUC of radiomic signature was 0.76 and 0.78 in
(2019)"° textural features training and validation cohorts, respectively.
Another radiomic signature was constructed to
distinguish the number of metastatic LNs, which
also showed moderate performance (AUC = 0.79).
Liu et al Retrospective 163 DCE-MRI 15T Shape features, histogram features, In the independent validation set, combining radiomics
(2019)*° texture features, and Laws features and clinicopathologic characteristics, AUC
features. was 0.869. Using radiomic features alone in the
same procedure, the validation set AUC was 0.806.
Liu et al  Prospective 149 DCE-MRI 1.5 T/3.0 T First-order statistics, shape- and The value of AUC for a combined model (0.763) was
(2019)*! size-based features, wavelet- higher than that for MRI ALN status alone (0.665;

based features, and texture-
based features.

P = .029) and similar to that for the radiomics
signature (0.752; P = .857).

Abbreviations: ALN, axillary lymph node; AUC, area under the curve; CE2, second postcontrast phase; DCE, dynamic contrast-enhanced; DWI, diffusion-
weighted imaging; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; LNs, lymph nodes; MRI, magnetic resonance imaging; SVM,
support vector machine; TIWI, T1-weighted image; T2-FS, T2-weighted fat suppression; T2WI, T2-weighted image; NGLDM, Neighboring Gray-Level

Dependence Matrix; GLGCM, Gray Level-Gradient Co-occurrence Matrix.

imaging [DTI]), microvascularity (intravoxel incoherent
motion [IVIM]), and microstructural complexity (diffusion
kurtosis imaging) for better diagnosis of breast cancer.®® Diffu-
sion kurtosis imaging extends standard DWI to assess aniso-
tropic details of water diffusion.”® Mean diffusivity and
fractional anisotropy are parameters of DTI to reflect the aver-
age anisotropy and the degree of anisotropy.’" Intravoxel inco-
herent motion aims to evaluate tissue diffusivity and tissue
microcapillary perfusion at once based on biexponential
model.”? The following parameters are commonly used: true
molecular diffusion (D or Dt), perfusion-elated diffusion
(D*, Dp, or Df), and perfusion fraction (f, fp, or fWIM).73 Dif-
fusion kurtosis imaging quantifies non-Gaussianity of the water
displacement distribution® and has a higher sensitivity and spe-
cificity in cancer detection than ADCs.®®> DCE is a contrast-
enhanced protocol with excellent sensitivity for the detection
of breast cancer and provides functional information about
neoangiogenesis as a specific feature of tumor.”* The sensitiv-
ities of detecting invasive cancers by using DCE-MRI are more
than 90%, while the specificities range from 20% to 100%.”>"°
In addition, the enhancement patterns of benign lesions were
overlapped with malignant lesions.”” By using conventional
imaging technologies, the diagnostic value is mostly depended

on experienced radiologists. Thus radiomics with high diagnos-
tic accuracy and applicable value deserves to be evaluated.
Compared to mammography and US, MRI plays an important
role in the diagnosis of breast cancer. First, MRI has a higher
resolution of soft tissues, which is more sensitive to detect
masses.’® Second, MRI can provide information about the anat-
omy of the bilateral breast, the relationship between the tumor
and surrounding tissue, and lymph node (LN) status. Third, dif-
ferent sequences of MRI could provide functional information of
tumors, such as blood flow and breast density, and find the
heterogeneity of tumor microenvironments. Fourth, due to
the technological limitation of mammography, MRI improves
the variations in breast symmetry and masking effect to detect
cancer in dense breasts. By using hand-held US, the image qual-
ity is mostly dependent on skilled and qualified doctors, while
MRI could provide more standard and comprehensive images.

Reliable Differentiation Between Malignant and Benign
Breast Lesions
Precise diagnosis for differentiating between malignant and

benign breast lesions is necessary for follow-up treatment
options. The treatment decisions make a little different, with
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follow-up for likely benign lesions or surgery for likely malig-
nant lesions. Recent studies suggested that radiomics analysis
could provide promising conclusions for the diagnosis of breast
cancer and a better discrimination ability than conventional
parameters (Table 1).°'> From the included studies in Table
1, area under the curve (AUC) of radiomics models could
achieve 0.79 to 0.92, with good performance in differentiating
malignant lesions from benign ones. DCE and DWI are the
most common modalities for radiomics analysis. Bickelhaupt
et al’ conducted a retrospective study extracting first-order
statistics, volume, shape, and texture features from DWI-MRI
imaging and suggested that the radiomics model (AUC = 0.91)
performed better than other models, including ADC median
(AUC = 0.84) and apparent kurtosis coefficient median (AUC
= 0.87), moreover greatly increased the sensitivity and speci-
ficity of differentiating the malignant lesions from benign ones.
However, another study further compared the diagnostic accu-
racy between radiomics and experienced radiologists.® The
results showed that by using unconstrained and constrained
MRI, expert radiologists (AUC = 0.959/0.959) performed bet-
ter than radiomics models (AUC = 0.842/0.851). The perfor-
mance of radiomics was desirable to reach highly experienced
radiologists in further studies. Holli ez al’ investigated the tex-
ture features to distinguish healthy breast tissue and breast
cancer through DCE-MRI. The image selection of DCE-MRI
was from T1-weighted precontrast, 2 contrast-enhanced series
(contrast first and contrast last) and their subtraction series
(subtraction first and subtraction last). The classification accu-
racy of different breast tissues by using texture features from
subtracted images was 100%. Another interesting study based
on DCE extracted features from initial enhancement, postinitial
enhancement, and signal enhancement ratio (SER) parametric
maps for texture analysis.'?> Compared to the initial enhance-
ment map (AUC = 0.767), the SER map (AUC = 0.92) and
postinitial enhancement map (AUC = 0.906) achieved better
performance. Based on DCE and DWI modalities, Xinhua
Jiang et al'' found the multivariate models, combining mor-
phological and kinetic parameters and ADC values, increased
the overall accuracy to 0.90. Some researchers found that back-
ground parenchymal enhancement (BPE), which was known as
normal breast tissue enhancement on DCE-MRI, could nega-
tively affect the impact of a correct radiological diagnosis in
MRI. It might cause increased omission diagnostic rate by
obscuring malignancy or increased false-positive rates by
mimicking the appearance of breast cancer.””*® However, L.
Losurdo ef al®' explored some statistical measurements based
on full automatized analysis to identify abnormal breast tissue
based on BPE to improve diagnostic accuracy for radiologists.
In conclusion, radiomics performed high value on the differ-
entiation between malignant and benign breast lesions and
increased the sensitivity and specificity of disease diagnosis.
In addition, microcalcification is regarded as one of the main
indirect signs of malignant lesions.®* Multiscale texture analy-
sis for microcalcification diagnosis on mammography to dis-
tinguish normal/abnormal (AUC = 98.46%) and benign/
malignant (AUC = 94.19%) achieved excellent results.®?

However, studies of radiomics focused on microcalcification
of MRI need to be evaluated in further research.

Prediction of Axillary Lymph Node Metastasis

The status of axillary LN of patients with breast cancer remains
an important role for staging and prognosis. Accurate diagnosis
of axillary lymph node metastasis (ALNM) can provide vital
information for clinicians to make follow-up treatment plans.
The gold standard of confirming ALNM status in breast cancer
cases is axillary lymph node dissection (ALND) that is
regarded as a surgical process to assess ALN status.®* Accord-
ing to the American Society for Clinical Oncology guidelines
and another randomized clinical trial reports, early stage breast
cancer with 1 or 2 sentinels lymph node metastasis (LNM)
should not take ALND that may cause a significant overtreat-
ment.®>% The sentinel LN is the first site to receive lymphatic
drainage from primary tumors, thus sentinel LN biopsy
(SLNB) can provide valuable information to guide the
follow-up treatment. Therefore, SLNB is used as an alternative
method of ALND for patients with early stage breast cancer to
predict LNM status with high accuracy. However, both SLNB
and ALND are invasive method that may cause potential com-
plications, such as lymphedema, dysfunction of sense, pain,
nerve injury, and so on.**

Conventional imaging examinations to predict LNM is a
helpful method to improve accuracy, however, their abilities
are limited still with a high false-negative rate. Recent studies
investigated that radiomics features to predict LNM greatly
improved the accuracy and AUC (Table 2).'*2' From the
included studies in Table 2, AUC of radiomics models could
achieve 0.74 to 0.91, with good performance in predicting LN
status. Adding clinical features to the radiomics models, the
diagnostic value and AUC of combined models could increase
a lot."”*° Chai et al'® compared 4 different sequences of MRI
including T1-weighted image (T1WI), T2-weighted image
(T2WI), DCE-MRI, and DWI-MRI to find out the best mod-
alities in predicting LN status for clinical practice. The results
showed based on morphological and texture features, the sec-
ond postcontrast phase (CE2) of DCE and the contrast enhance-
ment kinetic features achieved a better performance than others
(AUC = 0.91), while radiomics features extracted from other
sequence did not outperform the combined models (AUCt w1
=0.87, AUCcg; = 0.85, AUCTw1 = 0.79, AUCpw; = 0.85). It
is interesting to find that all the features combined from 4
sequences adding kinetics, the diagnostic performance was not
differentiated (P = .48). While Dong ef al'® compared 2 radio-
mics models based on T2-weighted fat suppression (T2-FS)
and DWI, the performance to distinguish LNM status of both
models was satisfied and the diagnostic value was not different
between 2 models (for training set: AUCt,.ps = 0.847,
AUCpw; = 0.847; for validation set: AUCt,.gs = 0.770,
AUCpw = 0.787). Most studies concentrated on intratumoral
regions, however, peritumoral features have also showed an
association with LN status in the predictive models.?® Further
researches focused on the value of peritumoral features should
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be evaluated. Radiomics was used as a noninvasive and highly
accurate method based on mathematical models to predict
ALNM and help clinicians to make therapeutic regimens for
patients.

Predicting Molecular Subtypes of Breast Cancer

Molecular subtypes of breast cancer were divided into 4 cate-
gories based on hormone status by immunohistochemical
(IHC) analyses: luminal A, luminal B, human epidermal
growth factor receptor 2 (HER2) overexpressing, and triple
negative (TN). Cases with positive estrogen receptor (ER+)
and/or positive progesterone receptor (PR+), negative expres-
sion of HER2, and Ki67 <14% were categorized as luminal A
breast cancer, which has a best prognosis.®’*’ Cases with ER
(+) and/or PR (+), HER-2 (—), and Ki67 > 14% or ER (+)
and/or PR (+), HER2 (+) were categorized as luminal B breast
cancer, which had high-grade tumors and higher prolifera-
tion.*”* Cases with ER (—), PR (—), and HER2 (+) were
classified as HER2-overexpressing breast cancer, which has a
poorer prognosis than luminal breast cancers.*’* Cases with
ER (—), PR (—), and HER2 (—) were classified as TN breast
cancer, which has the poorest survival rate and is related to LN
involvement.®”%%°° The various subtypes have been widely
used and involved in treatment planning. However, the mole-
cular subtype is confirmed by IHC analyses on sample tissues
that may not reflect the complexity and heterogeneity of whole
tumor. Previous studies evaluated the association between MRI
features with molecular subtypes, however, the results have not
come to a consistent conclusion.”’** Different subtypes of
breast cancer have their own biological characteristics that can
be reflected on the image. For example, HER2-overexpressing
subtype was associated with an overexpression of vascular
endothelial growth factor, which can increase angiogenesis.”
HER2-overexpressing breast cancer had a higher enhancement
value than other subtypes that could be assessed from radiomic
features. In recent years, radiomics analyses have been used to
predict the molecular subtypes of breast cancer in many stud-
ies, and it can be used as a potential biomarker to differentiate
the subtypes of breast cancer with good performance (AUC =
0.74 — 0.92; Table 3)**7°. Fan et al** obtained radiomics
features and dynamic features from DCE-MRI as well as 2
clinical information to get a predictive model to distinguish
luminal A, luminal B, HER2-overexpressing, and TN. By using
24 features, the AUC values were 0.867, 0.786, 0.888, and
0.923, respectively. In this study, the luminal A cancer had low
kurtosis and skewness that were related to heterogeneity. High
values of these features were also found to be associated with
the poor response of treatment in other types of tumors.”>*° It
was consistent with another study that high-ki67 lesions tended
to have higher kinetics.>® Another study found that texture
features extracted from a quantitative ADC map and DCE
maps (washin and washout) had the ability to identify triple
negtavie breast cancer (TNBC) based on histogram analysis.*
The models achieved an AUC of 0.710 (TNBC vs luminal A),
0.763 (TNBC vs HER?2 positive), and 0.683 (TNBC vs non-

TNBC). Intratumoral necrosis was dominant in TNBC, there-
fore the parameters related to washin were significantly lower
compared to other types.

Although DCE-MRI has been used widely in the classifica-
tion of breast cancer, a problem was found that a certain voxel
may reflect various kinetics features due to biological charac-
teristics. Previous studies evaluated the image decomposition
methods to identify intratumoral vascular heterogeneity that
was proved to be advantageous.”>?>?%?7 Recent studies also
investigated intratumor imaging heterogeneity by using new
algorithm to separate tumors with varied enhancement patterns
for better classification of breast cancer. Fan et al*> conducted a
new algorithm (convex analysis of mixture) to separate tumors
with varied enhancement patterns. The results found that anal-
ysis of subregions had an improved performance than the entire
tumor. The present studies aimed to evaluate the potential
association between molecular subtypes and radiomics features
from MRI and we found the results were promising in the
performance of classification. Further efforts are need before
these radiomics models can be used to predict histopathological
characteristics clinically.

Prediction of Tumor Response to Chemotherapy in Breast
Cancer

Patients with advanced stage breast cancer are treated with
neoadjuvant chemotherapy (NAC) to reduce the size of tumors
before surgery in clinical practice. Considering the tumor
response to NAC, breast-conserving surgery may replace mas-
tectomy which can improve the life quality of patients.’® How-
ever, the heterogeneity of tumors contributed to different
responses to NAC, as some cases are insensitive to chemother-
apy.”® Pathological examinations were the gold standard for
the assessment of treatment outcomes, and a pathological com-
plete response (pCR) was associated with a long-time survival
benefit.'°® Response Evaluation Criteria in Solid Tumors
guidelines based on the measurements of tumor size from
imaging data have been used widely to evaluate the efficiency
of chemotherapy, however, it could not reflect the complexity
of biological progress.'®" Therefore, a predictive and accurate
marker is expected to be applied in adjusting therapeutic stra-
tegies for clinicians and avoiding unnecessary treatment and
reducing economic burden for patients. In recent years, some
studies reported that radiomics characteristics of MRI were
associated with tumor response to chemotherapy and provided
great clinical benefits (Table 4).°*” In the included literatures,
DCE had been used more frequently (9/12) than DWI (3/12) to
assess response to NAC. Dynamic contrast-enhanced-MRI can
provide the tumor’s kinetic characteristics of the contrast agent
by producing pharmacokinetic maps. Based on quantitative,
multiregion analysis that identified enhancement characteris-
tics, the proposed imaging predictors achieved a better perfor-
mance (AUC = 0.79) than conventional imaging predictors
(AUC = 0.53) and texture features on whole tumor analysis
(AUC = 0.65).* However, the problem that extracting post-
contrast images at which time points remains ambiguous.
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Ahmed et al*® found that more textural features were signifi-
cantly different around the 1 to 3 minutes postcontrast time
points between groups (based on response, nodal status, and
TN groupings). More studies still need to verify the results for
making uniform standards for DCE-MRI in the future. A cer-
tain category of radiomics features were also used to evaluate
their predictive ability for chemotherapy response, such as
Riesz wavelets,?’” entropy,*' and the histogram features.** In
addition, previous work was focused on intratumoral region to
analyze the tumor’s physiological environment, however, peri-
tumoral region surrounded the tumor lesion has also been
found to be associated with outcomes. Braman ef al’*’ com-
bined intratumoral and peritumoral radiomics feature for the
evaluation of pCR, yielding a maximum AUC of 0.74 within
the testing set. Combining intratumoral and peritumoral radio-
mics analysis seemed to be a more successful approach to
predict NAC. All above studies were concentrated on radio-
mics features, the clinical information added to the radiomics
features seemed to achieve a better performance for prediction.
Liu et al** built a model named radiomics of multi-parametric
magnetic resonance imaging (RMM) combining both multi-
parametric MRI and clinical information to predict pCR to
NAC in patients with breast cancer. The RMM models
improved prognostic accuracy than clinical models and radio-
mics signatures in the primary cohort and other 3 external
validation cohort.** Quantitative analyses extracted from MRI
provide a promising tool for predicting tumor response of
patients with advanced breast cancer and show the potential
and practical value in the clinic.

Prediction of Survival Outcomes in Patients With Breast
Cancer

Survival outcome is one of the great concerns for patients with
breast cancer. In previous studies, the characteristics of
tumors, such as histological tumor grade, LN status, stage, and
some biomarkers are common factors to evaluate the patients’
prognosis. Recently, some studies evaluated the association
between survival outcomes of patients with breast cancer and
texture features extracted from imaging (Table 5).**? Ima-
ging features could reflect the whole tumor’s heterogeneity
that may interpret differently with survival outcomes of
patients having breast cancer with the same stage. For exam-
ple, tumor with higher entropy and lower uniformity extracted
from T2WI and with lower entropy and higher uniformity
extracted from contrast-enhanced T1WI had poorer out-
comes.*® Park et al’' found radiomics nomogram combining
Rad-score and MRI and clinicopathological findings estimated
disease-free survival better than clinicopathological models in
patients with invasive breast cancer. Three GLCM-related fea-
tures which had different mathematical definitions were
selected. They measured various aspects of tumor texture het-
erogeneity. Previous studies have evaluated the association
between imaging features and pCR, however, pCR is not an
accurate surrogate end point for survival. Especially for those
patients having early breast cancer with breast-conserving

surgery, whether chemotherapy could bring patients more ben-
efits for survival than adverse side effects. Chan ez al*’ eval-
uated a radiomics model to distinguish between patients at
high risk and low risk with a long-term follow-up based on
eigentumor analysis. The eigentumors had potentials to stra-
tify patient survival after 140 months with a hazard ratio of
4.31.* Radiomics features for assessing tumor heterogeneity
could be regarded as a useful noninvasive biomarker to predict
survival of patients with breast cancer and can provide a great
benefit for clinical management.

Outlook and Challenges

Magnetic resonance imaging has been extensively used in the
diagnosis of breast cancer, predicting malignancy of tumors,
staging, evaluating the response to chemotherapy, biopsy gui-
dance, and so on. As the high-throughput data extracted from
imaging have conducted a number of “omics” researches.
Radiomics of MRI imaging can provide large potential data
to characterize the biological features of tumors for precision
medicine. Therefore, the utilization of radiomics is hopeful to
be an imaging biomarker and noninvasive tool for early diag-
nosis and evaluation of therapeutic effect in breast cancer. In
recent years, genomics, transcriptomics, proteomics, and meta-
bolomics are used to characterize molecular biology of tumors,
which were helpful for personalized therapy.'®*'%* Although
lots of published studies have evaluated the application for
years, the association between other omics technologies and
radiomics in breast cancer is not very clear and need to be
explored in further researches. Integrations of multi-omics
studies can greatly increase the accuracy of diagnosis and pro-
vide individualized treatment for patients to prolong the sur-
vival time and improve the quality of life. Moreover, other new
emerging MRI technologies, such as sodium imaging,'® chem-
ical exchange saturation transfer imaging,'®® blood oxygen
level-dependent,'® or arterial spin labeling MRI'®” are hopeful
to provide high-quality imaging for feature extraction.

Radiomics has been applied in scientific research but no
widely in the clinic. Some obstacles have existed and need to
be improved by the perfection of technologies and methodol-
ogy. First, the sample size of radiomics analyses plays an
important role in predictive models, as the larger samples can
increase prognostic accuracy. However, the samples of most
published studies are not very large and the models should be
validated in further research. Second, because of imaging
acquisition from different machines, varied technical para-
meters and slice thickness, as well as diverse reconstruction algo-
rithms, it is difficult to acquire consistent imaging and get uniform
results that can be applied in the clinic. Third, image segmentation
includes automatic, semiautomatic, and manual methods. Auto-
matic and semiautomatic segmentation is more convenient for
large data, however, the algorithms of segmentation remain to
be evaluated.'®® Manual method is time-consuming and the
results may be different because of inter- or intrareaders
variability.'®
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In conclusion, we investigated the workflow and clinical
application of radiomics, as well as the outlook and challenges
based on published studies. Radiomics has the potential ability
of prediction in diagnosis between malignant and benign breast
lesions, ALN status, molecular subtypes of breast cancer,
tumor response to chemotherapy, and survival outcomes.
Radiomics has been widely used in tumor diagnosis and prog-
nosis, however, it is still in the research phase and many efforts
should be taken for clinical translation. We also have discussed
the limitations and promises of radiomics for improvement in
further research. Our study aims are to help clinicians and
radiologists to get to know the basic information of radiomics
and encourage cooperation with scientists to mine data for a
better application in clinical practice.
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