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Digital pen featuresmodel characteristics of sketches and user behavior, and can be used

for various supervised machine learning (ML) applications, such as multi-stroke sketch

recognition and user modeling. In this work, we use a state-of-the-art set of more than

170 digital pen features, which we implement andmake publicly available. The feature set

is evaluated in the use case of analyzing paper-pencil-based neurocognitive assessments

in the medical domain. Most cognitive assessments, for dementia screening for example,

are conducted with a pen on normal paper. We record these tests with a digital pen

as part of a new interactive cognitive assessment tool with automatic analysis of pen

input. The physician can, first, observe the sketching process in real-time on a mobile

tablet, e.g., in telemedicine settings or to follow Covid-19 distancing regulations. Second,

the results of an automatic test analysis are presented to the physician in real-time,

thereby reducing manual scoring effort and producing objective reports. As part of our

evaluation we examine how accurately different feature-based, supervised ML models

can automatically score cognitive tests, with and without semantic content analysis.

A series of ML-based sketch recognition experiments is conducted, evaluating 10

modern off-the-shelf ML classifiers (i.e., SVMs, Deep Learning, etc.) on a sketch data

set which we recorded with 40 subjects from a geriatrics daycare clinic. In addition, an

automatedML approach (AutoML) is explored for fine-tuning and optimizing classification

performance on the data set, achieving superior recognition accuracies. Using standard

ML techniques our feature set outperforms all previous approaches on the cognitive tests

considered, i.e., the Clock Drawing Test, the Rey-Osterrieth Complex Figure Test, and

the Trail Making Test, by automatically scoring cognitive tests with up to 87.5% accuracy

in a binary classification task.

Keywords: digital pen features, machine learning, cognitive assessments, neuropsychological testing, Clock

Drawing Test, Trail Making Test, Rey-Osterrieth Complex Figure Test, deep learning

1. INTRODUCTION

Neurocognitive testing is a noninvasive method for measuring brain function by evaluating specific
cognitive abilities, including memory, fine motor control, reasoning, and recognition. Despite
recent technological advances, the majority of cognitive assessments used in practice is still
conducted using pen and paper with manual scoring by the physician afterwards. This includes
verbal interview-like tests, in which the physician takes notes of the patient’s answers, as well as tests
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in which the patient is asked to write or sketch as part of the
assessment task. Cognitive assessments have been the subject
of recent debate because there are limitations when they are
conducted using pen and paper. For example, the collected
material is monomodal (written form) and there is no direct
digitalization for further and automatic processing. In addition,
the results can be biased depending on the physician’s level
of expertise.

Nowadays, commercially available devices, such as styluses,
digital pens and digitizer tablets are capable of recording
pen input in real-time. The resulting data is a continuous
stream of timestamped x/y coordinates. Various, mathematically
defined, geometrical, spatial, temporal, pressure and other
features can be extracted directly from the raw input stream.
These digital pen features can then be used as input to train
supervised machine learning (ML) algorithms to automatically
score cognitive assessments, which has several benefits. For
example, automatic assessments are potentially more objective
than human assessments, because they are not biased by the
physician’s level of expertise. They can include the analysis of new
features (such as small movements not visible to the naked eye)
and allow physicians to shift their attention to other behavioral
cues such as speech or facial expressions. In addition, modern
hospital processes require a direct digitization of test results
without time-consuming and expensive manual transcription.

We present an interactive cognitive assessment tool that
records user input using a digital pen and automatically scores
the test by analyzing a set of features extracted directly from the
pen input. The clinician can observe the sketching process in
real-time on a mobile tablet, which opens up new opportunities
for telemedicine settings and eases compliance with Covid-
19 distancing regulations. Patients could, for instance, perform
cognitive assessments from home or behind a protective barrier
in the clinic. Afterwards, the results of our automatic test analysis
are presented in real-time to the clinician, thereby reducing
manual scoring effort and producing more objective reports.

Several automated scoring systems based on multi-stroke
sketch recognition and machine learning have been published
previously (Canham et al., 2000; Davis et al., 2015; Niemann
et al., 2018; Prange and Sonntag, 2019; Prange et al., 2019).
Such systems typically score assessments based on their scoring
schemes, thereby simulating the work of a clinician, and
need to include task dependent knowledge for each type of
assessment. This process is time-consuming and expensive, as
enough annotated data needs to be available and each cognitive
assessment needs to be modeled and implemented individually.
In the present work we go one step further. Instead of performing
traditional task dependent content analysis, we consider only
the sketch characteristics, which we extract from the raw pen
input signal using a feature set of more than 170 digital pen
features. This approach allows us to generalize the classification
of cognitive performance independently of the considered task
and opens up new approaches for transparent behavior analysis
in pen-based intelligent user interfaces.

Using our interactive cognitive assessment tool, we record
a total of 240 samples of the CDT, TMT and ROCF. Based
on the scoring results we label each sample as either healthy

or suspicious, latter indicating the need for further testing or
intervention. We use this as the ground truth and use the feature
vectors as input for 10 machine learning methods, with the
goal to classify cognitive test performance solely based on the
sketch characteristics. Our aim is to support fully automatic,
objective and accurate diagnostics of pen sensor input, which
can be used in hospitals and retirement homes to transparently
evaluate cognitive performance (i.e., without explicit testing), to
guide medical interventions, and to adapt cognitive training in a
personalized manner.

Two approaches for the automatic analysis of paper-pencil-
based cognitive assessments are presented here as part of our
interactive cognitive assessment tool. The first one is a traditional
approach that uses digital pen features to perform a content
analysis of drawn sketches and scores the test based on the
predefined medical scoring scheme, thereby automating the
process that is normally conducted manually by a physician.
The next big step in analyzing digital cognitive assessments
is to predict cognitive performance independently of the test
content, by looking only at the writing and sketching behavior
of users, which is explored in the second approach. In this
approach the cognitive test performance is predicted by only
considering the digital pen features, which are applicable
independent of the task, without performing further content
analysis. The aim is to support more automatic, more objective
and accurate diagnostics of pen sensor input, which can be
used in hospitals and retirement homes to transparently evaluate
cognitive performance (i.e., without explicit testing), to guide
medical interventions, and to adapt cognitive training in a
personalized manner.

2. RELATED WORK

Our related work is structured into three sections. The first
section summarizes digital pen feature sets, and the second
section presents most commonly used cognitive assessments.
Finally, in the third section we explore different approaches for
analyzing cognitive assessments using digital pen features.

2.1. Digital Pen Feature Sets
Traditionally, stroke level features are most often used for
statistical gesture recognition. One of the most prominent sets of
pen features was presented by Rubine (1991). It contains a total
of 13 features that are designed to reflect the visual appearance
of strokes in order to be used in a gesture recognizer. The feature
set includes geometric features, such as cosine and sine values of
the initial angle of the gesture, the length of the gesture or total
angle traversed, and temporal aspects, such as maximum speed
and duration of gestures. According to the author, these features
were determined empirically to work well on several different
gesture sets. Applying linear classifiers to these gesture sets,
Rubine reports recognition rates of over 96%, even for relatively
small training set sizes of 15 samples per class. Rubine’s feature
set has been successfully applied in pen-based intelligent user
interfaces (Stapleton et al., 2015; Williford et al., 2020), multi-
touch gesture recognition (Cirelli and Nakamura, 2014; Rekik
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et al., 2014) and even eye-tracking analysis (Çağla Çğ and Metin
Sezgin, 2015; Alamudun et al., 2017).

More recent work by Willems and Niels (2008) defines a
total of 89 features using formal mathematical descriptions
and algorithms. While their technical report mainly focuses on
the implementation details, their other publications show ML-
based applications of their feature set for multi-stroke gesture
recognition (Willems et al., 2005, 2009; Willems and Vuurpijl,
2007), forensic writer identification (Niels et al., 2007) and
writer verification (Brink et al., 2011). The Willems and Niels
feature set includes several features, which are also present
in Rubine’s set (Rubine, 1991), but it is overall comprised
of computationally more complex features. These include
curvature, perpendicularity, complex hull properties, histogram
analysis, acceleration and many more. It is also one of the
few feature sets that includes force-based characteristics, which
model the pressure that users apply to the writing surface, and
which, depending on the hardware device, is either measured
directly by the digital pen or the digitizer tablet. In addition,
the Willems and Niels feature set contains higher level meta
features, which account for crossings, connected strokes and
straight lines.

In 2013, Adrien Delaye and Eric Anquetil introduced the
HBF49 (Heterogeneous Baseline Feature) set (Delaye and
Anquetil, 2013), which contains 49 features and is specifically
designed to be used as a reference for the evaluation of symbol
recognition systems. Similar to Rubine (1991) an empirical
constructive approach is adopted for designing this feature set,
with the aim to handle a large diversity of symbols in various
experimental contexts (Delaye and Anquetil, 2013). In contrast
to (Willems and Niels, 2008), Delaye and Anquetil only consider
the simplest features from each feature category (geometrical,
temporal, etc.), to maintain a feature space of limited dimension
(Delaye and Anquetil, 2013). They evaluate their 49 features
using a standard SVM and a simple 1-Nearest-Neighbor classifier
on eight data sets with considerable diversity of content (digits,
characters, symbols, geometrical shapes and gestures). Results
show that using off-the-shelf statistical classifiers, the HBF49
representation performs comparably or better than state-of-the-
art results reported on these hand-drawn objects (more than 90%
accuracy using SVMs).

Another set of 14 features described by Sonntag et al. (2014),
presented as part of a pen-based interactive decision support
system for radiologists, is included in the selection. A common
practice in hospitals is that a radiologist’s dictated or written
patient report is transcribed by hospital staff and sent back to
the radiologist for approval, which takes a lot of time and lacks
direct digitization of pen input. Sonntag et al. present a system,
which allows doctors to use a digital pen to fill out the paper-
based structured reporting form, with direct digitization of pen
input in real-time. The input is not limited to numbers and text,
but can also include hand-drawn sketches, free text annotations
and correction gestures. Instead of forcing the user to switch
manually between writing, drawing, and gesture mode, a mode-
detection system is deployed to predict the user’s intention based
on the sketch input. To classify the input, a number of features
are calculated, including compactness, eccentricity, closure and

others. These features are used in a multi-classification and
voting system to detect the classes of handwritten information,
shape drawings, or pen gestures (Sonntag et al., 2014). According
to Sonntag et al., the system reaches a recognition rate of
nearly 98%. Their work shows how digital pen features can
be used transparently in pen-based intelligent user interfaces
to improve interactivity and reduce cognitive load for the
user.

So far 165 digital pen features from the four aforementioned
feature sets (Rubine, 1991; Willems and Niels, 2008; Delaye
and Anquetil, 2013; Sonntag et al., 2014) are included in the
selection. In addition, 11 features are considered, collected from
literature focused on the evaluation of cognitive assessments
(Werner et al., 2006; Cohen et al., 2014; Davis et al., 2015).
These features include the number of strokes, sketching time,
stroke distance, duration, average pressure, average velocity,
the variation of velocity, number of pauses, average pause
duration, the ratio between sketching and pausing, and average
lift duration. A comprehensible summary of these publications
is given in section 2.3 (Analyzing Cognitive Tests Using
Digital Pen Features). By directly analyzing the characteristics
of pen input and sketching behavior, a causal link between
sketch characteristics and cognitive test performance is created,
without the need to analyze the sketch content itself. This
way cognitive behavior is classified transparently during user
interaction and independent of the task at hand, thereby
enabling additional opportunities in interactive systems, such
as evaluation, feedback and content adaptation of pen-based
interfaces in real-time.

In summary, we consider a total of 165 (+11) digital pen
features, which are computable in real-time, and, among others,
cover geometrical, spatial, temporal, and pressure properties
of sketches. The complete list of features is provided in the
Appendix section.

2.2. Cognitive Assessments
Neurocognitive testing is a noninvasive method for measuring
brain function by evaluating specific cognitive abilities, including
memory, fine motor control, reasoning and recognition.
Despite recent technological advances, the majority of cognitive
assessments used in practice is still conducted using pen and
paper with manual scoring by the physician afterwards. This
includes verbal interview like tests, in which the physician takes
notes of the patient’s answers, as well as tests in which the
patient is asked to write or sketch. In this work, a selection
of paper-pencil cognitive assessments is considered based on
feedback from domain experts and a recent market analysis
of existing, widely used, cognitive assessments conducted by
Niemann et al. (2018). These assessments were successfully
digitalized during the Interakt project (Interactive Cognitive
Assessment Tool) (Sonntag, 2017), and are summarized in
Table 1, namely Age-Concentration (AKT) (Gatterer et al., 1989),
Clock Drawing Test (CDT) (Freedman et al., 1994), CERAD
Neuropsychological Battery (Morris et al., 1988), Dementia
Detection (DemTect) (Kalbe et al., 2004), Mini-Mental State
Examination (MMSE) (Folstein et al., 1975), Montreal Cognitive
Assessment (MoCA) (Nasreddine et al., 2005), Rey-Osterrieth
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TABLE 1 | Comparison of widely used cognitive assessments including the

percentage of tasks with pen input that contribute to the total score.

Assessment Execution

time

Pen input Sketch shapes

AKT (Gatterer et al., 1989) 15 min 100% Cross-out

CDT (Freedman et al., 1994) 2–5 min 100% Clock, digits, lines

CERAD (Morris et al., 1988) 30–45 min 20% Pentagons,

rectangles, circle, ...

DemTect (Kalbe et al., 2004) 6–8 min 20% Numbers, words

MMSE (Folstein et al., 1975) 5–10 min 9% Pentagons

MoCA (Nasreddine et al., 2005) 10 min 17% Clock, digits, lines

ROCF (Canham et al., 2000) 15 min 100% Circles, rectangles,

triangles, ...

TMT (Reitan, 1986) 3-5 min 100% Lines

Execution time does not include the time needed by the physician to score the test (several

minutes, depending on test).

Complex Figure (ROCF) (Duley et al., 1993), and Trail Making
Test (TMT) (Reitan, 1986). This selection of tests accounts
for a variety of patient populations and test contexts. In this
thesis, the focus is on the CDT, the TMT and the ROCF, as
they have the highest ratio of pen input relevant to the scoring
result. The AKT is discarded, because it only consists of the
rather simple task of crossing out figures, and preliminary
testing results show that the samples have too few strokes for
analysis.

For more than 50 years, the CDT is used as an assessment
tool for cognitive impairment. It is a simple paper and pencil
test in which the participant is asked to draw a clock face and
indicate a certain time (see upper left of Figure 1). The task is
primarily designed to test the visuospatial ability and is often used
in geriatrics to screen for signs of dementia, such as Alzheimer’s
disease, or other neurological conditions, including Parkinson’s
disease, traumatic brain injury, and stroke recovery. Usually a
trained professional observes the clock drawing task and scores
the final sketch based on a scoring scheme, which takes up
to a few minutes. Automatically scoring the CDT has several
benefits: Firstly, it significantly reduces the time caregivers have
to invest into administering the CDT; and secondly, it is likely
to produce more objective scores and potentially enables a more
detailed analysis (Sonntag, 2017). Not all scoring schemes are
equally well suited for automation, since most of them have been
designed to be quick and easy to be interpreted by human testers.
The 20-point Clock Drawing Interpretation Scale (CDIS) by
Mendez et al. (1992) is selected in this thesis, because it contains
clear test parameters that can be modeled mathematically and
computationally. In addition, the manual scoring procedure of
CDIS is very time-consuming and would highly benefit from
automatic computation. The CDIS contains items such as “All
numbers 1–12 are present,” which are to be rated 0 if not fulfilled
and 1 if satisfied. All 20 individual scores are then added up and
the final score indicates the severity of cognitive impairment. For
example, a score of 18 or less is likely to indicate Alzheimer’s and
similar forms of dementia.

Frequently used in neuropsychological testing, the Trail
Making Test (TMT) (Reitan, 1986) is a standardized paper
and pencil test in which the participant is asked to connect
numbered nodes similar to a child’s connect-the-dots puzzle
(see upper right of Figure 1). In its original form, it was part
of the Army Individual Test Battery (1944) and was later
subsequently incorporated into several cognitive test batteries
(Tombaugh, 2004). The TMT is widely available and can be easily
administered in practice (Dahmen et al., 2017). In addition, it can
be used to assess a variety of neurological disorders (Salthouse,
2011). Here, the use case of geriatrics is considered, where TMT
versions A and B are used to screen for signs of dementia. Each
of the two parts (A and B) consists of 25 encircled items on an
A4 sheet of paper and subjects are asked to draw a line through
them in the correct order as quickly as possible without lifting
the pen. TMT-A involves number sequencing (1 to 15), whereas
TMT-B includes set-shifting: it requires the subject to alternate
between numerical and alphabetic sequences (1A2B3...). The
main performance indicator used in clinical practice is the total
completion time, which is manually measured by the physician
using a stopwatch (Lezak et al., 2004; Bowie and Harvey, 2006).
The total scoring of the cognitive assessment is then calculated
by comparing the completion time to age-specific normative
values (Lezak et al., 2004; Dahmen et al., 2017).

An even more complex example of a neuropsychological
assessment, that is rated entirely based on pen input, is the
ROCF (Duley et al., 1993; Canham et al., 2000). A printed Rey-
Osterrieth figure template is presented to the subject, who is
then asked to copy it onto a blank piece of paper (see bottom of
Figure 1). Then the physician hides the template and the subject
is asked to immediately recall the figure frommemory and sketch
it onto another blank piece of paper. This is repeated once
again after approximately 30 min (delayed recall). Afterwards
the physician scores each sketch based on the visual appearance
of the 18 sub-figures of the ROCF (see Figure 2). Each sub-
figure is rated between 0 (non existent) and 2 (drawn and placed
correctly), and the individual scores are summed up to produce
the final score. In contrast to the CDT, the TMT and ROCF have
only one scoring scheme that is commonly applied in practice
according to medical guidelines.

2.3. Analyzing Cognitive Tests Using Digital
Pen Features
Cognitive assessments have been the subject of recent debate
because there are limitations when they are conducted using pen
and paper. For example, the collected material is monomodal
(written form) and there is no direct digitalization for further
and automatic processing. Additionally, the results can be
biased depending on the physician’s level of expertise. To
mitigate these shortcomings, digitizing and analyzing paper-
and-pencil assessments has been introduced recently (Sonntag,
2018). Using a digital pen to record neuropsychological tests
allows for the analysis of additional parameters that cannot
be considered otherwise. In Heimann-Steinert et al. (2020) we
show that replacing a standard ballpoint pen with a digital
pen has no influence on neurocognitive test results. Werner
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FIGURE 1 | Samples of cognitive assessments recorded during the Interakt project: Clock Drawing Test (upper left), Trail Making Test B (upper right), and

Rey-Osterrieth Complex Figure Test (bottom).

et al. (2006) perform an experiment in which they record
common cognitive assessment tasks using a digitizer tablet to
compare the handwriting behavior of healthy controls to patients
suffering frommild cognitive impairment (MCI) and Alzheimer’s
disease. Their feature set includes on paper time, in air time,
the ratio between in air and on paper time, on paper length,
velocity and pressure. They report significant differences between
the groups in almost all measures (Werner et al., 2006), for
example, temporal measures are higher and pressure is lower
in the cognitively impaired groups. Using ANOVA, Werner
et al. classify 69–72% of the participants correctly, although the
classification for the MCI group is reported to be relatively poor.
Findings by Schrter et al. (2003) support the statement that it
is possible to distinguish between different forms of cognitive
impairment and healthy subjects by analyzing handwriting
movements. They find that both patients with MCI and patients
with probable Alzheimer’s exhibit loss of fine motor performance
and that the movements of Alzheimer patients are significantly
less regular than those of healthy controls. In both publications
the classification is made entirely without content analysis, solely
based on the handwriting behavior of subjects.

Similar findings are reported by Davis et al. (2015), who use
an off-the-shelf digitizing ballpoint pen to analyze the cognitive
abilities of patients with dementia, Alzheimer’s and Parkinson’s
disease, by deploying a digital version of the CDT. A set of
digital pen features, including temporal aspects, such as speed
and pauses, is used as input for a collection of ML algorithms,
including SVMs, random forests, boosted decision trees, and
others. They report a top accuracy of 82% using SVMs to
classify dementia, but it is not clear which features exactly
are used. However, Davis et al. report that time-dependent
variables prove to be important for detecting cognitive change.
They can reveal when individuals are working harder, even
though they are producing normal-appearing outputs, e.g., the
total time to draw the clock differentiates those with amnestic
mild cognitive impairment (aMCI) and Alzheimer’s disease from
healthy controls (Davis et al., 2015). In Cohen et al. (2014)
the same authors elaborate on these findings by comparing the
ratio of drawing vs. non-drawing time for older adults with
depression during the CDT. Their evaluation reveals a significant
effect of age on drawing times during challenging tasks, while
there is no significant effect during simpler tasks like copying
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FIGURE 2 | The Rey-osterrieth complex figure (ROCF) is composed of 18 sub-figures.

figures. This could prove highly relevant for interactive pen-
based systems, in which content and task difficulty need to be
adjusted in real-time, depending on the cognitive load of users.
Oviatt et al. report similar findings in the educational domain,
where they use digital pen features to predict task expertise and
user performance inmathematics (Oviatt and Cohen, 2014; Zhou
et al., 2014; Oviatt et al., 2018). Using SVMs, Random Forests,
and Naive Bayes classifiers, they achieve up to 92% prediction
accuracy with features, such as average number of pen strokes,
total writing time, stroke distance, duration, pressure, and speed.
Similar techniques have been used to diagnose other cognitive
impairments, such as Parkinson’s disease (Drotár et al., 2014;
Kuosmanen et al., 2020), or to predict task difficulty and user
performance of cognitive tests (Barz et al., 2020). This shows
that the ML-based digital pen features approach considered in
this work can be applied to a variety of application domains and
use cases.

Digital pen features are also useful to perform a traditional
content analysis of cognitive assessments. Automatic scoring
systems mimic the scoring procedure performed by physicians,
which is regulated by medical guidelines and usually produces
a numeric score. In Prange and Sonntag (2019) we show how
to model cognitive status through automatic scoring of a digital
version of the CDT. We implement the Mendez scoring scheme
and create a hierarchy of error categories that model the test
characteristics of the CDT, based on a set of impaired clock
examples provided by a geriatrics clinic. Using a digital pen we
record 120 clock samples for evaluating the automatic scoring
system, with a total of 2,400 samples distributed over the 20
scoring classes of the Mendez scoring scheme. Samples are
scored automatically using a handwriting and gesture recognition
framework based on digital pen features and results show that we

provide a clinically relevant cognitive model for each subject. In
addition, we heavily reduce the time spent on manual scoring. A
similar automated analysis of the CDT based on ML is presented
by Souillard-Mandar et al. (2016). They design and compute
a large collection of content related features and explore the
performance of classifiers built using a number of different
subsets of these features and a variety of ML techniques. The
authors use traditional ML methods to build prediction models
that achieve high accuracy in detecting cognitive impairment.
However, their major drawback is, that the deployed feature set
is not reproducible, nor is there a data set available for repeating
the experiments.

Binaco et al. (2020) present an approach that uses the
digital CDT (Davis et al., 2010; Penney et al., 2010), a special
version of the CDT which includes the same instructions and
administration procedures as the original, and where they collect
pen data using the Anoto digital pen. The pen is very similar
to the Neo smartpen N2 we are using in our proposed system.
Both pens are capable of recording timestamped X/Y stroke data
including applied pressure. Binaco et al. perform feature selection
on a set of more than 300 features to train a neural network
that differentiates between mild cognitive impairment sub-types
and Alzheimer’s disease. However, the authors do not explicitly
state which features they use and how they are extracted, thus
making their approach hard to reproduce, i.e., there are several
approaches on how to compute and count individual features.
For example, a feature like the length of a stroke could be
computed for every of the 15 sub-parts of the clock (12 digits, 2
hands, and 1 circle), resulting in 15 features in total. In contrast,
in our approach we do not use specific test-dependent domain
knowledge, but calculate features like length across the entire
figure, resulting in one feature. This allows us to apply the
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same features and methods on different cognitive tests. In a
subsequent publication (Davoudi et al., 2021) the authors use 37
of the dCDT features to classify non-dementia and Alzheimer’s
disease/vascular dementia patients. Their list of features includes
general as well as CDT-specific features, including the total
number of strokes, completion time, average pressure, but also
clock hand lengths, average digit height, clockface area or “any
digit over 12.” Both related works provide excellent examples of
feature sets that are hand-crafted and fine-tuned toward a specific
cognitive test, and which show promising ML classification
results for the analysis of digital pen data.

Another very popular assessment is the Mini-Mental State
Examination (MMSE) introduced in Folstein et al. (1975).
The MMSE is a 30-point questionnaire, which is administered
by a trained professional, who leads the subject through the
questionnaire and sketching tasks whilst taking notes. The CDT
is often administered together with the MMSE, since both assess
different, complementing cognitive abilities (Palsetia et al., 2018).
In Prange et al. (2019) we present a multimodal system for
the automatic execution and evaluation of the MMSE, that
uses speech analysis in combination with handwriting and
gesture recognition based on digital pen features. Taking into
account multiple sensor inputs is the next step to improve
neurocognitive testing by taking advantage of multimodal, multi-
sensor interfaces (Oviatt et al., 2017). In Niemann et al. (2018)
we describe the architecture of a multimodal multi-sensor
assessment framework for cognitive impairment that combines
digital pen strokes, pen sensors, automatic handwriting and
gesture recognition and electrodermal activity (EDA). We use
EDA for potential inclusion of open sympathetic arousal, stress
and affect (e.g., emotion detection through autonomic nervous
system signals). To include biosensors (e.g., EDA) into future
digital pen-based interfaces is very interesting because it is a
process-tracing method (unobtrusive and continuous measure)
for neural activity and can reflect psychological processes. The
digital pen-based environment provides a sensor fusion context
for its interpretation. In the future, large scale community
screening programs can arise from resulting multimodal data
collections to identify multimodal profiles of impairment across
different cognitive, psychiatric and functional domains/abilities.
It will also help to guide differential diagnosis and further
neurocognitive assessment, especially because multimodal digital
assessments are unbiased to a large degree.

Clinically relevant examples of digitalized pen-based cognitive
assessments also include the ROCF (Duley et al., 1993; Canham
et al., 2000), which can be used for various purposes, such
as diagnosing the periphery (Coates et al., 2017). The authors
show that accurate reproduction of spatial features predictably
declined as the target was presented further in the visual
periphery. Such analysis of the periphery in the context of
the ROCF drawing tasks has shown relevant for a variety of
medical conditions, including age-related macular degeneration
and apoplectic stroke (Coates et al., 2017). Wang et al. (2017)
report a significant correlation between ROCF measures, tremor
and bradykinesia (impaired and slow body movement), such as
is often present in patients suffering from cognitive impairment
(i.e., Parkinson’s disease). Similarly, Salthouse (2011) shows that

the TMT can be used to assess a variety of neurological disorders
and it can even be adopted for diagnosing neurological disorders
in children (Reitan, 1971). His findings are backed by Barz et al.
(2020), who use digital pen features to predict task difficulty and
user performance of the TMT. Their automated evaluation uses
a subset of the features considered in this thesis and shows that
a correlation-based feature selection can be beneficial for ML-
based model training in certain scenarios. Similar results were
reported by Dahmen et al. (2017), who investigated the utility
of features in analyzing a digital version of the TMT. Their
considered features include, among others, the average pause
duration, number of lifts and average pressure.

Pereira et al. (2016) present a deep learning approach where
they transform the raw digital pen time-series sensor data
(i.e., tilt, acceleration and pressure) into gray-scale images.
The resulting images are used to train a convolutional neural
network (CNN) for the classification of Parkinson’s disease.
Instead of creating artificial images from the sensor data, several
deep learning approaches exist that aim to classify cognitive
performance based on the scans or rendering of the actual
sketches. Moetesum et al. (2020) use CNNs for the classification
and modeling of deformations in cognitive assessments,
including the CDT and ROCF. In similar approaches Amini et al.
(2021) and Youn et al. (2021) use CNNs to predict cognitive
impairment from the CDT and ROCF. Chen et al. (2021)
compare different CNN architectures like VGG16, ResNet-152
and DenseNet-121 for automatic dementia screening and scoring
of the CDT. A combination of image-based analysis and sensor
data is presented by Park and Lee (2021), who utilize CNN and
U-Net architectures for classification and segmentation of hand-
drawn CDT sketches. One of the drawbacks of these approaches
is that most deep learning models are inherently black-box,
making it difficult for clinicians to judge the classification results,
whereas models that utilize digital pen features provide more
transparent results.

To summarize, utilizing digital pen features, in ML-
based automated cognitive assessment systems, opens up an
opportunity to analyze handwriting and sketching behavior, that
could not be considered otherwise. Related work shows that these
features can be used for both, sketch content analysis and the
unobtrusive, transparent modeling of cognitive behavior from
raw digital pen input.

3. DATA COLLECTION METHOD

In the medical domain, pen-based neurocognitive testing is
used to assess a wide range of cognitive impairment, including
dementia, Parkinson’s disease or traumatic brain injury. Usually
a trained professional observes the test and scores the final
sketch based on a scoring scheme, which takes up to a few
minutes. An automatic scoring system has several benefits. First,
it significantly reduces the time caregivers have to invest in
administering the assessment. Second, it is likely to producemore
objective scores and potentially enables a more detailed analysis.
Therefore, this section presents a cognitive assessment tool that is
used to record a sketch data set of cognitive assessments with the
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FIGURE 3 | Architecture of the interactive cognitive assessment tool. Data is recorded using a digital pen and streamed to a backend service, where it is analyzed

before being loaded into the hospital information system and presented to the physician. ETL, extract, transform, load; a general concept of automatic data

processing.

FIGURE 4 | Renderings of the original input (A) as recorded by the digital pen during the data collection with a subject performing the TMT-B. The automated system

analyzes the input and annotates the stroke data with the information relevant for the algorithm’s final scoring decision (B). Green dots indicate the center points of the

circles and green stroke parts indicate that a circle has been successfully hit by a stroke, while red strokes could not be identified as connecting two circles.

goal to automatically analyze test performance based on digital
pen features.

3.1. Interactive Cognitive Assessment Tool
Architecture
Figure 3 provides a general overview of the automatic cognitive
assessment tool for the CDT, TMT and ROCF. It is fully
implemented and currently being deployed in a geriatrics daycare

clinic in Berlin. As prerequisite, digital versions of the original
assessment forms are created by scanning and then overlaying the
original with reference points and bounding boxes, e.g., for each
of the encircled nodes of the TMT. The Neo smartpen N21 and
its Euclidean 2D coordinate space are used to record the sketch
samples. With a built-in infrared camera, the N2 digital pen

1https://www.neosmartpen.com
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tracks its position on the piece of paper, by recognizing a micro-
dot pattern, that is printed on the paper forms. The pattern is
almost invisible to the human eye and can be printed by standard
laser printers, such as they are present in hospitals, clinics and
medical offices. This approach does not require special software,
the forms are printed directly from a PDF file. A physician
connects the digital pen via Bluetooth to a mobile application,
which can be run off any common Android smartphone or tablet
and is connected to the hospital information system. Recorded
handwriting data is streamed in real-time to the tablet, where
the digital pen strokes are directly rendered on the screen, giving
instant feedback to the physician. This setup has the potential
benefit that physician and subject do not need to sit close
together, e.g., in telemedicine applications or due to Covid-19
distancing regulations.

The raw pen data is exported to a backend service,
which creates a digital copy of the document for indexing
and documentation purposes. The pen data processing
server analyzes the pen strokes as a series of time-stamped

FIGURE 5 | Renderings of the original input (A) as recorded by the digital pen

during the data collection with a subject performing the CDT. The automated

system analyzes the input and segments the strokes into classes (B) (digits,

helper lines, center point, hands etc.). Using this segmentation the system

automatically performs a scoring based on the 20-point CDT scoring scheme

by Mendez et al. (1992).

two-dimensional coordinates. In case of the TMT, it matches
the input to the reference template of the original TMT, thereby
reproducing the path taken by the subject (see Figure 4B).
During this process, the algorithm produces transparent
explanations for encountered errors and extracts missing
connections. The completion time, which is the major scoring
criterion for the TMT, is calculated for each sample by subtracting
the timestamp of the first recorded pen stroke point from the
last recorded timestamp. For the CDT the strokes are segmented
into semantic classes, such as digits, helper lines, center point,
hands etc. (see Figure 5B). Based on this segmentation the
system generates scores following the 20-point CDIS scoring
scheme byMendez et al. (1992). Similarly, the ROCF sketches are
segmented into the 18 sub-figures of the ROCF (see Figure 6B)
and scored according to the official scoring scheme, whose score
is based on the individual scores of the sub-figures (Duley et al.,
1993; Canham et al., 2000).

For each subject, the results of the scorings are summarized
in a structured PDF document, which includes the completion
time, the original rendering of the recorded data, the annotated
version of the analyzed data and detailed information about
the scoring results. Providing a rendering of the unaltered
sample serves (Figures 4A, 5A, 6A) both documentation and
transparency requirements: physicians need to be able to examine
the original and to have a clear understanding of what was
generated by the system. To further increase the transparency of
the automatically generated scoring, the physician is presented
with a representation of what the algorithm detected, e.g., for the
TMT the reference points are indicated in green and strokes are
colored in red when recognized as not connecting any two nodes
(see Figure 4B). For the CDT and ROCF, the segmented sketches
are included (see Figures 5B, 6B). This kind of transparency is
highly relevant to the physicians, as they need to be able to judge
whether the automatic scoring, they are relying on, is accurate
and can be trusted. Similarly, the focus of this thesis is on the
analysis of digital pen features to predict test performance using
ML, which can be used to produce models that can be explained
by the features themselves.

FIGURE 6 | Renderings of the original input (A) as recorded by the digital pen during the data collection with a subject performing the ROCF. The automated system

segments the strokes into the 18 ROCF sub-figures, which are represented by different colors (B). Based on this segmentation the algorithm scores the individual

sub-figures, from 0 = “not present,” to 2 = “correct” (Duley et al., 1993).
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FIGURE 7 | The data collection setup in the geriatrics daycare clinic. The

subject (right) performs the cognitive test (here TMT) using a digital pen, which

is connected via Bluetooth. The result can be monitored in real-time on the

tester’s tablet (left).

3.2. CDT, TMT, and ROCF Data Collection
Method
The data set is collected during a repeated measures experiment
with 40 participants, who are recruited from the geriatrics
daycare clinic of a large German hospital in Berlin. Inclusion
criteria for participants are a minimum age of 65 and
the signed informed consent. Exclusion criteria are severe
cognitive disorders, mental diseases, severe auditive, visual,
linguistic, sensory or motor limitations, chronic pain or a legal
representative. A total of 40 older adults are included (age M =

74.4± 4.1 years, range: 67–85 years) in the experiment, of which
half are female. The majority of participants is well-educated
(57.5% high-level education) and right-handed (95.0%). A total
of 25 participants (62.5%) rate their health as rather or very good,
whereas 22 participants (55.0%) report to suffer from a chronic
disease such as diabetes (N = 8) or hypertension (N = 5). When
asked afterwards, whether the type of pen influences their test
performance, almost all participants (95.0%) answer the question
in the negative.

The experiment has two conditions, paper-pencil and digital
pen on paper. The versions of the cognitive assessments are the
same in both conditions, just the type of pen differs. For each
condition, participants perform a total of 6 tasks [CDT, TMT (A
and B), and ROCF (copy, immediate recall and delayed recall)].
To avoid order effects, the execution order is balanced: half of
the participants start with the paper-pencil version first and the
other half with the digital pen. Participants sit in a distraction-
free room at a table with the pen and the test in front of them (see
Figure 7). The physician sits on the opposite side of the table and
holds a tablet, to which the digital pen is connected and on which
the participant’s input can be tracked in real-time. The feedback
is only visible to the experimenter. The tablet records the data,
which is streamed via Bluetooth by the digital pen, for later
analysis. An important factor for successful deployment is the
seamless integration of digital medical applications into everyday
hospital processes. The system supports this requirement in
several ways. First, the tablet application and digital pen are
highly mobile and can directly be taken into the examination
room, or to the patient’s bedside, if necessary. Second, the
application has access to a list of patients from which the

physician can choose and initiate an assessment, thereby directly
linking the digital test to the correct patient file. If required for
the analysis, the backend service can access patient data, such
as demographic data (e.g., age) or previous assessments for a
comparison of cognitive performance at different points in time.
Third, all structured reports, generated during analysis, are sent
to the hospital information system, these include the generated
PDF report, the same information in a structured file format for
direct use in database systems and a replay video of the digital
pen recording. Lastly, the physician can access and query all
information in a web-based user interface.

Participants are given the original test instructions for each
task (Reitan, 1992; Duley et al., 1993; Freedman et al., 1994). For
each condition they are asked to first perform the ROCF (copy
and immediate recall), then the TMT-A and TMT-B (the order
is given by the TMT’s test design), followed by the CDT and
finishing with the ROCF (delayed recall). By letting participants
perform the other tests in between the ROCF tasks, the physician
makes optimal use of the time, as the test design requires a
pause between recall and delayed recall. The instructions for the
tests are given by a trained physician. In both modes (normal
and digital pen) the TMT task execution time is measured
manually by the rater using a stopwatch. There is a wash-out
phase between the modes of approximately 30 min. During this
phase, participants complete a self-developed questionnaire to
collect socio-demographic data and a questionnaire to record the
technology commitment (Neyer et al., 2012).

The collected data set consists of a total of 240 sketches (40x
CDT, 80x TMT and 120x ROCF). Four samples of the ROCF
are discarded, in which participants did not sketch anything
and for which therefore it is not possible to calculate any
features. After removing noise (e.g., notes and scribble) from
the sketches, the stroke coordinates are translated to the origin
of the Cartesian coordinate system (min(x) = 0,min(y) = 0).
No scaling or pre-processing is applied to the sketches to avoid
influencing participants’ sketching characteristics. Each sketch is
analyzed manually by a physician in accordance with the medical
guidelines. For the TMT the score is based on the measured
execution time in seconds (Reitan, 1986), while the 20-point
Mendez CDIS scheme (Mendez et al., 1992) is applied to the CDT
and the original 36-point scoring system for the ROCF (Duley
et al., 1993). In the considered use case of geriatrics, the scorings
are used as an indicator to assess whether or not to schedule
further cognitive testing procedures. Therefore, each sketch is
classified into one of two classes, healthy and suspicious, based on
the scoring results. Dependent on the execution time the TMT-
A and TMT-B samples are classified as suspicious if they take
over a minute or over 2 min respectively. Samples of the CDT
are labeled as suspicious if the score is 18 or less, whereas ROCF
samples are considered suspicious with scores of 30 or less. In
total 152 samples are labeled as healthy and 84 as suspicious.

4. EVALUATION

Our evaluation is concerned with the ML-based classification of
cognitive test performance. Cognitive assessments are commonly
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used in medicine to either diagnose disease (e.g., dementia,
Parkinson’s, etc.) or to screen for signs of cognitive impairment,
e.g., as part of large-scale community screening programs. In
both use cases, the underlying task is to categorize subjects
either as healthy or as suspicious, the latter of which would
indicate to conduct additional testing or medical interventions.
Traditional approaches for digitalizing cognitive assessments are
described in previous sections. These methods are proven to
be successful for a wide variety of cognitive assessments, but
they are also highly dependent on the specific test and often
analysis components include task-related semantic knowledge
that needs to be modeled manually for each type of test. The next
big step in analyzing digital cognitive assessments is to predict
cognitive performance independently of the test content, by
looking only at the writing and sketching behavior of users. This
approach allows us to generalize the classification of cognitive
performance independently of the considered task and opens up
new approaches for transparent behavior analysis in pen-based
intelligent user interfaces. Users do not longer have to perform
specific tests, instead, their handwriting and sketch input can

be analyzed transparently during common pen-based tasks like
sketching, taking notes or writing messages. In the future, such
a prediction of cognitive performance can be used in interactive
pen-based systems to adapt task difficulty and content in real-
time, depending on the cognitive state of the user. This is why
the last experiment aims at predicting cognitive performance by
only considering the syntactic digital pen features, which are
applicable independent of the task, without performing further
content analysis.

4.1. Methodology
Our cognitive assessments data set contains a total of 236
sketch samples of the CDT, TMT and ROCF. The samples
were manually scored and annotated by experts, who labeled
each sample as either healthy or suspicious. Based on the task
design all previous experiments considered only sketch-based
digital pen features, meaning that the entire sketch was used as
input for each of the feature functions to produce the feature
vector. However, many features, especially all of Rubine’s features
(Rubine, 1991) can be applied on a stroke-level as well. Taking

TABLE 2 | Top 5 ML methods for cognitive test performance classification per feature subset.

Feature subset ML method Accuracy Precision Recall F1 score AUC (ROC)

Sketch-176 Random forest 85.4% 85.5% 82.1% 0.833 0.821

SVM (Linear) 85.4% 83.9% 86.1% 0.846 0.861

Gradient boosted Tree 83.3% 83.7% 79.1% 0.806 0.791

AdaBoost 81.2% 79.7% 78.8% 0.792 0.788

SVM (Gaussian RBF) 81.2% 81.9% 76.2% 0.778 0.762

Sketch-165 AdaBoost 87.5% 86.0% 87.7% 0.867 0.877

SVM (Linear) 85.4% 83.9% 86.1% 0.846 0.861

Gradient boosted tree 83.3% 83.7% 79.1% 0.806 0.791

Random forest 83.3% 82.4% 80.5% 0.812 0.805

SVM (Gaussian RBF) 81.2% 81.9% 76.2% 0.778 0.762

Sketch-11 Deep learning 77.1% 75.4% 73.0% 0.738 0.730

Random forest 77.1% 75.4% 73.0% 0.738 0.730

AdaBoost 72.9% 71.9% 73.7% 0.719 0.737

SVM (Gaussian RBF) 72.9% 71.8% 65.7% 0.665 0.657

Decision tree 70.8% 71.5% 73.4% 0.704 0.734

Stroke-176 SVM (Gaussian RBF) 65.0% 64.5% 59.8% 0.588 0.598

Random forest 63.7% 62.2% 59.2% 0.586 0.592

Gradient boosted tree 63.5% 62.2% 58.3% 0.571 0.583

AdaBoost 61.6% 59.5% 56.1% 0.542 0.561

Logistic regression 61.5% 59.1% 57.0% 0.563 0.570

Stroke-165 SVM (Gaussian RBF) 64.8% 64.4% 59.6% 0.585 0.596

Gradient boosted Tree 63.8% 62.5% 58.9% 0.579 0.589

Random forest 63.7% 62.5% 58.5% 0.573 0.585

AdaBoost 61.8% 59.8% 56.1% 0.541 0.561

SVM (Linear) 61.4% 59.0% 56.8% 0.560 0.568

Stroke-11 SVM (Linear) 61.6% 59.5% 55.7% 0.534 0.557

Logistic regression 61.3% 59.1% 55.6% 0.535 0.556

Deep learning 61.3% 59.2% 55.1% 0.523 0.551

Gradient boosted Tree 61.2% 58.7% 55.9% 0.544 0.559

SVM (Gaussian RBF) 61.2% 59.3% 54.6% 0.511 0.546

The reported measures are average values (10-CV). Best results are highlighted as bold.
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into account stroke-level features as well serves a double purpose.
Firstly, many gestures and symbols consist of only one stroke
anyways and the research question arises, whether or not one
can predict cognitive performance from the sketching behavior
of as little data as single strokes, or if entire sketches are required.
Secondly, due to unforeseen circumstances in regard to the global
pandemic, the data collection had to be cut short, resulting
in a rather small number of overall sketch samples, but ML
approaches usually require a larger data set as input. In fact,
several of the publications presented in our related work section
are focused on the stroke-level rather than entire sketches.

Three feature subsets are considered the set of all 165 features,
a set of 11 features from related publications from the field of
analyzing cognitive assessments, and the combination of both
(176 features). The set of 11 features collected from literature
that focuses on the evaluation of cognitive performance (Werner
et al., 2006; Cohen et al., 2014; Davis et al., 2015), and includes
number of strokes, sketching time, stroke distance, duration,
average pressure, average velocity, variation of velocity, number
of pauses, average pause duration, the ratio between sketching
and pausing, and average lift duration. The complete list of
features is provided in the Appendix section.

The set of experiments conducted here is concerned with
the binary classification of samples as healthy or suspicious,
on a combination of sketch-level vs. stroke-level features, the
three feature subsets, and the same ten ML methods from
above experiments. This results in a total of 60 experiment
runs, where each classifier is trained individually on each
of the data and feature sets in a 10-fold CV scheme. The
selection of classifiers includes linear SVMs, Gaussian SVMs,
Logistic Regression, Nearest Neighbors, Naive Bayes, Decision
Trees, Random Forests, AdaBoost, Gradient Boosted Trees and
Deep Learning. Simple iterative hyperparameter optimization is
employed to find optimal settings for each of the ML classifiers.

In addition, AutoML experiments are conducted to verify
whether the prediction accuracy can be improved for this
problem as well. As in the previous experiment the Google
AutoML Tables framework is used to conduct the experiment.
Unfortunately, the approach requires at least 1,000 rows of data,
which is why only the stroke-level conditions are considered for
each of the feature subsets. Automated feature selection is used as
part of the AutoML experiments.

4.2. Results
In total 152 samples were annotated by experts as healthy and 84
as suspicious [14/40 CDT samples (35.0%), 14/80 TMT samples
(17.5%), and 56/116 ROCF samples (48.3%)]. The data was
collected from 40 elderly subjects, who participated in a study
at a geriatrics daycare clinic. More details on the subjects and
the collection method are provided in Section 3.2—CDT, TMT,
and ROCF Data Collection Method on page 10. Dividing the
data set into labeled strokes results in a total of 6,893 strokes
[508/1,211 CDT (41.9%), 117/438 TMT (26.7%), and 2,175/5,244
ROCF (41.5%)].

The most accurate top 5 ML methods for the classification
of cognitive test performance are summarized in Table 2. A
differentiation is made between sketch-based and stroke-based

calculation of features. Sketch-176 includes all 165 sketch-based
digital pen features, plus the 11 features related to cognitive
testing, whereas Sketch-165 only includes all 165 features and
Sketch-11 only includes the cognitive features. The Stroke-
176, Stroke-165, and Stroke-11 are their equivalent stroke-based
feature subsets. All reported measures are averaged as part of the
applied 10-fold cross-validation scheme.

Employing iterative hyperparameter optimization for each of
the ML classifiers results in the following model configurations.
The SVMs are set to a C of 1.5 with a maximum number of
iterations of 10,000. Logistic Regression is set to a C of 8.0 with
newton-cg as solver. A 7-Nearest Neighbors approach is used, and
Naive Bayes is set to a smoothing value of 10−9. All decision tree
based approaches are left at default settings, only the learning rate
of AdaBoost is set to 0.5. The Deep Learning network is set to
1,000 hidden layers with an alpha of 1, a learning rate of 0.001,
Adam as solver and tanh activation function.

AdaBoost achieves the highest accuracy with 87.5% on the
set of all 165 sketch-based features, followed by the linear
SVM with 85.4%. A similar accuracy of 85.4% is achieved by
Random Forests and the linear SVMs on the set of 176 features.
Considering only the 11 features related to cognitive testing, the
prediction accuracies drop below 80% with the highest accuracy
achieved by the Deep Learning approach with 77.1%. Stroke-
based approaches stay above the chance level with a maximum of
65.0% recognition accuracy for Gaussian RBF SVMs for all 176
features and 64.8% for the 165 features set. The corresponding
ROC curves in Figures 8, 9 support this observation. All stroke-
based approaches produce a flat ROC curve with a maximum
AUC of 0.598 for the Gaussian RBF SVMs. In contrast, the ROC
curves of their sketch-based equivalents are much steeper with
the highest AUC achieved by the AdaBoost approach with a value
of 0.877, followed by 0.861 for the linear SVMs.

The highest precision and recall scores are achieved by
AdaBoost as well with 86.0% and 87.7% respectively. In general,
the sketch-based feature sets with 165 and 176 features perform
best, and stroke-level feature approaches are just above chance
level. Similarly, the F1 scores are above 0.8 for the bigger
sketch-level feature sets, which indicates a good balance between
precision and recall. In contrast, the F1 scores for the stroke-level
conditions are all below 0.6.

To help understand why the results are rather poor, a
visualization of the underlying decision boundaries for the
individual ML classifiers is provided in Figure 10. The t-
distributed stochastic neighbor embedding (t-SNE) algorithm
presented by Van Der Maaten and Hinton (2008) and Van
Der Maaten (2014) is used to map the high-dimensional feature
space of 165 dimensions (the digital pen features) down to
the two-dimensional Euclidean space. In data sciences and
ML, t-SNE is commonly used as a nonlinear dimensionality
reduction technique, which is well-suited for embedding high-
dimensional data for visualization in a low-dimensional space
of two dimensions. Using standard techniques such as principal
component analysis (PCA) or multi-dimensional scaling for
dimensionality reduction results in crowded plots, where many
data points fall close together in the mapped two-dimensional
space, resulting in unhelpful layouts (Eitz et al., 2012). In
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FIGURE 8 | ROC curves for cognitive test performance classification per ML method and feature subset. The jagged curves are a result of the binary classification.
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FIGURE 9 | ROC curves for cognitive test performance classification per ML method and feature subset (continued).

contrast, t-SNE specifically addresses this problem by computing
a mapping of distances in high-dimensional space to distances
in low-dimensional space such that smaller pairwise distances
in high-dimensional space (which would produce the crowding
problem) are mapped to larger distances in two-dimensional
space, while still preserving overall global distances (Eitz et al.,
2012). The first two plots of Figure 10 show the raw digital pen
feature vectors for each sketch after being mapped using t-SNE
(components set to 2, a perplexity of 30, early exaggeration set
to 12.0 and a learning rate of 200.0 with a maximum of 1,000
iterations). Different classes are indicated by color (red= healthy,
blue = suspicious), solid points are training samples, whereas
semi-transparent points are used for testing. The Sign data set
(Almaksour et al., 2010) is included as a reference, because
research shows that its classes can be easily separated by ML
classifiers. The corresponding plot shows 17 almost completely
separated clusters, one for each of the classes of the data set. All
remaining plots of Figure 10 show the decision boundaries of the
ML classifiers for the prediction of cognitive test performance.

The results of the AutoML experiment on the stroke-level
feature sets are summarized in Table 3, with the corresponding
precision-recall and ROC curves presented in Figure 11.
Due to the binary classification, the framework does not
provide additional precision-recall score thresholds like for the
previous AutoML experiment. The results show only a minor
improvement in accuracy of 65.8%, with comparably high log loss
and low precision, recall and F1 score. Similarly, the ROC curves
are rather flat with the highest AUC ROC value of 0.671.

4.3. Discussion
Interestingly, the AdaBoost approach works best on this
classification problem, whereas its results on the sketch
recognition problems in previous experiments were rather
unremarkable. It is suspected that this is due to two
circumstances. First of all, the here considered problem is
a binary classification problem instead of the multi-class
classification in the previous experiments. In addition, a
simple fine-tuning of the AdaBoost hyperparameters drastically
improved the prediction accuracy. An accuracy of 87.5%

with similar precision and recall values is not perfect, but it
outperforms all previous approaches on the cognitive tests
considered (Schrter et al., 2003; Werner et al., 2006; Cohen et al.,
2014; Davis et al., 2015).

It seems that the 11 additional features for cognitive
assessments are not providing any added value. The best results
are achieved on the here presented set of 165 digital pen features.
An interesting observation is, that the SVMs and the Gradient
Boosted Tree models seem to have found an optimum on their
own for both Sketch-176 and Sketch-165, as the measurement
results are the same in all six cases, only the ROC curves differ
slightly. Figure 12 shows the top 10 averaged feature weights
for the linear SVMs. All ten most important features are similar
between both feature sets, only their weights differ. This might
indicate that the classifiers do select more relevant features on
their own during training and that providing the highest possible
amount of features can be a good choice. Further investigation
into this direction might be necessary to confirm or dismiss
this hypothesis. Judging from the importance of features in
Figure 12, the HBF49 feature compactness andWillems and Niels
feature average velocity are among the most important decision
factors. Compactness models how close the sample points are
to each other, which together with the average velocity leads to
the assumption that cognitively impaired subjects tend to sketch
noticeably slower than their healthy counterparts. This finding
is supported by related work, which shows that patients with
cognitive impairment experience loss of fine motor performance
and that temporal measurements are higher in the cognitively
impaired groups (Schrter et al., 2003; Werner et al., 2006).
However, analyzing Figure 12 it is clear that the other top 10
features likewise have a high influence. Hence, it is not enough
to look exclusively at the temporal features.

A closer look at Figure 10 gives an intuition on the reason
why the ML classifiers were able to achieve higher accuracies in
previous experiments. Based on the visualization of the samples’
feature vectors the reference Sign data set is separatedmore easily
in the high dimensional space than is the case for the cognitive
assessments data. Some of the healthy samples form clusters in
the upper right, while the majority of points is intermixed in the
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FIGURE 10 | A visualization of decision boundaries for the ML classifiers. The feature space of 176 dimensions (features) is mapped to the 2d Euclidean space using

t-SNE dimensionality reduction. Each dot represents the input feature vector of one sample from the data set. Classes are color-coded (red = healthy, blue =

suspicious), solid points are training samples, while testing samples are semi-transparent. The Sign data set (Almaksour et al., 2010) with its 17 classes is included as

reference, to give an example of an easily separable data set.

middle and lower left, making it difficult for several classifiers to
divide the data appropriately. Thismight be an oversimplification
of these complex models, but it nevertheless provides some
perspective on how the models work internally.

Considering both the ten off-the-shelf ML classifiers as well
as AutoML, it is clear that the stroke-level approach does not

work in this setting. This could be due to several reasons. Firstly,
not all of the digital pen features are necessarily well defined on
single strokes, e.g., average lift duration, pen-up/pen-down ratio
or straight-line ratio. Secondly, it is possible that the effects of
cognitive impairment do not show equally well in all types of pen
strokes, or that the features are not sensitive enough to detect
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FIGURE 11 | AutoML-based classification of cognitive test performance per feature subsets. Precision-recall curves (left) and ROC curves (right), dots indicate the

default 0.5 score threshold set by the framework.

this information from as little input as single strokes. Also, it
might be necessary to include a more fine-grained annotation
of the data. Currently, entire sketches are labeled as healthy or
suspicious based on the scoring result of the entire sketch. For the

stroke labeling, this sketch-wise annotation is propagated to each
individual stroke. Instead, it might be more sensible to annotate
individual strokes which are part of a specific error made by
the subject.
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TABLE 3 | Results of the AutoML experiments for cognitive test performance classification with different feature subsets used for training.

Feature subset Accuracy F1 score Log loss Precision Recall AUC (PR) AUC (ROC)

Stroke-176 65.5% 0.735 0.630 68.3% 79.6% 0.581 0.671

Stroke-165 65.8% 0.486 0.631 60.5% 40.6% 0.582 0.668

Stroke-11 64.2% 0.395 0.646 60.4% 29.3% 0.527 0.641

Data split: 80% training, 10% validation and 10% testing. Only stroke-based features are considered, because the AutoML approach requires at least 1,000 rows of data.

FIGURE 12 | Average weights assigned to the input features of the linear SVMs (top 10).

5. CONCLUSION AND FUTURE WORK

This work demonstrated how digital pen features, such as
geometrical, spacial, temporal and pressure characteristics can
be used to model users’ cognitive performance. We showed how
such features can be computed by using commercially available
digital pen technology in a real world scenario, and how to
effectively analyze them in real-time using machine learning
methods. Two approaches showed the utility of digital pen
features for the analysis of paper-pencil-based neurocognitive
assessments in the medical domain. A traditional approach
showed how cognitive assessments can be analyzed as part of
an interactive cognitive assessment tool using content analysis
and medical scoring schemes, thereby reducing manual scoring
effort and producing unbiased, explainable results. A second,
innovative approach showed how cognitive test performance

can be predicted by only looking at the sketch characteristics
modeled by the digital pen features, without performing further
semantic content analysis. Using standard ML techniques, the
set of 176 features outperformed all previous approaches on
the cognitive tests considered, i.e., the Clock Drawing Test,
the Rey-Osterrieth Complex Figure Test, and the Trail Making
Test. It automatically scored cognitive tests with up to 87.5%
accuracy in the binary classification task of categorizing sketches
as healthy or suspicious. This supports more automatic, more
objective and accurate diagnostics of pen sensor input, which
can be used in hospitals and retirement homes to transparently
evaluate cognitive performance (i.e., without explicit testing), to
guide medical interventions, and to adapt cognitive training in a
personalized manner.

The successful deployment of our interactive cognitive
assessment tool in a geriatrics daycare clinic shows that digital
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pen technologies are compatible with real world settings. Writing
and pen interaction also constitute familiar work practice in
hospitals, so the introduction of digital pen technology is
less likely to disrupt everyday processes, compared to other
alternatives. In contrast to other automated cognitive assessment
tools we do not necessarily have to perform any content
analysis, but instead are able to only consider how something
was sketched, which makes our approach independent of the
specific test. In addition, we create a causal link between user
behavior, pen features and test result, thereby improving the
explainability of our machine learningmodels. These findings are
also significant because they enable predictive analytics based on
pen input and open up opportunities to design new cognitive
testing capabilities, as well as adapting cognitive training in a
personalized manner based on individual data.

More generally, our approach can be used in various
intelligent user interface frameworks to evaluate and improve
multimodal human-computer interaction through pen-based
analytic capabilities in domains such as healthcare and education.
Future work could evaluate whether this approach can be
used to evaluate and improve multimodal human-computer
interaction through pen-based analytic capabilities in different
domains (Oviatt, 2013; Oviatt et al., 2017). For example, some
approaches show how digital pen features can aid in predicting
math expertise (Oviatt and Cohen, 2014; Zhou et al., 2014),
task difficulty and user performance (Barz et al., 2020). This
includes analyzing which features have the highest impact on
the recognition results, thereby producing more transparent
recognition results. Explanatory interactive machine learning
(IML) (Teso and Kersting, 2019) could be used to create
interfaces which provide direct feedback to the user and allow for
the inclusion of expert knowledge into the ML process (human-
in-the-loop). A prototypic example of such a system for sketch
recognition was presented as part of the MIT Media Lab course
on IML2 using the Gesture Recognition Toolkit (Gillian and
Paradiso, 2014).

Another promising topic that is currently being investigated
is to link the digital pen features directly to the individual
scoring results. Together with our colleagues at the Charit
in Berlin we aim to further evaluate this aspect as part
of an interactive user interface. The transparent feedback

2https://vimeo.com/76839534

about which features contribute to which item in the scoring
result helps physicians to understand why the model makes
certain predictions and can therefore increase trust in the system.
It might also help physicians to discover new approaches for the
analysis of cognitive assessments. Furthermore, by taking into
account the knowledge of domain experts as part of an IML
system, trust and explainability of the underlying ML models
could be further improved.
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