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Nonalcoholic fatty liver disease (NAFLD) is accompanied by a complex and multifactorial patho-
genesis with sequential progressions from inflammation to fibrosis and then to cancer. This het-
erogeneity interferes with the development of precise diagnostic and prognostic strategies for 
NAFLD. The current approach for the diagnosis of simple steatosis, steatohepatitis, and cirrhosis 
mainly consists of ultrasonography, magnetic resonance imaging, elastography, and various se-
rological analyses. However, individual dry and wet biomarkers have limitations demanding an 
integrative approach for the assessment of disease progression. Here, we review diagnostic 
strategies for simple steatosis, steatohepatitis and hepatic fibrosis, followed by potential biomark-
ers associated with fat accumulation and mitochondrial stress. For mitochondrial stress indica-
tors, we focused on fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), 
angiopoietin-related growth factor and mitochondrial-derived peptides. Each biomarker may not 
strongly indicate the severity of steatosis or steatohepatitis. Instead, multidimensional analysis 
of different groups of biomarkers based on pathogenic mechanisms may provide decisive di-
agnostic/prognostic information to develop a therapeutic plan for patients with NAFLD. For this 
purpose, mitochondrial stress indicators, such as FGF21 or GDF15, could be an important com-
ponent in the multiplexed and contextual interpretation of NAFLD. Further validation of the inte-
grative evaluation of mitochondrial stress indicators combined with other biomarkers is needed in 
the diagnosis/prognosis of NAFLD. (Gut Liver 2022;16:171-189)

Key Words: Non-alcoholic fatty liver disease; Biomarkers; Mitochondrial stress; Fibroblast 
growth factor 21; Growth differentiation factor 15

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is one of the 
most frequent causes of chronic liver disease worldwide, 
with an estimated prevalence ranging from 25% to 45%.1 
The disease encompasses significant fat accumulation 
(simple steatosis) in the liver to more progressive steato-
hepatitis (nonalcoholic steatohepatitis, NASH), which may 
develop into fibrosis, cirrhosis, and even hepatocellular 
carcinoma.2,3 Simple hepatic steatosis has a benign nature, 
whereas NASH is more likely to progress to liver cirrhosis 
and cancer.4 Approximately 10% to 29% of patients with 
NASH develop cirrhosis within 10 years; of these, 4% to 
27% develop liver cancer.5,6 Owing to its high prevalence 
and serious progression, reliable diagnostic and prognostic 

protocols for NAFLD have been in continuous demand. 
Until now, there is no “gold standard” for the noninvasive 
evaluation of patients with NAFLD to obtain essential in-
formation about disease severity and therapeutic plans.

The pathogenic features of NAFLD are quite complex 
and multifactorial. It was initially understood that the on-
set of NASH was due to sequential stimulation, referred to 
as the “two-hit theory.” The first hit consists of obesity, sed-
entary lifestyle, metabolic overload, and insulin resistance. 
In particular, hyperinsulinemia accompanying obesity is 
a key factor in fat accumulation in hepatocytes, as well as 
increased lipid peroxidation. In the case of the second hit, 
oxidative stress and pro-inflammatory cytokine produc-
tion contribute to hepatocellular injuries, resulting in the 
development of NASH.3,7,8 This is followed by a series of 
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inflammatory reactions and fibrosis, which cause the death 
of hepatocytes. Progressive fibrosis and scarring of the liver 
leads to cirrhosis, which may progress to hepatocellular 
carcinoma in some patients.1 Subsequently, this hypothesis 
was modified into a “multiple parallel theory,” which sug-
gested that concurrent metabolic stimuli were responsible 
for tissue damage and disease progression.

Notably, it has been suggested that mitochondrial dys-
function and endoplasmic reticulum (ER) stress closely 
participate in the pathogenesis of alcoholic and nonalco-
holic steatohepatitis.9-11 Calorie excess and less physical 
exercise increase lipid accumulation in the liver, eliciting 
reactive oxygen species (ROS) production from the cytosol 
and mitochondria. Higher ROS inflict prolonged stresses 
to mitochondria and the ER, accelerating further ROS 
generation from mitochondria and the ER. A positive 
feedback between oxidative stress and organellar dysfunc-
tion imposes detrimental consequences including inflam-
mation and cytotoxicity.12-14 

Koliaki et al. 15 demonstrated that liver tissues from 
obese humans with or without fatty liver have higher mi-
tochondrial mass and respiratory capacity as a metabolic 
adaptation named as “hepatic mitochondrial flexibility.”16 

However, those from NASH patients showed defective 
mitochondrial respiration with higher proton leak, aug-
mented hepatic oxidative stress, and increased inflamma-
tory responses.15 Structural abnormalities of mitochondria 
were also observed in liver tissues from NASH patients.12 
All these evidences imply that mitochondrial dysfunction 
could be one of critical decisive factors in the progression 
into serious stages of NAFLD.

The sequential change in the pathophysiologic condi-
tions of NAFLD can be detected by various kinds of bio-
markers.17 Indeed, there have been a large number of stud-
ies that aimed to explain the clinical correlation between 
the levels of each serum biomarkers and the severity of 
NAFLD in patients. These studies have shown that circu-
lating indicators reflect the different stresses involved in 
the pathogenesis of NAFLD. Fat-associated cytokines such 
as adiponectin, leptin, and retinol binding protein 4 (RBP4) 
indicate the existence of hyperlipidemic stress, whereas 
the elevation of aspartate and alanine transaminases are 
indicative of hepatocyte injury owing to steatohepatitis. 
Recently, a number of serum factors were identified as mi-
tokines, which are proteins upregulated and secreted in re-
sponse to mitochondrial stress induced by oxidative stress, 
mitochondrial proteostasis, and bioenergetic crisis.18,19 This 
is a composition of integrated stress responses, trying to 
overcome mitochondrial stress and protect against exacer-
bation of diseases. However, sustained and uncompensated 
stresses continue to upregulate mitochondrial factors and 

maintain their serum levels high. Mitochondrial biomark-
ers are known as a diagnostic indicator of mitochondrial 
diseases,20 but may also be an effective predictor of various 
metabolic and neurodegenerative diseases.21

Because of complicated pathophysiology and variable 
pattern of disease progression, the measurement of each 
single indicator cannot provide precise information for 
the diagnosis and prognosis of NAFLD. Instead, a multidi-
mensional evaluation of dry (clinical parameters, imaging 
data, or functional measurement) and wet (biochemical or 
metabolic parameters in serum, urine, and tissue samples) 
biomarkers is necessary for the integrative interpretation of 
the status of the patient. Here, we have described the cur-
rently used diagnostic strategies for the different stages of 
NAFLD; simple steatosis, steatohepatitis, and hepatic fibro-
sis. Subsequently, we introduced potential serum biomark-
ers related to fat accumulation, mitochondrial stress, and 
inflammation, which may constitute effective components 
of a multiplexed biomarker analysis for NAFLD.

CURRENT DIAGNOSTIC APPROACHES

1. Simple steatosis
Conventional ultrasonography is the most commonly 

used diagnostic tool for simple hepatic steatosis, as it is 
well tolerated and widely available, with a reasonable cost. 
However, as ultrasonography can only detect steatosis with 
>30% liver fat content, there is an underestimation of the 
number patients with 5% to 30% liver fat content.22 In ad-
dition, the diagnostic accuracy of steatosis is reduced in 
patients with obesity.23,24 Nevertheless, ultrasonography is 
still recommended as the first-step screening imaging mo-
dality for NAFLD.25,26

As an alternative for the diagnosis of hepatic steatosis, 
the controlled attenuation parameter (CAP) is a noninva-
sive ultrasound-based method. CAP was reported to be 
able to detect ≥11%, ≥33%, and ≥66% steatosis of hepato-
cytes with high area under receiver operating characteristic 
(AUROCs) of 0.91, 0.95, and 0.89, respectively.27 Despite 
an acceptable correlation with the histological severity of 
fat accumulation, there are limitations to the use of CAP 
for the precise grading of steatosis when it is influenced by 
several covariates, including diabetes and body mass index. 
Regardless of the weak points, the proposed CAP cutoff 
value in moderate to severe steatosis (>33%) is reliable 
(>250 dB/m) and considered as a promising point-of-care 
diagnosis technique for the rapid quantification of steatosis 
in clinical practice.

Magnetic resonance spectroscopy (MRS) is a noninva-
sive, reproducible and accurate imaging technique, which 
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is generally accepted as a noninvasive reference standard 
for the evaluation of liver fat. However, MRS has lim-
ited availability because it requires a sophisticated post-
processing method, and does not reflect the entire liver 
because it measures fat in small regions of interest.28 Mag-
netic resonance imaging-proton density fat fraction (MRI-
PDFF) is also a promising noninvasive measurement of 
steatosis. MRI-PDFF has demonstrated robust correlation 
and equivalency with MRS. In addition, unlike MRS, MRI-
PDFF allows fat mapping of the entire liver. Recent studies 
have shown that MRI-PDFF was more sensitive than liver 
biopsy for the assessment of liver fat content29-31 because 
a wider area of the liver can be analyzed. Therefore, MRI-
PDFF is expected to be utilized in clinical trials as an end 
point.32 Furthermore, MRI-PDFF has shown better perfor-
mance than CAP for the diagnosis of all grades of steatosis 
(AUROC 0.99 vs 0.85, respectively; p=0.0091).33,34 How-
ever, MRI-PDFF was unable to evaluate liver inflammation 
and fibrosis.35 In addition, careful co-localization of the 
“regions of interest” before and after treatment are critical 
for accurate follow-up measurements.

Many steatosis scoring systems based on serological 
indicators have been developed, including the fatty liver 
index,36 hepatic steatosis index,37 and NAFLD liver fat 
score.38 In one retrospective study, the diagnostic powers of 
these scoring systems were analyzed in a cohort of patients 
with the same extent of steatosis, and all were proven to 
be within an acceptable range (AUROC, 0.80 to 0.83).39 
However, these scoring systems have not been applied in a 
clinical practice as they do not provide more useful infor-
mation than that by conventional diagnostic approaches.

2. Steatohepatitis
Differential diagnosis of NASH from simple steatosis 

has clinical importance because compared to simple ste-
atosis, NASH has a completely different clinical course 
and prognosis. NASH, particularly when combined with 
fibrosis, has a high risk of progression to cirrhosis and can-
cer; therefore, it is the main target disease requiring active 
intervention. Routinely tested serological parameters, such 
as alanine aminotransferase or aspartate aminotransferase, 
may indicate intrahepatic inflammation in NASH. How-
ever, as a fluctuating and non-specific liver injury marker, 
aminotransferases are limited in the estimation of NASH 
severity.40,41 Recently, new normal alanine aminotransferase 
cutoff values for NASH (30 U/L for men and 19 U/L for 
women) have been suggested, but they need to be validated 
in different races and clinical conditions.42,43

Circulating keratin-18 (CK-18) has been investigated 
widely for its usefulness in the diagnosis of NASH.44 CK-
18 is a major intermediate filament protein and a substrate 

of activated caspase-3 in hepatocytes. Serum CK-18 level 
has a higher predictive value for NASH (AUROC 0.83, 
sensitivity 0.75, and specificity 0.81 for a CK-18 value 
of approximately 250 U/L),45-47 but it has several critical 
limitations: relatively low sensitivity,48 the lack of a com-
mercially available kit, and difficulties in the selection of 
adequate cutoff values.49 There are other models to detect 
NASH, including the NASH Test; however, most models 
are for selected subjects (e.g., patients with morbid obesity) 
and lack external validation.50-55 

One of the novel strategies to detect patient at a risk 
of NASH is the “omics” approach. By using a lipidomics-
based analysis, eicosanoid metabolites of polyunsaturated 
fatty acid were proven to be candidates of predictive bio-
markers for NASH,56 even though further validation is re-
quired.57 Several approaches have been proposed using ge-
netic biomarkers, such as single nucleotide polymorphisms 
located in PNPLA3. For example, the NASH score and 
NASH ClinLipMet score involve PNPLA3 genotyping.58,59 
The expression of microRNA, such as miR-122, is also un-
der evaluation as a candidate for the noninvasive diagnosis 
of NASH.60,61 Until now, owing to the limitations in clinical 
utility, none of the currently available serum markers could 
differentiate NASH from simple steatosis with the appro-
priate sensitivity and specificity.

3. Hepatic fibrosis
It has been shown that fibrosis is a major determinant 

of all causes of liver-related morbidity and mortality.62,63 As 
a representative noninvasive dry biomarker, transient elas-
tography (TE) is rapid, convenient, and widely validated 
diagnostic modality for the detection of liver stiffness.25,26 
The diagnostic accuracy of TE for advanced fibrosis and 
cirrhosis has been reported as good (88% to 89%) and 
excellent (93% to 96%).64 Two-dimensional shear wave 
elastography (2D-SWE) is an ultrasound-based estimation 
of tissue stiffness that measures wave velocity. Compared 
to TE, 2D-SWE is considered to have better performance 
for the diagnosis of advanced fibrosis. In the subgroup 
containing 172 patients with NAFLD, diagnostic accura-
cies were 93% and 92% for advanced fibrosis and cirrhosis, 
respectively.65 In addition, 2D- and 3D-magnetic resonance 
elastography (MRE) showed high accuracy and reliability 
in liver fibrosis evaluation.66 Recent studies have shown 
that 3D-MRE at 40 Hz was superior to 2D-MRE at 60 Hz, 
with AUROC values of 0.98 and 0.92, respectively, for the 
detection for advanced fibrosis.67 It is suggested that 3D-
MRE may become a promising tool for the longitudinal 
changes in the assessment of fibrosis. However, the pro-
cessing of 3D-MRE requires a much longer time and has 
not yet been applied in multicenter studies. Summarized 
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characteristics of diagnostic modalities for fibrosis are pre-
sented in Table 1.

To evaluate the severity of advanced fibrosis, several 
scoring systems based on clinical and biochemical variables 
have been developed. The NAFLD fibrosis score (NFS),68 
fibrosis-4 (FIB-4) index,69 aspartate aminotransferase-to-
platelet ratio index (APRI),70 and BARD score71 are non-
patented biomarker panels. They showed high negative 
predictive values, so they can effectively exclude subjects 
without advanced fibrosis, thereby avoiding further un-
necessary liver biopsies. However, they have poor positive 
predictive values and reduced accuracy for the detection 
of the earlier stage of fibrosis. Pro-C3 is a new serum bio-
marker derived exclusively from procollagen type III N-
terminal peptide (PIIINP) turnover (synthesis and deposi-
tion). Increased level of PIIINP occurs as a consequence 
of tissue repair and fibrosis associated with advanced liver 
cirrhosis.72 A Pro-C3-based fibrosis algorithm consisting 
of ADAPT (age, presence of diabetes, Pro-C3, and platelet 
count) has recently shown superiority to APRI, FIB-4, and 
NFS for the identification of patients with serious fibrosis 
with NAFLD.73 

Patented biomarker panels, including FibroTestⓇ,74 Hep-
ascore,75 enhanced liver fibrosis (ELF) test,76 and Fibrom-
eterⓇ,77 have shown marginal improvement in diagnostic 
competence over non-patented biomarkers. The ELF test 
(composed of hyaluronic acid, PIIINP, and a tissue in-
hibitor of metalloproteinase 1) was shown to have a good 
predictive value for advanced fibrosis with an AUROC of 
0.90, sensitivity of 80%, and specificity of 90% when using 
a cutoff of 10.35.76 Diagnostic algorithms for fibrosis are 
displayed in Table 2. From the perspective of longitudinal 

clinical outcomes, high NFS, FIB-4, APRI, and ELF scores 
have consistently been associated with an increased risk of 
cardiovascular- and liver-related mortality, and reinforcing 
the importance of these parameters in the prediction of 
long-term adverse clinical outcomes.78-80

The limitations of the current diagnostic strategies for 
NAFLD suggest that combinatorial interpretation of di-
verse dry and wet biomarkers could be efficient to improve 
accuracy and predictability. In particular, wet biomarker 
analysis to discriminate NASH from simple steatosis 
should provide early and decisive information in the man-
agement of NAFLD. For this purpose, multiplexed analysis 
of biomarkers reflecting different aspect of pathogenic pro-
cesses, including fat accumulation, mitochondrial stress, 
and inflammation, is required. Here, we have introduced 
potential biomarkers that have been investigated in the 
past 10 to 20 years but are still not applicable due to insuf-
ficient validation. 

FAT BIOMARKERS

1. Leptin
Leptin is considered an anorexigenic hormone that 

decreases food intake and induces energy expenditure. It 
is secreted from adipose tissues, and its circulating levels 
act as an indicator for energy reserves. It exerts its actions 
either through the activation of specific centers in the hy-
pothalamus or directly in peripheral tissues.81

Besides its role in energy homeostasis, it contributes to 
skin repair, regulation of puberty and reproduction, and 
the prevention of lipotoxicity. As demonstrated by animal 

Table 1.Table 1. Comparisons of Diagnostic Modalities for Hepatic Fibrosis in NAFLD

Modality Parameter assessed Cutoff values for advanced fibrosis AUROC Comment

TE LSM using assessment of shear 
wave velocity

FibroScanⓇ

LSM: <7.9 kPa (in NAFLD): no advanced fibrosis
LSM: >9.6 kPa (in NAFLD): advanced fibrosis

0.82–0.93 Cheap
Reproducible
Use of XL probe may under-report LSM

MRE LSM by shear wave measurement 
using MRI sequence with motion 
encoding gradient

MRE LSM: >4.15 kPa: advanced fibrosis 0.90–0.95 Expensive
Allows opportunistic assessment of LSM 

during MRI
Mitigates issues of obesity or presence 

of ascites
ARFI LSM integrating elastography and 

conventional B-mode ultraso-
nography

ARFI >1.98 m/s for F4 0.74–0.85 Cheap
Uses conventional ultrasound machines 

with modified algorithm
SSI LSM integrating elastography and 

conventional B-mode ultraso-
nography with simultaneous 
assessment of several shear 
waves of different velocity

SSI LSM >8.3 kPa 0.83–0.92 Cheap
Slightly higher reported accuracy for SSI 

for advanced fibrosis when compared 
with FibroScanⓇ

NAFLD, nonalcoholic fatty liver disease; AUROC, area under receiver operating characteristic; TE, transient elastography; MRE, magnetic reso-
nance elastography; ARFI, acoustic resonance force impulse; SSI, supersonic shear wave imaging; LSM, liver stiffness measurement;  MRI, mag-
netic resonance imaging.
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models, leptin prevents lipid accumulation at non-adipose 
sites. Leptin mediates its anti-lipogenic effect by lowering 
the sterol regulatory element-binding protein 1 level in the 
liver. Furthermore, leptin is involved in both innate and 
adaptive immunity.82,83

Because of compensatory change and receptor desen-
sitization, serum leptin levels are significantly higher in 
patients with NAFLD than in control subjects,84-88 and they 
also correlated with the severity of hepatic steatosis.89 How-
ever, there are contrasting results that show no significant 
increase in serum leptin levels of patients with NAFLD.90,91 
Leptin levels are slightly elevated during early cirrhotic 
stages but decline in advanced stages of the disease, mainly 
owing to the reduction in fat mass.92,93 

2. Adiponectin
Adiponectin is solely secreted from adipocytes into 

the blood stream as three oligomeric complexes, namely, 
trimers, hexamers, and higher molecular weight multim-
ers.94 The higher molecular weight form of adiponectin is 

responsible for insulin sensitivity and anti-inflammatory 
effects. Two receptors for adiponectin, known as AdipoR1 
and AdipoR2, are expressed ubiquitously in many organs, 
with predominant expression in the skeletal muscle and 
liver, respectively.82,94 Adiponectin improves insulin sensi-
tivities of hepatic and peripheral tissues and decreases total 
body fat.94

It also modulates endothelial cell inflammatory response 
by inhibiting nuclear factor κB (NF-κB) activation and 
blocking the release of tumor necrosis factor-α (TNF-α). 
In addition, adiponectin suppresses macrophage function, 
induces anti-inflammatory cytokines in leukocytes, and 
regulates lymphopoiesis. Adiponectin protects hepatocytes 
from the accumulation of triglycerides by either increasing 
β-oxidation or decreasing de novo synthesis of free fatty 
acids.82 

The accumulated data showed low serum levels of 
adiponectin in patients with NAFLD.95 Furthermore, hy-
poadiponectinemia was suggested to participate in the 
progression from steatosis to NASH.96 However, several 

Table 2.Table 2. Comparisons of Diagnostic Scoring Systems for Hepatic Fibrosis in NAFLD

Score Component Formula AUROC Cutoff values for advanced fibrosis

NFS Age
Hyperglycemia
BMI
Platelet count
Albumin
AST/ALT ratio

NFS=−1.675+0.037×age (yr)+0.094×BMI  
(kg/m2)+1.13×IFG/diabetes (yes=1, no=0) 
+0.99×AST/ALT ratio–0.013×platelet (×109/L) 
– 0.66×albumin (g/dL)

0.81–0.85 NFS (<−1.455): F0–F2 
NFS (1.455–0.675): indeterminate 
NFS (>0.675): F3–F4

FibroTestⓇ Bilirubin
GGT
A2-macroglobulin
Haptoglobin
Apolipoprotein A1

Proprietary formula 0.86 Fibrotest >0.30: advanced fibrosis (≥F3)

APRI AST
Platelets

APRI=(AST/AST [ULN])/platelet (×109/L) 0.67–0.78 APRI >1: advanced fibrosis (≥F3)

FIB-4 Age
AST
ALT
Platelets

FIB-4=(age [yr]×AST [IU/L])/((platelet  
[109/L]×(ALT [IU/L])2)

0.80–0.82 FIB-4 (<1.30): F0-F1
FIB-4 (>2.67): advanced fibrosis (≥F3)

BARD score BMI
AST/ALT ratio
DM

Weighted sum of: BMI ≥28=1 point,
AST/ALT ratio ≥0.8=2,
DM=1 point

0.67–0.87 BARD score >2: advanced fibrosis (≥F3)

ELF P3NP
TIMP-1
Hyaluronic acid

ELF=−7.412+(ln(HA)×0.681)+(ln(P3NP)×0.775) 
+(ln(TIMP-1)×0.494)

0.90 ELF >0.3576: advanced fibrosis (≥F3)

FibroMeter for NAFLD Age
Body weight
Glycemia
Platelets
AST
ALT
Ferritin

0.4184 glucose (mmol/L)+0.0701 AST (U/L) 
+0.00008 ferritin (μg/L)−0.0102 platelet (g/L) 
−0.0260 ALT (U/L)+0.0459 body weight (kg) 
+0.0842 age (yr)+11.6226

0.94 FibroMeter for NAFLD >0.49:  
significant fibrosis (≥F2)

NAFLD, nonalcoholic fatty liver disease; AUROC, area under receiver operating characteristic; NFS, NAFLD fibrosis score; APRI, aspartate amino-
transferase-to-platelet ratio index; FIB-4, fibrosis-4; ELF, enhanced liver fibrosis; BMI, body mass index; AST, aspartate aminotransferase; ALT, 
alanine aminotransferase; GGT, gamma-glutamyltransferase; IFG, impaired fasting glucose; ULN, upper limits of normal; DM, diabetes mellitus.
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studies have shown that adiponectin levels in patients 
with steatosis and NASH were not different from those 
in control groups.87,91 Meanwhile, adiponectin levels were 
increased in patients with liver cirrhosis and correlated 
with the severity of fibrosis.97-99 This pattern of alteration in 
serum adiponectin level is almost opposite to that of leptin 
and RBP4 in the progression of NAFLD.

3. Retinol binding protein 4
RBP4, mainly produced by the liver and visceral adi-

pose tissues, plays a role in insulin resistance and inflam-
mation in adipose and vascular tissues. Signaling receptor 
and transporter of retinol 6 (STRA6) has been suggested as 
a receptor for RBP4, but it is still unclear whether STRA6 
mediates biological function of RBP4.2 High serum RBP4 
have been consistently shown in patients with type 2 dia-
betes mellitus (T2DM), metabolic syndrome, and cardio-
vascular diseases (CVDs) along with obesity. Interestingly, 
exogenous RBP4 augments the secretion of inflammatory 
cytokines, including TNF-α, interleukin 6 (IL-6), mono-
cyte chemoattractant protein 1 (MCP-1), and interferon 
gamma (IFN-γ). Furthermore, the injection of RBP4 into 
normal mice induced insulin resistance, demonstrating 
that increased RBP4 may lead to diabetogenesis.100 

Similar to T2DM and metabolic syndrome, there are 
positive correlations between circulating RBP4 levels and 
fatty liver diseases.101-103 In contrast, patients with liver 
cirrhosis99 or chronic hepatitis C104 have reduced levels of 
RBP4, and some studies failed to find a relationship be-
tween RBP4, and steatosis and NASH.91,105-107 There exist 
confounding factors such as genetic susceptibilities, demo-
graphic characteristics, health status, and environmental 
factors, and most studies are based on observational stud-
ies with limited sample sizes.2,100 

MITOCHONDRIAL STRESS BIOMARKERS

1. Fibroblast growth factor 21
Fibroblast growth factors (FGFs) are known to have 

multiple roles in development and signaling across a broad 
array of tissues.108 They are associated with various ac-
tions such as cell growth and differentiation along with 
embryonic development.109 The human/mouse FGF family 
consists of FGF1 to FGF23, with mouse FGF15 being an 
ortholog to human FGF19.110 FGF21 is an endocrine mem-
ber of the FGF family that is primarily expressed in the 
liver, but is also synthesized in white adipose tissue (WAT), 
brown adipose tissue (BAT), the liver, pancreas, hypothala-
mus, skeletal muscles, and cardiac endothelial cells.108,111,112

Most FGFs are secreted and interact with heparin sul-

fate glycosaminoglycans (HSGAGs), which inhibits the 
dispersion of FGFs from their cell of origin. Signaling is 
produced after FGF peptides bind to one of the four FGF 
receptor subtypes (FGFR1-4). All these receptors are ty-
rosine receptor kinases that can dimerize after interaction 
with FGFs and initiate intracellular signaling. Unlike other 
FGFs, the endocrine FGF family, consisting of FGF19, 
FGF21, and FGF23, has a low affinity to HSGAGs and, 
therefore, diffuse into circulation to act on distal tissues.108 
As FGF receptors are ubiquitously expressed, endocrine 
FGFs require a coreceptor for effective binding and sig-
nal transduction. β-Klotho (KLB) is the coreceptor that 
binds to the C terminus of FGF21. Then, N terminus of 
FGF21 interacts with FGFR, leading to an FGF21/FGFR/
KLB complex. Of the subtypes of FGFRs, FGFR1c has the 
highest binding affinity to FGF21, and the subsequent 
activation of FGFR/KLB increases the phosphorylation of 
FGF receptor substrate (FRS) 2α and extracellular-signal-
regulated kinase (ERK) 1/2 in target tissues.108,109

The main physiological role of FGF21 is to maintain 
energy balance via the regulation of glucose and lipid me-
tabolism. The plasma concentration of FGF21 is increased 
by various physical stressors, including intense exercise, 
cold exposure, and nutrient deprivation or overload. In re-
sponse to starvation, FGF21 increases production of hepat-
ic glucose and ketone bodies to sustain energy balance.111 
WAT undergoes lipolysis by FGF21 to release glycerol and 
free fatty acids for the liver to use as gluconeogenesis and 
ketogenesis. Released fatty acids can activate nuclear hor-
mone receptor peroxisome proliferator-activated receptor 
(PPAR) α in the liver, leading to increased FGF21 expres-
sion.108,112 Upregulated FGF21 further increases gluconeo-
genesis, β-oxidation, and ketogenesis in the liver. 

Similar to starvation, the ketogenic diet increases FGF21 
expression via PPARα and promotes lipid oxidation and 
ketogenesis. FGF21 levels were notably increased by keto-
genic diet in rodent studies and have been suggested as a 
crucial mediator of hepatic lipid metabolism during keto-
genic states.113 In human studies, fructose diet strongly in-
duces FGF21 expression through carbohydrate-responsive 
element-binding protein instead of starvation or ketogenic 
diet.114 Intriguingly, low-protein diet for 28 days in humans 
dramatically increased plasma FGF21 levels. A low-protein 
diet decreases essential amino acids, which leads to the ac-
tivation of the amino acid sensor general control nondere-
pressible 2 (GCN2). Eukaryotic translation initiation factor 
2α (eIF2α) is phosphorylated by GCN2 and later induces 
activating transcription factor 4 (ATF4). The Fgf21 pro-
moter has multiple binding sites for ATF4, and this activa-
tion increases circulating and hepatic FGF21 levels.108 

Cold exposure promotes heat generation in BAT and 
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stimulates browning of WAT. FGF21 is induced by cold 
stimuli and plays a key role in adaptive thermogenesis in 
BAT, as well as beige fat after browning. Physical exercise 
increases the expression of FGF21 in the liver, which con-
tributes to the beneficial metabolic effects of exercise. It re-
mains unclear whether exercise induce FGF21 expression 
in skeletal muscle to act as a myokine.108,112 Meanwhile, 
FGF21 binds to FGFR in the hypothalamus to activate the 
hypothalamic–pituitary–adrenal axis for gluconeogenesis. 
In addition, KLB, acting as FGF21 coreceptor, is expressed 
in the hypothalamus, and FGF21 can cross the blood–
brain barrier. The role of FGF21 in the CNS has not been 
elucidated clearly.108

Recent studies have shown that FGF21 is induced by 
oxidative stress, ER stress, and mitochondrial dysfunction 
(Fig. 1); thus, it has been referred to as a stress hormone. In 
genetic mouse models with mitochondrial stress, the pro-
duction of FGF21 increased from BAT, skeletal muscles, 
and cardiac tissues.108 Mitochondrial dysfunction result-
ing from defects in autophagy has been shown to induce 
FGF21 in a manner that is dependent on the eIF2α–
ATF4 axis. The increase in FGF21 expression resulting 
from mitochondrial stress is suggested as a compensatory 
mechanism to alleviate mitochondrial dysfunction.112 
Consistently, pathophysiological states including T2DM, 
hepatic steatosis, steatohepatitis, and liver fibrosis have 
been associated with elevated levels of FGF21.108,111,112,115-119 
Particularly, FGF21 reflects disease severity; thus, serum 
FGF21 is higher in NASH compared to simple steato-
sis.15,117 Circulating FGF21 level is also elevated in patients 
with diabetic nephropathy with a negative correlation 

between glomerular filtration rate and FGF21.111 Further-
more, serum FGF21 levels were increased significantly in 
patients with coronary heart disease and further elevated 
in patients with coronary heart disease and hypertension 
and diabetes. In these patients, adverse lipid profiles were 
associated with increased serum FGF21, which may have 
resulted from a compensatory response or resistance to 
FGF21.110

2. Growth differentiation factor 15 
Growth differentiation factor 15 (GDF15) was first dis-

covered as a remote member of the transforming growth 
factor β (TGF-β)/bone morphogenetic protein superfam-
ily.120,121 Originally, GDF15 was described as an inhibitor of 
the production of TNF-α in lipopolysaccharide-stimulated 
macrophages and consequently named as macrophage 
inhibitory cytokine 1. However, subsequent studies did not 
support its function of macrophage suppression. GDF15 
is also referred to as placental transformation growth fac-
tor, prostate derived factor, placental bone morphogenetic 
protein, NSAID activated gene-1, and PL74.121 The GDF15 
gene is located on chromosome 19, and it is composed of 
two exons separated by an intron.122 The GDF15 protein 
is formed as a propeptide that homodimerizes and is later 
cleaved by a furin-like protease in the ER, to generate a 
mature dimer. The secreted mature dimer is then present 
in body fluids, such as the blood and cerebrospinal fluid. 
A high expression of GDF15 is found in the placenta and 
prostate, as well as in the kidney, liver, lung, pancreas, 
heart, brain, and skeletal muscles.121,123

Various stresses and tissue injuries upregulate GDF15 

Fig. 1.Fig. 1. Physiological regulation and functions of mitochondrial stress biomarkers. Physiological and pathophysiological conditions upregulating 
fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are listed above. FGF21 and/or GDF15 act on the liver, muscle, adi-
pose tissue, brain, pancreatic islets, and other organs to relieve metabolic stress.
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expression and release from macrophages, cardiomyocytes, 
adipocytes, and vascular smooth muscle cells into circula-
tion.121 Hypoxia or anoxia also increases GDF15 expression 
in colon carcinoma, glioblastoma, retinal pigment epitheli-
al cells, and prostate cancer. In addition, GDF15 is strongly 
induced by exposure to pro-inflammatory cytokines, such 
as IL-1β, TNF-α, angiotensin II, macrophage colony stim-
ulating factor, and TGF-β.121,123 The GDF15 promoter has 
two p53-binding sites that allow the induction of GDF15 
in response to various cellular stresses. In particular, it 
was suggested that p53 and ATF4, an upstream protein of 
ATF3, increases GDF15 transcription in patients with mi-
tochondrial disease. PPARγ ligands induce GDF15 expres-
sion through the activation of the early growth response 
protein 1. In addition, hypoxia-inducible factor-1α, NF-
κB, and Kruppel-like factor-4 are described as direct or 
indirect inducers of GDF15.123 

GDF15 was originally thought to control food intake 
and body weight by interacting with the TGF-β receptor, 
TGFβR2. However, it was recently found that very small 
amounts of contaminated TGF-β in commercial sources 
of GDF15 had a major influence on experimental results. 
Finally, a single transmembrane cell surface protein, glial 
cell-derived neurotrophic factor family receptor alpha-
like (GFRAL), was identified as the receptor for GDF15. 
GFRAIL is a member of the glial cell line-derived neu-
rotrophic factor family, and it requires interaction with a 
coreceptor rearranged during transfection for activation. 
Although GDF15 is broadly expressed in many tissues, the 
expression of GFRAIL is limited to the brain area, with the 
highest levels found in the brainstem.120

Animal studies showed the physiologic role of GDF15 
on the regulation of appetite and energy storage. GDF15-
knockout mice showed increased weight gain and adipos-
ity associated with elevated food intake.124 In contrast, 
weight loss with decreased fat mass was observed in trans-
genic mice expressing murine GDF15 and was the result 
of a reduced appetite. This decrease in appetite was shown 
to be mediated by the direct control of GDF15 on feeding 
centers in the hypothalamus and brainstem.125 Meanwhile, 
transgenic mice expressing human GDF15 had a lower 
fat mass when consuming an equivalent intake of food to 
that of wild-type mice.126 However, there has been contro-
versy owing to the different actions of murine and human 
GDF15. 

Mitochondrial dysfunction is involved in the patho-
genesis of insulin resistance, diabetes, CVDs, and neuro-
degenerative diseases. High levels of GDF15 in patients 
act as a protective mechanism, alleviating mitochondrial 
dysfunction through the induction of mitochondria-
related genes. The expression of PGC1α is upregulated in 

BAT, which suggests that GDF15 modulates mitochondrial 
functions such as biogenesis, thermogenesis, and fatty acid 
metabolism.123 Several studies have proposed that GDF15 
has cardioprotective effects under pathological conditions. 
For example, cardiac-specific GDF15 transgenic mice 
displayed partial resistance to pressure overload-induced 
hypertrophy. In addition, ventricular dilation and heart 
failure was attenuated by the injection of recombinant 
GDF15 to a mouse model of heart failure. Thus, circulating 
GDF15 levels are suggested to have a crucial protective role 
against pathologic stressful conditions; however, the exact 
mechanism is still not clearly understood.123 Serum GDF 
levels were higher in simple steatosis, NASH, cirrhosis as 
well as viral hepatitis.127-129

3. AGF (ANGPTL6)
Angiopoietin-like proteins have 8 members (ANGPTL1 

to 8) including angiopoietin-related growth factor (AGF), 
also known as ANGPTL6. AGF is a hepatokine involved 
in angiogenesis and epithelial cell proliferation, but also 
regulation of energy metabolism.130,131 AGF-knockout 
mice show obese phenotype caused by decreased energy 
consumption, while AGF-transgenic mice are resistant to 
diet-induced obesity with increased insulin sensitivity.132 In 
addition, exogenous AGF protein inhibits hepatic glucose 
production and decreased body weight.133 

Despite its beneficial effects on metabolism, serum lev-
els of AGF were elevated in polycystic ovarian syndrome,134 
diabetes,135 and metabolic syndrome,136 similar to FGF21 or 
GDF15. Kim et al.137 observed that high fat diet increased 
hepatic AGF expression, that was reduced by exercise 
training. In primary rat hepatocytes, AGF expression was 
increased by leptin incubation accompanied with STAT3 
phosphorylation, but the molecular mechanism regulating 
AGF expression remains unclear. Prospective cohort stud-
ies demonstrated that increased serum AGF levels precede 
the development of metabolic syndrome, having an inde-
pendent predictive value.138 

Interestingly, inhibition of mitochondrial oxidative 
phosphorylation increased expression of AGF accom-
panied with FGF21 expression in the adipose tissue.139 
Recombinant AGF treatment also upregulated FGF21 
expression and promoted mitochondrial β-oxidation.139 
The role of AGF in the development of NAFLD has not 
been investigated, but elevated serum AGF level, similar to 
FGF21, could indicate mitochondrial stress and reflect the 
progression of NAFLD.140

4. Mitochondrial-derived peptides
Humanin is the first mitochondrial-derived peptide 

(MDP) discovered, and it has been shown to have multiple 
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roles in different processes. It is encoded by an open read-
ing frame (ORF) within the gene for the 16S ribosomal 
subunit in the mitochondrial genome.141 Upon secretion, 
humanin is suggested to activate two different types of re-
ceptors. The first, formyl-peptide receptor-like-1 (FPRL1) 
and FPRL2, are G protein-coupled receptors and they in-
duce signals through ERK pathways. The second receptor 
is a trimeric complex that consists of ciliary neurotrophic 
factor receptor, cytokine receptor WSX-1, and transmem-
brane glycoprotein gp130. This further activates Janus ki-
nase, signal transducer and activator of transcription, and 
ERK.141,142 

Humanin has a neuroprotective effect against amyloid-β, 
a suggested cause of Alzheimer’s disease. A beneficial ef-
fect of humanin was demonstrated by amelioration of 
diazepam-induced memory dysfunction.143 It was later 
found that humanin binds to insulin-like growth factor 
binding protein 3 (IGFBP3) to exert its anti-apoptotic ef-
fects, as binding to IGFBP3 rescued the IGF-mediated cell 
survival.141,142 Cardiac ischemia–reperfusion injury was 
protected by humanin, which may be due to a decrease in 
ROS generation.144 In pancreatic β cells, humanin reduced 
inflammatory response by decreasing TNF-α, IL-1β, and 
IFN-γ and protected against apoptosis. Consistently, huma-
nin augments the glucose-stimulated insulin release along 
with decreases in visceral fat and body weight.141 Serum hu-
manin levels were found to be elevated in patients with pre-
eclampsia, which may be a response to cardiovascular stress 
experienced.145 Interestingly, circulating humanin levels sig-
nificantly decreased with age in both humans and rodents; 
moreover, the functional consequences remain unclear.146

There are six existing small humanin-like peptides 
(SHLP), SHLP1 to 6, which are positioned within the same 
16S rRNA gene where humanin is located.142 Similar to 
humanin, SHLP2 and SHLP3 have cytoprotective actions. 
SHLPs improve mitochondrial metabolism and reduce 
oxidative stress and apoptosis. In the presence of insulin, 
SHLP2 and SHLP3 accelerated the differentiation and 
insulin sensitivity of 3T3-L1 preadipocytes. Systemically, 
SHLP2 enhances the insulin-sensitizing effect by suppress-
ing hepatic glucose production and increasing glucose dis-
posal in peripheral tissues. Furthermore, SHLP2 treatment 
alone protected against amyloid β1–42-induced cell death, 
which contributes to the pathogenesis of Alzheimer’s dis-
ease. These neuroprotective and antioxidant actions of 
SHLPs may play a role in the regulation of aging.146

Mitochondrial ORF within the 12S rRNA c (MOTS-c) is 
located in the 12S rRNA gene, which consists of 16 amino 
acid peptides. It is expressed in various tissues and also 
present in circulation, suggesting both cell-autonomous 
and cell-nonautonomous roles.142,147 MOTS-c improves 

insulin sensitivity and metabolic homeostasis via AMP-
activated protein kinase (AMPK) activation as a result of 
increased 5-aminoimidazole-4-carboxamide ribonucleotide 
levels. The primary targets for MOTS-c are the skeletal 
muscle and adipose tissue.147 MOTS-c prevents high fat 
diet-induced obesity and insulin resistance owing to AMPK 
activation and glucose transporter GLUT4 upregulation 
in the skeletal muscle.148 Furthermore, MOTS-c augments 
physiological adaptation and tolerance to exercise, acting as 
a mitochondrial signal that mediates an exercise-induced 
mitohormesis response.149 MOTS-c increased carnitine 
shuttles and β-oxidation intermediates in fatty acid me-
tabolism. In addition, MOTS-c caused significant decreases 
in visceral fat and hepatic steatosis. The metabolic effects of 
MOTS-c did not originate from reduced intake of calories 
or increased physical activities but were instead associated 
with an increase in body heat production.148 This suggested 
that MOTS-c has a potential role in the browning (beiging) 
of adipose tissue.147 

Currently, it is difficult to correlate serum MDP concen-
tration with different stages of NAFLD patients. However, 
based on results from in vitro and in vivo animal studies, 
we have inferred that metabolic stresses alter the serum 
levels of MDPs, which may be a reflection of the disease 
severity and prognosis in patients with NAFLD.

INFLAMMATION BIOMARKER

1. Tumor necrosis factor-α
Inflammatory markers are known to be elevated in met-

abolic diseases; this is referred to as meta-inflammation. 
TNF-α is the first pro-inflammatory cytokine detected 
in adipose tissue and considered to be a pathogenic and 
prognostic biomarker of meta-inflammation. Accumulat-
ing evidence suggested that TNF-α expression in adipose 
tissue is increased in diabetic or obese animal and both 
serum TNF-α levels and its soluble receptors are positively 
correlated with visceral obesity.150 They demonstrated that 
genetic deletion of TNF-α enhances insulin sensitivity in 
diabetic ob/ob or diet-induced obese mouse. In NAFLD 
patients, expression and secretion of TNF-α and its recep-
tors increase along with the progression from simple ste-
atosis to NASH and cirrhosis.151-153 Circulating TNF-α level 
was significantly elevated with the nonalcoholic steatosis 
score which reflects the grade of hepatic inflammation and 
damage.154 Polymorphism in the TNF-α promoter region 
and soluble TNF-α receptor were also higher in NASH 
patients than in those with simple steatosis or control.155,156 
Furthermore, TNF-α was reported to be an independent 
predictor of advanced fibrosis in NASH patients.157,158 
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Based on the role of TNF-α in NAFLD progression, 
blockade of TNF-α signaling has been therapeutically ap-
proached to liver diseases.152 Pentoxifylline by inhibiting 
TNF-α production alleviates short-term survival of alco-
holic hepatitis and hepatic injury of NASH.159,160 

2. Interleukin-6
Elevated serum IL-6 levels have been reported in 

metabolic syndrome, CVDs and chronic pulmonary 
diseases.161 Visceral fat is known as a major site for IL-6 
release in obese human, at least 3-times higher secretion 
compared with subcutaneous fat.162 Increased IL-6 is sug-
gested to participate in the development of hepatic insulin 
resistance, since blocking IL-6 signaling improved insulin 
sensitivity in diet-induced obese mice.163 Further studies 
demonstrated that adipose tissue-derived IL-6 aggravates 
hepatic insulin resistance by upregulating suppressor of 
cytokine signaling 3, which is a critical negative regulator 
of the insulin and leptin signaling.164,165 Genetic deletion of 
IL-6 attenuated lobular inflammation and expressions of 
TGF-β and MCP-1 in diet-induced NASH mouse model.166 
Similar to TNF-α, IL-6 shows a positive correlation with 
steatohepatitis and fibrosis.153,167 Higher serum levels of 
IL-6 associated with increased oxidative stress were cor-
related with the histological severities in the progression of 
NAFLD.15,168,169 

3. Chemokines
Chemokine system is comprised of 50 chemokine 

ligands and 20 cognate receptors. Various cell types in 
the liver including leukocytes, hepatocytes, Kupffer cells, 
hepatic stellate cells, and sinusoidal endothelial cells can 
produce chemokines.170,171 CCL2, known as MCP-1, is a 

potent chemokine secreted upon inflammatory stimulus 
such as TNF-α or IL-6. In pathological conditions, CCL2 
upregulation is associated with hepatic lipid accumula-
tion and accelerates the development of NASH not only by 
recruiting immune cells but also producing inflammatory 
mediators.172,173 In addition, CCL2 plays a role in the re-
cruitment and activation of hepatic stellate cell, leading to 
the development of liver fibrosis.173,174 

Most of previous studies reported that circulating CCL2 
levels are higher in NASH group compared to those in 
simple steatosis, demonstrating an importance for the con-
version from fatty liver to pathologic inflammation.169,175 

Other chemokines such as CCL5 (RANTES), CXCL8 (IL-
8) and CXCL9 (MIG) were also reported to be correlated 
with the NAFLD progression and elevated their serum 
levels in NASH and cirrhosis.157,176,177 Higher CXCL8 level 
with augmented oxidative stress was reported in NASH 
group compared to steatosis, but TNF-α and IL-6 were not 
significantly increased in that study.178 

PERSPECTIVES ON DIAGNOSTIC 
STRATEGIES FOR NAFLD

Based on their pathophysiologic molecular mechanisms, 
serum biomarkers can be classified into several groups. 
One such group is fat markers, including leptin, adiponec-
tin, and RBP4 (Fig. 2). These are closely correlated with 
pathogenic adiposity: serum leptin and RBP4 tend to be 
increased in fatty liver and NASH, whereas adiponectin is 
downregulated (Table 3). In contrast, in some studies, no 
significant change is shown in leptin or adiponectin level 
in patients with NAFLD. Instead, the adiponectin/leptin 

Fig. 2.Fig. 2. Biomarkers for nonalcoholic fatty liver disease. Coordinated patterns of alterations in different types of serum markers during the progres-
sion of nonalcoholic fatty liver disease.
RBP4, retinol binding protein 4; FGF21, fibroblast growth factor 21; GDF15, growth differentiation factor 15; TNF-α, tumor necrosis factor α; IL-6, 
interleukin 6; CCL2, C-C motif chemokine ligand 2; CXCLs, C-x-C motif chemokine ligands; TGF-β, transforming growth factor β; PAI-1, plasmino-
gen activator inhibitor-1.

Fat markers
Leptin/adiponectin, RBP4...

Mitochondrial stress markers
FGF21, GDF15...

Inflammation markers

TNF- , IL-6, CCL2, CXCLs...�

Fibrosis markers

TGF- , procollagen, PAI-1...�

Simple steatosis Steatohepatitis Liver cirrhosis



Chang E, et al: Stress Biomarkers in NAFLD

https://doi.org/10.5009/gnl210106  181

Ta
bl

e 
3.

Ta
bl

e 
3.

 F
at

 a
nd

 M
ito

ch
on

dr
ia

l S
tr

es
s 

Bi
om

ar
ke

rs
 fo

r C
hr

on
ic

 L
ive

r D
is

ea
se

s

Bi
om

ar
ke

rs
Pa

th
op

hy
si

ol
og

ic
al

 c
on

di
tio

ns
Sa

m
pl

e 
si

ze
 a

nd
 s

ex
 (F

/M
)

Ci
rc

ul
at

in
g 

le
ve

ls
Sa

m
pl

e 
ty

pe
Re

su
lts

Re
fe

re
nc

e

Le
pt

in
N

AF
LD

 vs
 C

TL
15

 vs
 1

6 
(F

)
15

 vs
 1

4 
(M

)
12

.7
±3

.4
 vs

 6
.1

±2
.0

 n
g/

m
L

9.
1±

2.
2 

vs
 4

.9
±1

.7
 n

g/
m

L
Se

ru
m

§
↑

88

17
 (2

/1
5)

 vs
 2

0 
(3

/1
7)

9.
1±

1.
2 

vs
 9

.9
±1

.2
 n

g/
m

L*
Pl

as
m

a§
↔

95
68

 (4
1/

27
) v

s 
68

 (4
1/

27
)

 1
9.

7±
11

.7
 vs

 1
9.

1±
13

.0
 n

g/
m

L
Pl

as
m

a§
↔

90
33

 (2
3/

10
) v

s 
43

 (3
7/

6)
 5

8.
9±

28
.8

 vs
 5

9.
9±

34
.0

 n
g/

m
L

Se
ru

m
↔

91
N

AF
L 

vs
 C

TL
9 

(N
A)

 vs
 2

0 
(3

/1
7)

9.
4±

1.
3 

vs
 9

.9
±1

.2
 n

g/
m

L*
Pl

as
m

a§
↔

95
27

 vs
 2

7 
(M

)
14

.0
±1

1.
0 

vs
 7

.2
±4

.1
 n

g/
m

L
Se

ru
m

§
↑

89
63

 vs
 8

5 
(N

A)
18

 vs
 2

6 
(N

A)
27

.4
±1

1.
9 

vs
 2

6.
8±

12
.8

 n
g/

m
L 

(O
B)

27
.6

±1
2.

2 
vs

 2
5.

9±
9.

4 
ng

/m
L 

(M
et

S)
Se

ru
m

↔
 

↔
10

3

Bo
rd

er
lin

e 
N

AS
H

 vs
 C

TL
40

 (3
1/

9)
 vs

 4
3 

(3
7/

6)
62

.2
±3

3.
2 

vs
 5

9.
9±

34
.0

 n
g/

m
L

Se
ru

m
↔

91
N

AS
H

 vs
 C

TL
8 

(N
A)

 vs
 2

0 
(3

/1
7)

8.
8±

1.
7 

vs
 9

.9
±1

.2
 n

g/
m

L*
Pl

as
m

a§
↔

95
26

 (2
1/

5)
 vs

 4
3 

(3
7/

6)
59

.8
±2

7.
9 

vs
 5

9.
9±

34
.0

 n
g/

m
L

Se
ru

m
↔

91
11

 vs
 1

3 
(F

)
38

 vs
 1

7 
(M

)
11

.1
±1

.8
 vs

 5
.3

±0
.8

 n
g/

m
L*

5.
3±

0.
6 

vs
 3

.0
±0

.4
 n

g/
m

L*
Se

ru
m

↑
84

20
 vs

 2
0 

(F
)

35
.0

±1
6.

0 
vs

 1
5.

0 
±8

.2
 n

g/
m

L
Se

ru
m

§
↑

89
37

 (1
2/

25
) v

s 
25

 (1
5/

10
)

15
.5

±4
.8

 vs
 1

0.
3±

2.
5 

ng
/m

L
Se

ru
m

↑
86

57
 (2

9/
28

) v
s 

10
 (2

/8
)

17
 (7

/1
0)

 vs
 1

0 
(2

/8
)

14
.3

±1
1.

1 
vs

 5
.8

±6
.6

 n
g/

m
L

13
.3

±1
1.

3 
vs

 5
.8

±6
.6

 n
g/

m
L

Se
ru

m
↑

 
↑

87

Ci
rr

ho
si

s 
vs

 C
TL

19
 (1

4/
5;

 F
3-

4)
 vs

 6
9 

(4
3/

26
; F

0-
2)

32
.2

±1
7.

2 
vs

 1
9.

3±
10

.6
 n

g/
m

L
Pl

as
m

a§
↑

90
10

 vs
 1

5 
(F

)
42

 vs
 3

0 
(M

)
12

.2
±1

.2
 vs

 1
0.

0±
0.

3 
ng

/m
L*

6.
8±

0.
8 

vs
 7

.2
±0

.2
 n

g/
m

L*
Se

ru
m

§
↔

92

18
 vs

 3
4 

(F
)

31
 vs

 3
5 

(M
)

6.
0±

2.
5 

vs
 5

.8
±1

.6
 n

g/
m

L
4.

4±
2.

4 
vs

 3
.3

±1
.6

 n
g/

m
L

Se
ru

m
§

↔
93

12
 (2

/1
0;

 C
PC

 C
) v

s 
18

 (2
/1

6;
 C

PC
 C

)
3.

1 
(1

.0
–4

2.
5)

 vs
 6

.6
 (1

.4
–3

0.
8)

 n
g/

m
L†

Se
ru

m
↔

99
CV

H
 vs

 N
AS

H
11

 vs
 1

1 
(F

)
31

 vs
 3

8 
(M

)
5.

3±
0.

6 
vs

 2
.9

±0
.9

 n
g/

m
L*

11
.1

±1
.8

 vs
 6

.8
±2

.1
 n

g/
m

L*
Se

ru
m

↓
84

CV
H

 vs
 C

TL
10

 vs
 1

5 
(F

)
30

 vs
 1

5 
(M

)
8.

0±
0.

9 
vs

 1
0.

3±
0.

3 
ng

/m
L*

4.
6±

0.
6 

vs
 7

.0
±0

.3
 n

g/
m

L*
Se

ru
m

§
↓

92

13
 vs

 3
4 

(F
)

19
 vs

 3
5 

(M
)

5.
6±

2.
1 

vs
 5

.8
±1

.6
 n

g/
m

L
4.

0±
1.

8 
vs

 3
.3

±1
.6

 n
g/

m
L

Se
ru

m
§

↔
93

Ad
ip

on
ec

tin
N

AF
LD

 vs
 C

TL
17

 (2
/1

5)
 vs

 2
0 

(3
/1

7)
5.

9±
0.

5 
vs

 1
5.

7±
1.

6 
ng

/m
L*

Pl
as

m
a§

↓
95

52
 (2

1/
31

) v
s 

50
 (2

0/
30

)
13

.8
±7

.0
 vs

 1
7.

4±
9.

3 
μg

/m
L

Se
ru

m
§

↓
10

2
N

AF
L 

vs
 C

TL
63

 vs
 8

5 
(N

A;
 O

B)
18

 vs
 2

6 
(N

A;
 M

et
S)

2.
7±

0.
7 

vs
 4

.7
±1

.1
 μ

g/
m

L
2.

5±
0.

4 
vs

 4
.7

±1
.0

 μ
g/

m
L

Se
ru

m
↓

 
↓

10
3

17
 (7

/1
0)

 vs
 1

0 
(2

/8
)

9.
9±

5.
8 

vs
 1

1.
0±

5.
3 

μg
/m

L
Se

ru
m

↔
87

33
 (2

3/
10

) v
s 

43
 (3

7/
6)

5.
9 

±3
.6

 vs
 7

.7
±5

.1
 μ

g/
m

L
Se

ru
m

↔
91

Bo
rd

er
lin

e 
N

AS
H

 vs
 C

TL
40

 (3
1/

9)
 vs

 4
3 

(3
7/

6)
6.

3±
3.

7 
vs

 7
.7

±5
.1

 μ
g/

m
L

Se
ru

m
↔

91
N

AS
H

 vs
 C

TL
37

 (1
2/

25
) v

s 
25

 (1
5/

10
)

11
.1

±2
.1

 vs
 1

7.
3±

2.
8 

ng
/m

L
Se

ru
m

↓
86

57
 (2

9/
28

) v
s 

10
 (2

/8
)

8.
1±

5.
1 

vs
 1

1.
0±

5.
3 

μg
/m

L
Se

ru
m

↔
87

26
 (2

1/
5)

 vs
 4

3 
(3

7/
6)

5.
1±

3.
0 

vs
 7

.7
±5

.1
 μ

g/
m

L
Se

ru
m

↔
91

Ci
rr

ho
si

s 
vs

 C
TL

 
20

 (5
/1

5)
 vs

 2
0 

(5
/1

5)
15

.2
±1

.7
 vs

 8
.2

±1
.1

 μ
g/

m
L*

Pl
as

m
a

↑
97

38
 (1

2/
26

) v
s 

30
 (1

1/
19

)
2.

9±
1.

3 
vs

 2
.2

±1
.3

 μ
g/

m
L

Pl
as

m
a

↑
98

12
 (2

/1
0;

 C
PC

 C
) v

s 
18

 (2
/1

6;
 C

PC
 A

)
25

.7
 (3

.5
–7

7.
8)

 vs
 8

.0
 (2

.1
–4

7.
7)

 μ
g/

m
L†

Se
ru

m
↑

99
N

AS
H

 vs
 N

AF
L

M
et

a-
an

al
ys

is
↓

96
8 

vs
 9

 (N
A)

5.
69

±0
.4

9 
vs

 6
.1

6±
0.

78
 n

g/
m

L*
Pl

as
m

a§
↔

95



Gut and Liver, Vol. 16, No. 2, March 2022

182  www.gutnliver.org

Ta
bl

e 
3.

Ta
bl

e 
3.

 C
on

tin
ue

d

Bi
om

ar
ke

rs
Pa

th
op

hy
si

ol
og

ic
al

 c
on

di
tio

ns
Sa

m
pl

e 
si

ze
 a

nd
 s

ex
 (F

/M
)

Ci
rc

ul
at

in
g 

le
ve

ls
Sa

m
pl

e 
ty

pe
Re

su
lts

Re
fe

re
nc

e

A/
L 

ra
tio

N
AS

H
 vs

 C
TL

57
 (2

9/
28

) v
s 

10
 (2

/8
)

0.
8±

0.
7 

vs
 3

.5
±4

.0
 (×

10
3 )

Se
ru

m
↓

87
N

AS
H

 vs
 N

AF
L

57
 (2

9/
28

) v
s 

17
 (7

/1
0)

 
0.

8±
0.

7 
vs

 1
.4

±1
.3

 (×
10

3 )
Se

ru
m

↓
87

RB
P4

N
AF

LD
 vs

 C
TL

28
 vs

 3
6 

(F
)

45
 vs

 5
0 

(M
)

58
.9

±1
5·

9 
vs

 4
1.

8±
10

.4
 m

g/
L

65
.3

±1
5.

8 
vs

 5
8.

7±
13

.1
 m

g/
L

Se
ru

m
↑

10
1

52
 (2

1/
31

) v
s 

50
 (2

0/
30

)
41

.3
±9

.8
 vs

 3
2.

0±
8.

9 
μg

/m
L

Se
ru

m
§

↑
10

2
30

 (1
2/

18
) v

s 
30

 (1
7/

13
)

25
.2

 (2
0.

7–
27

.4
) v

s 
34

.7
 (2

7.
0–

43
.6

) μ
g/

m
L‡

Se
ru

m
↓

10
6

N
AF

L 
vs

 C
TL

44
 vs

 5
5 

(N
A)

25
.5

±1
1.

8 
vs

 2
6.

2±
15

.0
 μ

g/
m

L
Se

ru
m

↔
88

63
 vs

 8
5 

(N
A;

 O
B)

18
 vs

 2
6 

(N
A;

 M
et

S)
33

.2
±7

.5
 vs

 1
3.

9±
7.

0 
μg

/m
L

35
.1

 ±
 5

.8
 vs

 1
2.

8±
5.

4 
μg

/m
L

Se
ru

m
↑

 
↑

10
3

33
 (2

3/
10

) v
s 

43
 (3

7/
6)

41
.6

±1
3.

6 
vs

 4
1.

6±
21

.2
 m

g/
L

Se
ru

m
↔

91
Bo

rd
er

lin
e 

N
AS

H
 vs

 C
TL

40
 (3

1/
9)

 vs
 4

3 
(3

7/
6)

39
.2

±1
0.

6 
vs

 4
1.

6±
21

.2
 m

g/
L

Se
ru

m
↔

91
N

AS
H

 vs
 C

TL
26

 (2
1/

5)
 vs

 4
3 

(3
7/

6)
44

.8
±1

5.
8 

vs
 4

1.
6±

21
.2

 m
g/

L
Se

ru
m

↔
91

Ci
rr

ho
si

s 
vs

 C
TL

 
12

 (2
/1

0;
 C

PC
 C

) v
s 

18
 (2

/1
6;

 C
PC

 A
)

2.
9 

(1
.9

–9
.4

) v
s 

6.
5 

(2
.6

–1
3.

0)
 μ

g/
m

L†
Se

ru
m

↓
99

Ci
rr

ho
si

s 
vs

 C
TL

 
37

 (N
A;

 F
3-

4)
 vs

14
 (N

A;
 F

0)
22

.2
±1

1.
9 

vs
 3

4.
2±

N
A 

μg
/m

L
Se

ru
m

↓
88

CV
H

 vs
 C

TL
N

A 
(H

AI
 s

ev
er

e 
vs

 m
in

im
al

)
19

.2
±1

2.
5 

vs
 3

5.
8±

16
.5

 μ
g/

m
L

Se
ru

m
↓

88
CV

H
 vs

 C
TL

75
 vs

 4
1 

(N
A)

79
.5

 (5
9.

6–
11

8.
3)

 vs
 8

3.
6 

(7
0.

3–
90

.0
) n

g/
m

L‡
Se

ru
m

↔
10

5
N

AS
H

 vs
 N

AF
L

33
 (1

8/
15

) v
s 

16
 (7

/9
)

21
.4

±1
0.

3 
vs

 2
6.

9±
13

.4
 m

g/
L

Se
ru

m
↔

10
7

FG
F2

1
N

AF
LD

 vs
 C

TL
82

 (4
4/

38
) v

s 
77

 (4
0/

37
)

20
0 

(8
7–

41
0)

 vs
 9

3 
(7

0–
18

0)
 p

g/
m

L‡
Se

ru
m

↑
11

5
22

4 
(8

2/
14

2)
 vs

 1
24

 (5
4/

70
)

40
2.

4 
(2

42
.0

–6
18

.3
) v

s 
19

8.
6 

(1
35

.0
–4

12
.6

) p
g/

m
L‡

Se
ru

m
↑

11
6

14
6 

(8
1/

65
) v

s 
74

 (4
0/

34
) 

29
1 

(1
67

–4
78

) v
s 

10
4 

(7
0–

16
1)

 p
g/

m
L‡

Se
ru

m
↑

11
7

N
AF

L 
vs

 C
TL

6 
(4

/2
) v

s 
6 

(3
/3

)
7.

7±
2.

9 
vs

 0
.3

±0
.1

 n
g/

m
L

Se
ru

m
↑

11
8

N
AS

H
 vs

 C
TL

9 
(7

/2
) v

s 
6 

(3
/3

)
2.

5±
0.

8 
vs

 0
.3

±0
.1

 n
g/

m
L

Se
ru

m
↑

11
8

68
 (3

1/
37

) v
s 

91
 (4

2/
49

)
56

.9
 vs

 1
9.

1 
pg

/m
L

Se
ru

m
↑

N
AS

H
 vs

 N
AF

L
82

 (4
5/

37
) v

s 
64

 (3
6/

28
)

35
4 

(2
02

–5
93

) v
s 

24
9 

(1
59

–3
86

) p
g/

m
L‡

Se
ru

m
↑

11
7

68
 (3

1/
37

) v
s 

11
1 

(5
5/

56
)

56
.9

 vs
 2

7.
7 

pg
/m

L
Se

ru
m

↑

Ci
rr

ho
si

s 
vs

 C
TL

24
 (7

/1
7)

 vs
 1

0 
(4

/6
)

60
7.

7 
(3

1.
2–

2,
00

0.
0)

 vs
 2

10
.8

 (3
1.

2–
75

0.
6)

 p
g/

m
L†

Pl
as

m
a

↑
11

9
CV

H
 vs

 C
TL

75
 vs

 4
1 

(N
A)

79
.9

 (2
1.

1–
17

0.
9)

 vs
 2

4.
1 

(2
1.

1–
17

0.
9)

 p
g/

m
L‡

Se
ru

m
↑

10
5

GD
F1

5 
N

AF
L 

vs
 C

TL
72

 (2
5/

47
) v

s 
40

 (2
3/

17
)

0.
7 

(0
.4

–1
.1

) v
s 

0.
7 

(0
.4

–1
.2

) n
g/

m
L‡

Se
ru

m
↔

12
7

N
AS

H
 vs

 C
TL

78
 (4

3/
35

) v
s 

40
 (2

3/
17

)
1.

1 
(0

.7
–1

.8
) v

s 
0.

7 
(0

.4
–1

.2
) n

g/
m

L‡
Se

ru
m

↑
12

7
Ci

rr
ho

si
s 

vs
 C

TL
 

27
 (1

8/
9;

 F
3-

4)
 vs

 1
23

 (5
0/

73
; F

0-
2)

1.
8 

(1
.0

–2
.2

) v
s 

0.
7 

(0
.5

–1
.2

) n
g/

m
L‡

Se
ru

m
↑

12
7

Ci
rr

ho
si

s 
vs

 C
TL

23
 (6

/1
7)

 vs
 2

0 
(N

A)
5.

2±
0.

2 
vs

 0
.7

±0
.1

 n
g/

m
L*

Se
ru

m
↑

12
8

CV
H

 vs
 C

TL
20

 (5
/1

5)
 vs

 2
0 

(N
A)

1.
4±

0.
2 

vs
 0

.7
±0

.1
 n

g/
m

L*
Se

ru
m

↑
12

8
54

 (2
6/

28
) v

s 
10

1 
(4

6/
55

)
1,

23
2 

vs
 4

90
 n

g/
L 

(e
rr

or
 va

lu
es

, N
A)

Se
ru

m
↑

12
9

44
 (1

8/
26

; c
om

pe
ns

at
ed

) v
s 

10
1 

(4
6/

55
)

1,
86

1 
vs

 4
90

 n
g/

L
Se

ru
m

↑
12

9
47

 (2
9/

18
; d

ec
om

pe
ns

at
ed

) v
s 

10
1 

(4
6/

55
)

3,
48

3 
vs

 4
90

 n
g/

L
Se

ru
m

↑
12

9

D
at

a 
ar

e 
pr

es
en

te
d 

as
 m

ea
n±

SD
 (%

) u
nl

es
s 

ot
he

rw
is

e 
in

di
ca

te
d.

 
F/

M
, f

em
al

e-
to

-m
al

e 
ra

tio
; N

AF
LD

, n
on

al
co

ho
lic

 fa
tty

 li
ve

r 
di

se
as

e;
 C

TL
, c

on
tr

ol
 w

ith
ou

t l
ive

r 
di

se
as

es
; N

AF
L,

 n
on

al
co

ho
lic

 fa
tty

 li
ve

r;
 N

AS
H

, n
on

al
co

ho
lic

 s
te

at
oh

ep
at

iti
s;

 C
VH

, c
hr

on
ic

 v
ira

l h
ep

at
iti

s;
 

OB
, o

be
se

; M
et

S,
 m

et
ab

ol
ic

 s
yn

dr
om

e;
 C

PC
, C

hi
ld

-P
ug

h 
cl

as
s;

 A
/L

, a
di

po
ne

ct
in

-t
o-

le
pt

in
 r

at
io

; R
BP

4,
 re

tin
ol

 b
in

di
ng

 p
ro

te
in

 4
; H

AI
, h

is
to

lo
gi

ca
l a

ct
iv

ity
 in

de
x;

 F
GF

21
, f

ib
ro

bl
as

t g
ro

w
th

 fa
ct

or
 2

1;
 G

D
F1

5,
 

gr
ow

th
 d

iff
er

en
tia

tio
n 

fa
ct

or
 1

5;
 N

A,
 in

fo
rm

at
io

n 
no

t a
va

ila
bl

e;
 F

0-
4,

 fi
br

os
is

 s
co

re
s 

ac
co

rd
in

g 
to

 th
e 

M
ET

AV
IR

 s
ys

te
m

; ↑
, i

nc
re

as
e;

 ↓
, d

ec
re

as
e;

 ↔
, n

on
si

gn
ifi

ca
nt

. 
*M

ea
n±

st
an

da
rd

 e
rr

or
 o

f t
he

 m
ea

n;
 † M

ed
ia

n 
(r

an
ge

); 
‡ M

ed
ia

n 
(in

te
rq

ua
rt

ile
 ra

ng
e)

. B
io

m
ar

ke
rs

 w
er

e 
qu

an
tif

ie
d 

by
 e

nz
ym

e-
lin

ke
d 

im
m

un
os

or
be

nt
 a

ss
ay

 (u
nl

es
s 

ot
he

rw
is

e 
m

en
tio

ne
d)

 o
r 

§ ra
di

oi
m

m
un

o-
as

sa
y.



Chang E, et al: Stress Biomarkers in NAFLD

https://doi.org/10.5009/gnl210106  183

ratio showed a greater correlation with NASH than with 
each single marker.87 These alterations in leptin or adipo-
nectin were attenuated or reversed in cirrhotic progression.

Mitochondrial stress indicators, such as FGF21 and 
GDF15, are emerging biomarkers that can be applied to the 
diagnosis of different metabolic or neurodegenerative dis-
eases.179 AGF, MDPs, and other humoral factors could be 
additional candidates for mitochondrial stress biomarker. 
The accumulation of experimental evidence has supported 
their clinical applicability to the identification of pathologic 
stress levels. The diagnostic power of mitochondrial stress 
indicators may arise from the simultaneous measurement 
of other biomarkers. Along with the deteriorative advance 
in NAFLD, each serologic marker displays its own pattern 
of upward or downward changes, which are dependent 
on its involvement in disease progression. These variable 
trends in biomarkers may lead to incorrect diagnosis. In 
contrast, if we measure the concentration of different types 
of biomarkers at the same time, the variation in the kinet-
ics of serum biomarkers may provide a novel clue to evalu-
ate a patient’s condition. The coordinated and structured 
pattern of changes in different types of biomarkers could 
enhance the estimation of NAFLD status and ability to 
predict its prognosis.

In conclusion, we have suggested that multidimensional 
biomarker analysis is required for the diagnosis of the dif-
ferent stages of NAFLD. Each biomarker introduced above 
may not be strongly correlated with the severity of NASH 
or liver fibrosis. Instead, integrative analyses of multiple 
groups of biomarkers should provide effective and critical 
information to select high-risk patients with NASH from 
patients with simple steatosis. To predict the development 
of NASH or fibrosis, we establish an estimating equation 
according to the correlation of biomarkers’ level to disease 
progression. So far, there has not been sufficient data to 
draw a diagnostic algorithm for NAFLD. However, as more 
interpretation is performed with the equation, data could 
be feed forward to improve its accuracy. Deep learning 
process may further enhance its diagnostic performance 
and preciseness of analysis algorithm. Mitochondrial stress 
could be an important component in the multiplexed eval-
uation and contextual interpretation of NAFLD patients. 
These multidimensional analyses could effectively reduce 
unnecessary invasive diagnostic approaches in advance. 
Further investigations are required to validate the effective-
ness of stress indicators in determining the diagnosis and 
prognosis of NAFLD.
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