
Predictions of Ligand Selectivity from Absolute Binding Free Energy
Calculations
Matteo Aldeghi,† Alexander Heifetz,‡ Michael J. Bodkin,‡ Stefan Knapp,§,∥,⊥ and Philip C. Biggin*,†

†Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road,
Oxford OX1 3QU, U.K.
‡Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
§Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research
Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
∥Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN,
U.K.

⊥Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany

*S Supporting Information

ABSTRACT: Binding selectivity is a requirement for the development of a safe drug, and it is a critical property for chemical
probes used in preclinical target validation. Engineering selectivity adds considerable complexity to the rational design of new
drugs, as it involves the optimization of multiple binding affinities. Computationally, the prediction of binding selectivity is a
challenge, and generally applicable methodologies are still not available to the computational and medicinal chemistry com-
munities. Absolute binding free energy calculations based on alchemical pathways provide a rigorous framework for affinity
predictions and could thus offer a general approach to the problem. We evaluated the performance of free energy calculations
based on molecular dynamics for the prediction of selectivity by estimating the affinity profile of three bromodomain inhibitors
across multiple bromodomain families, and by comparing the results to isothermal titration calorimetry data. Two case studies
were considered. In the first one, the affinities of two similar ligands for seven bromodomains were calculated and returned
excellent agreement with experiment (mean unsigned error of 0.81 kcal/mol and Pearson correlation of 0.75). In this test case,
we also show how the preferred binding orientation of a ligand for different proteins can be estimated via free energy calculations.
In the second case, the affinities of a broad-spectrum inhibitor for 22 bromodomains were calculated and returned a more modest
accuracy (mean unsigned error of 1.76 kcal/mol and Pearson correlation of 0.48); however, the reparametrization of a
sulfonamide moiety improved the agreement with experiment.

■ INTRODUCTION

Binding selectivity is one of the most important requirements
for the development of a safe therapeutic; in fact, large differences
in binding affinity between the intended target and similar
proteins are often sought in order to avoid unwanted and often
unknown side effects.1 Conversely, in some cases a compound
with a specific promiscuous profile might be equally desirable
for reasons of efficacy.2,3 Yet, the identification and design of
selective (or promiscuous) chemical tools is a difficult task, in
particular when working on protein families with conserved folds
and similar binding pocket residues. A typical example is

provided by the protein kinase family, for which different assay
panels have been developed in order to determine selectivity
profiles of different ligands.4,5 The development of bromodo-
main (BRD) chemical probes poses the same selectivity
challenge due their conserved fold.6 BRDs are epigenetic mark
readers that specifically recognize ε-N-lysine acetylation motifs;
61 human BRDs have been found in 46 human nuclear and
cytoplasmic proteins, and they are typically divided into eight
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families based on sequence and structural similarity (Figure 1a).7

With acetylation motifs often found in macromolecular com-
plexes implicated in chromatin remodeling, DNA repair and cell-
cycle control, and especially on histones, BRD inhibitors are
finding broad application inmedicine and basic biological research,
in particular in oncology and inflammation. Despite their sequence
diversity, they all share a conserved fold (Figure 1b) that renders
the design of selective ligands a challenging task. Selective probes
can, however, lead to better preclinical target validation and
profiling, and eventually to better clinical outcomes.6

Engineering selectivity adds considerable complexity to the
rational design of new drugs, as it involves the optimization of
multiple binding affinities. Different strategies have been adopted
for selectivity design, such as shape and electrostatics comple-
mentarity, conformational selection, water displacement, and
allosteric binding. Yet, engineering selectivity still remains a
challenge for the drug design process.1 Computationally, the
prediction of binding selectivity is a difficult task too, and not
many generally applicable methodologies are available to the
computational and medicinal chemistry communities. Henrich
et al.8 evaluated the performance of target-specific scoring
functions, developed from known sets of binders, for three
protein targets: thrombin, trypsin, and urokinase-type plasmi-
nogen activator. The quality of the predictions appeared to be
system dependent and the authors discussed how inclusion of
protein flexibility and conserved waters might result in better
docking methods. Thanks to advances in theory and computing,
however, the prediction of binding affinities using physics-based
biomolecular simulations is becoming increasingly feasible. All-
atom simulations naturally take into account effects such as the
dynamics of the binding pocket, the role of the solvent, and
entropy changes upon binding, which are poorly captured with
scoring-function-based approaches.8,9 In particular, free energy
calculations based on molecular dynamics (MD) and alchemical
pathways could offer an alternative and more rigorous approach
to the problem, and one that does not require the use of training
sets. Moreover, such calculations are becoming progressively
more accessible to current levels of computational power.10,11

Recent studies have shown the potential of relative binding free
energy (RBFE) calculations for small-molecule lead optimiza-
tion.12−14 RBFE calculations can also allow the evaluation of free
energy changes upon protein mutation,15−19 but they become
unfeasible when a large number of residues differ between the
proteins. Absolute binding free energy (ABFE) calculations are a
more general approach as they do not require knowledge of any
affinity value in advance and, in principle, could be used to
compare the affinity of any ligand for any protein target. Such
calculations could thus be employed as a tool to probe ligand
selectivity across different binding pockets, in order to identify
the scaffolds providing the desired selectivity profile. For
instance, Lin and co-workers used absolute free energy cal-
culations to explain the specificity of Gleevec for Abl kinase
versus similar homologous tyrosine kinases.20−22 More recently,
we have shown how calculations based on standard implementa-
tions of alchemical transformations might be applied for the
accurate affinity estimation of diverse, drug-like organic mol-
ecules.10

ABFE calculations are computationally demanding and,
despite the few examples mentioned above, their performance
has had only limited testing against experimental data, with a
focus on model systems.23−26 Careful retrospective validation is
therefore still needed before the methodology can be confidently
applied in a prospective drug discovery scenario, with the ability
to anticipate when these calculations might be the most suitable
tool and where potential pitfalls might lie. Here, we test the
robustness of ABFE calculations across different binding pockets,
in order to assess the accuracy of the computational method
against multiple proteins and thus evaluate its performance and
potential utility for the study of ligand selectivity. We calculated
the affinities for 36 complexes, involving 22 bromodomains and 3
ligands (RVX-OH, RVX-208, and bromosporine; see Figure 1c),
without any information on the affinities or structures of the
complexes. We compare the results with high-quality isothermal
titration calorimetry (ITC) data and discuss the performance of
the calculations in relation to their potential application in drug
design.

Figure 1. Ligands and proteins considered in this study. (a) Phylogenetic tree of the human bromodomain family; in green are the BRDs included in the
study. (b) Conserved fold of human bromodomains (PDB ID 2OSS). Depicted as red spheres is the conserved water network found in most BRD
binding pockets, and as blue sticks the conserved hydrogen bond donor, an asparagine residue in the majority of BRDs. A transparent surface shows the
cavity in between the ZA and BC loops forming the acetyl-lysine binding pocket. Two clefts, placed in between the WP residues (conserved in
subfamilies I and II) and the ZA and BC loops and exploited by many bromodomain inhibitors are indicated. (c) Chemical structures of the
compounds.
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■ METHODS
System Setup. Protein conformations were taken from crystal

structures as listed in Tables 1 and 2 (more information on the protein
models is in Table S1). If multiple chains were present in the asymmetric
unit, only monomer A would be kept for the calculations. Missing atoms
in the crystals were modeled with the WHAT-IF web interface27,28 and
all organic molecules were removed from the system, whereas all
crystallographic waters were retained. Proteins were then protonated
using the Gromacs tool (Pdb2gmx). The binding poses for RVX-208
and RVX-OH were taken from a previous study,10 where the poses
were identified via docking following the same procedure here used for
bromosporine. The preferred binding pose for bromosporine was
identified by docking the ligand in an apo X-ray structure of BRD4(1)
(PDB ID 2OSS) and then performing free energy calculations on the
clustered poses. For bromosporine and RVX-208, the highest affinity
pose (as predicted by the calculations) was assumed to be conserved and
was modeled into the pockets of the other bromodomains by structural
alignment to BRD4(1) with PyMOL. For RVX-OH, however, two
alternative poses were tested via free energy calculations for all
bromodomains binding to this ligand. When placing ligands into the
pockets, crystallographic water molecules within 1.4 Å of the organic
molecule were removed in order to avoid steric clashes. All other
crystallographically resolved water molecules were retained, so that the
conserved network of water molecules at the bottom of the cavities was
preserved in the calculations. After adding hydrogens with Maestro
(v9.5, Schrödinger), the ligands were parametrized with the general
AMBER force field29 (GAFF v1.7) using AmberTools14. Restrained
electrostatic potential (RESP) charges30 (HF/6-31G*//HF/6-31G*)
for bromosporine were obtained with the PyRED server31 using
Gaussian 09 (Rev. D.01). RESP charges for the ligands RVX-208
and RVX-OH were obtained with a geometry optimization fol-
lowed by a molecular electrostatic potential calculation, both at the
HF/6-31G* level of theory. ESP points were sampled according to the

Merz−Kollman scheme.32,33 The RESP fit was done using antechamber
in AmberTools14, while all QM calculations were performed in Gaussian
09 (Revision D.01). The PyRED server was not employed in the latter
cases due to its unavailability for a number of months in late 2015.
Gromacs topologies and coordinate files were generated from the
Amber ones using acpype (v.2014-08-27 Rev. 403).34 The Amber99SB-
ILDN force field was used for the protein and the TIP3Pmodel for water
molecules.35,36 The complexes were solvated in a dodecahedral box with
periodic boundary conditions and a minimum distance between the
solute and the box of 12 Å. Sodium and chloride ions were added to
neutralize the systems at the concentration of 0.15 M.

Docking. The ligands were docked into an X-ray structure of
BRD4(1) (PDB ID 2OSS) using MOE (Chemical Computing Group,
v2014.09). All water and organic molecules were removed from the
model, with the exception of five water molecules at the bottom of the
binding pocket, which are conserved across most bromodomains. The
ligands were initially drawn in 2D using Marvin Sketch (ChemAxon,
v6.1.0) and a stochastic conformational search was performed in MOE
for the generation of multiple 3D conformers. The number of
conformers generated was limited to one hundred and duplicates ones
(RMSD< 0.25 Å) were removed. Protein and ligands were parametrized
using the AMBER10:EHT force field option in MOE. Thus, the protein
parameters were taken from Amber ff99SB,40 while the ligand bonded
parameters were obtained with 2DExtendedHückel Theory,41 the VdW
parameters were derived from GAFF,29 and the charges from Bond
Charge Increments.42 Pharmacophores were used for the placement of
the ligand during docking. The pharmacophore query was built based on
the structure of bound acetyl-lysine, as found in a holo X-ray structure
(PDB ID 3UVW), and consisted of a hydrogen-bond acceptor site
(mimicking the acetyl oxygen) and a nonpolar site (mimicking the
methyl moiety). The London ΔG function was used for the initial
scoring of the poses, and each binding pose was then minimized and
rescored with the GBVI/WSA ΔG function. Duplicate poses were

Table 1. Summary of the Calculation Results for RVX-OH and RVX-208, along with Information about the Experimental
Structural and Affinity Dataa

ΔGcalc (kcal/mol)

protein ligand PDB ID pose ΔGexp (kcal/mol) H-pose V-pose ΔGcalc − ΔGexp (kcal/mol)

BRD2(1) RVX-OH 4ALG H −8.5 ± 0.1 −9.8 ± 0.1 −6.5 ± 0.1 −1.3 ± 0.2
BRD2(2) RVX-OH 4MR5 V −8.8 ± 0.1 −7.6 ± 0.1 −7.9 ± 0.1 +0.9 ± 0.1
BRD3(1) RVX-OH 3S91 H −8.0 ± 0.1 −6.7 ± 0.1 −5.7 ± 0.1 +1.3 ± 0.2
BRD3(2) RVX-OH 3S92 V −8.8 ± 0.1 −6.6 ± 0.2 −7.4 ± 0.1 +1.5 ± 0.2
BRD4(1) RVX-OH 2OSS H −9.0 ± 0.1 −9.9 ± 0.1 −6.6 ± 0.1 −0.9 ± 0.2
BRD4(2) RVX-OH 2OUO V −8.8 ± 0.1 −5.0 ± 0.1 −8.5 ± 0.1 +0.3 ± 0.2
BRDT(1) RVX-OH 4KCX H −7.7 ± 0.1 −7.7 ± 0.1 −6.3 ± 0.1 +0.0 ± 0.2

BRD2(1) RVX-208 4ALG V −6.9 ± 0.1 n/a −7.2 ± 0.1 −0.3 ± 0.2
BRD2(2) RVX-208 4MR5 V −8.5 ± 0.1 n/a −7.5 ± 0.1 +0.9 ± 0.2
BRD3(1) RVX-208 3S91 V −7.1 ± 0.1 n/a −5.5 ± 0.1 +1.6 ± 0.2
BRD3(2) RVX-208 3S92 V −8.8 ± 0.1 n/a −8.7 ± 0.1 +0.1 ± 0.2
BRD4(1) RVX-208 2OSS V −7.8 ± 0.1 n/a −6.8 ± 0.1 +1.0 ± 0.2
BRD4(2) RVX-208 2OUO V −9.1 ± 0.1 n/a −9.7 ± 0.1 −0.6 ± 0.2
BRDT(1) RVX-208 4KCX V −7.0 ± 0.1 n/a −6.5 ± 0.1 +0.5 ± 0.2

mean unsigned error 0.81 [0.74, 0.90] kcal/mol
root mean square error 0.95 [0.87, 1.05] kcal/mol
% ≤1.0 kcal/mol 64 [50, 71]
% ≤2.0 kcal/mol 100 [100, 100]
Pearson’s r 0.75 [0.67, 0.80]
Spearman’s ρ 0.78 [0.64, 0.85]

aITC data were taken from Picaud et al.37 All uncertainties are one standard error of the mean. ITC uncertainties are an estimate based on the
standard deviation of the ΔG values observed in the ABRF-MIRG’02 inter-laboratory assessment.38 Values for the difference ΔGcalc − ΔGexp may
appear inconsistent due to rounding. “PDB ID” refers to RCSB Protein Data Bank code for the protein structure used for the free energy
calculations. “Pose” indicates in which one of the two orientations the ligand is expected to bind given the experimental evidence, where H is the
horizontal pose and V is the vertical pose. In square brackets are the 95% confidence intervals of the statistics based on percentile bootstrap.
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removed based on their hydrogen-bond and hydrophobic patterns using
this option in MOE. In addition, also poses with positive binding free
energy as predicted by the GBVI/WSA ΔG scoring function were
removed. The remaining poses were clustered by RMSD with a 3.0 Å
cutoff in order to reduce the number of poses to test via free energy
calculations, while also retaining a diverse set of binding orientations; in
fact, similar binding orientations might interconvert during the sim-
ulations, resulting in almost equivalent ensembles. Finally, the best
scoring poses within each cluster were selected for free energy cal-
culations. This is the same protocol adopted in our previous study.10

Derivation of Small-Molecule Torsional Parameters. The
parameters for the two different biaryl torsions present in bromosporine
and the two RVX ligands were optimized by least-squares fitting to a
QM torsion scan at the MP2/6-31G* level of theory (Gaussian 09;
Rev. D.01) performed every 5 degrees (Figure S1). Three torsion angles
present in the benzensulfonamide moiety were also later reparametrized
specifically for bromosporine using the program paramf it in
AmberTools14.43 Parameters were derived by fitting the MM energies
to single-point energy calculations at the MP2/6-31G* level of theory
(Figure S2) performed with Gaussian 09 (Rev. A.02). The parameter
search was performed using the hybrid genetic algorithm with a

mutation rate of 0.1; all other input parameters were used with their
default values. A total of 514 conformations were generated by system-
atic variation of the dihedral angles for the fitting of 3 torsions (4 terms
per torsion) within the benzensulfonamide moiety. Conformations with
QM relative energies below 5 kcal/mol were assigned weights of 1.0,
conformations with energies between 5 and 10 kcal/mol were assigned
weights of 0.5, and conformations with energies above 10 kcal/mol were
assigned weights of zero. Only the force constant and the phase of the
torsion were fit, while the periodicity was fixed. The parameters for all
these terms are shown in Figure S2.

Preliminary Molecular Dynamics. In order to improve the fit of
the ligands into the binding pockets of the structures used for the free
energy calculations, a brief preliminary MD simulation was run for each
complex. All simulations were carried out in Gromacs 5.0.4 or Gromacs
5.1.44 10 000 energy minimization steps were performed using a steepest
descent algorithm (the protein−ligand structures obtained after this
step were submitted to the CSM-Lig server for scoring).45 The system
was subsequently simulated for 0.5 ns in the canonical ensemble and
for 1 ns in the isothermal−isobaric ensemble with harmonic posi-
tion restraints applied to all solute heavy atoms with a force constant of
1000 kJ mol−1 nm−2. Temperature was coupled using Langevin dynamics

Table 2. Summary of the Calculation Results for Bromosporine, along with Information about the Experimental Structural and
Affinity Dataa

protein family PDB ID ΔGexp (kcal/mol) ΔGcalc (kcal/mol) ΔGcalc − ΔGexp (kcal/mol) ΔGcalc
sulf (kcal/mol) ΔGcalc

sulf − ΔGexp (kcal/mol)

CECR2 I 3NXB −10.7 ± 0.1 −11.5 ± 0.3 −0.8 ± 0.3 −10.6 ± 0.3 +0.1 ± 0.3
FALZ I 3UV2 −6.8 ± 0.1 −9.8 ± 0.2 −3.0 ± 0.3 −9.2 ± 0.2 −2.4 ± 0.3
PCAF I 3GG3 −7.0 ± 0.1 −10.7 ± 0.3 −3.7 ± 0.3 −9.6 ± 0.3 −2.5 ± 0.3

BRD2(1) II 4ALG −9.2 ± 0.1 −7.7 ± 0.3 +1.6 ± 0.3 −6.6 ± 0.3 +2.7 ± 0.3
BRD2(2) II 4MR5 −9.6 ± 0.1 −9.7 ± 0.3 −0.0 ± 0.3 −8.8 ± 0.3 +0.9 ± 0.3
BRD3(1) II 3S91 −9.1 ± 0.1 −7.2 ± 0.3 +1.9 ± 0.3 −6.1 ± 0.3 +3.0 ± 0.3
BRD3(2) II 3S92 −9.6 ± 0.1 −11.7 ± 0.3 −2.0 ± 0.3 −11.0 ± 0.3 −1.3 ± 0.3
BRD4(1) II 2OSS −9.7 ± 0.1 −11.3 ± 0.3 −1.5 ± 0.3 −9.8 ± 0.3 −0.0 ± 0.3
BRD4(2) II 2OUO −9.8 ± 0.1 −10.0 ± 0.3 −0.2 ± 0.3 −9.2 ± 0.3 +0.6 ± 0.3
BRDT(1) II 4KCX −9.8 ± 0.1 −9.3 ± 0.3 +0.4 ± 0.3 −8.2 ± 0.3 +1.6 ± 0.3

CREBBP III 4NYX −7.6 ± 0.1 −10.8 ± 0.2 −3.1 ± 0.3 −10.3 ± 0.2 −2.6 ± 0.3
EP300 III 3I3J −6.8 ± 0.1 −9.8 ± 0.3 −3.0 ± 0.3 −9.2 ± 0.3 −2.4 ± 0.3

BRD1 IV 5AME −7.6 ± 0.1 −10.8 ± 0.2 −3.2 ± 0.3 −10.4 ± 0.2 −2.7 ± 0.3
BRD9 IV 4XY8 −9.7 ± 0.1 −12.0 ± 0.2 −2.3 ± 0.3 −11.1 ± 0.2 −1.4 ± 0.3
BRPF1B IV 4LC2 −8.6 ± 0.1 −11.5 ± 0.3 −2.9 ± 0.3 −11.7 ± 0.3 −3.2 ± 0.3

BAZ2A V 4QBM −7.2 ± 0.1 −11.0 ± 0.3 −3.9 ± 0.3 −10.0 ± 0.3 −2.9 ± 0.3
TIF1 V 4YBM −6.7 ± 0.1 −5.4 ± 0.3 +1.3 ± 0.3 −5.0 ± 0.3 +1.7 ± 0.3

TAF1(1) VII 3UV5 −6.9 ± 0.1 −8.5 ± 0.3 −1.6 ± 0.3 −7.7 ± 0.3 −0.7 ± 0.3
TAF1(2) VII 3UV4 −10.2 ± 0.1 −10.7 ± 0.3 −0.4 ± 0.3 −10.1 ± 0.3 +0.1 ± 0.3
TAF1L(2) VII 3HMH −9.7 ± 0.1 −10.5 ± 0.2 −0.8 ± 0.3 −10.1 ± 0.2 −0.4 ± 0.3

PB1(5) VIII 3MB4 −6.4 ± 0.1 −7.0 ± 0.2 −0.6 ± 0.3 −6.5 ± 0.2 −0.1 ± 0.3
SMARCA4 VIII 2GRC −6.2 ± 0.1 −6.7 ± 0.3 −0.5 ± 0.3 −5.6 ± 0.3 +0.6 ± 0.3

mean unsigned error 1.76 [1.66, 1.90] kcal/mol 1.54 [1.46, 1.68] kcal/mol
root mean square error 2.13 [2.03, 2.26] kcal/mol 1.88 [1.78, 2.02] kcal/mol
% ≤1.0 kcal/mol 36 [27, 41] 41 [32, 45]
% ≤2.0 kcal/mol 59 [50, 68] 59 [55, 64]
Pearson’s r 0.48 [0.41, 0.53] 0.43 [0.36, 0.49]
Spearman’s ρ 0.50 [0.41, 0.62] 0.46 [0.38, 0.58]

aITC data taken from Picaud et al.39 All uncertainties are one standard error of the mean. ITC uncertainties are an estimate based on the standard
deviation of the ΔG values observed in the ABRF-MIRG’02 inter-laboratory assessment.38 ΔGcalc refers to the calculated free energy values with the
initial bromosporine model; ΔGcalc

sulf refers to the model with modified torsional parameters for the benzensulfonamide group. Values for the
difference ΔGcalc − ΔGexp may appear inconsistent due to rounding. In square brackets are the 95% confidence intervals of the statistics based on
percentile bootstrap.
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at the target temperature of 298.15 K, while pressure was coupled using
the Berendsen weak coupling algorithm with a target pressure of
1 atm.46−48 A 15 ns unrestrained run was then performed in the NPT
ensemble with the Parrinello−Rahman pressure coupling algorithm.49

The last frame of the run provided the starting system conformation for the
free energy calculations. The last 5 ns of the unrestrained simulations were
also used to obtain equilibrium values for the protein−ligand restraints
used during the free energy cycle as described in the next paragraph.
Free Energy Calculations. All calculations were carried out in

Gromacs 5.0.444 (all input files for the ABFE calculations are available
as Supporting Information). The ligand van der Waals interactions
were decoupled and the charges annihilated using a linear alchemical
pathway with Δλ = 0.05 for the van der Waals and Δλ = 0.1 for the
Coulombic transformations. For the addition of the ligand restraints,
12 nonuniformly distributed λ values were used (0.0, 0.01, 0.025, 0.05,
0.075, 0.1, 0.15, 0.2, 0.3, 0.5, 0.75, 1.0). A total of 42 windows for the
complex simulations and 31 windows for the ligand simulations were
therefore employed. For each window, 10 000 energy minimization
steps were carried out using a steepest descent algorithm. The system
was subsequently simulated for 0.5 ns in the canonical ensemble with
harmonic position restraints applied to the solute heavy atoms with a
force constant of 1000 kJ mol−1 nm−2. Temperature was coupled using
Langevin dynamics with 298.15 K as the reference temperature.47,48

A 1 ns position restrained run in the isothermal−isobaric ensemble was
then performed using the Berendsen weak coupling algorithm and with
a target pressure of 1 atm.46 Several 15 ns unrestrained production runs
were performed for data collection using Hamiltonian-exchange
Langevin dynamics in the NPT ensemble with the Parrinello−Rahman
pressure coupling scheme.49 A total of 3 million swaps between any
state pair were attempted every 1000 time steps, following the Gibbs
sampling scheme proposed by Chodera and Shirts.50 The relative
position and orientation of the bound ligand with respect to the protein
was restrained by means of one distance, two angles, and three dihedral
harmonic potentials with force constant of 10 kcal mol−1 Å−2 [rad−2].
The equilibrium distance and angles for the restraints were taken
from the average values of the last 5 ns of the 15 ns preliminary MD
simulations. The analytical part of the contribution of this set of
restraints to the free energy can be evaluated as described by Boresch
et al.51 The equation used to evaluate this contribution also includes a
correction for the standard-state dependence of the binding free
energy.51 A soft-core potential was employed for the van der Waals
interactions transformed.52 In all simulations, the particle mesh Ewald
(PME) algorithm53 was used for electrostatic interactions with a real
space cutoff of 12 Å, a spline order of 6, a relative tolerance of 10−6, and
a Fourier spacing of 1.0 Å. The Verlet cutoff scheme was used with a
van der Waals interaction cutoff of 12 Å and a buffer tolerance of
0.005 kJ mol−1 ps−1.54 The P-LINCS constraint algorithm was used only
on H-bonds.55 The Gromacs long-range dispersion correction for
energy and pressure was used, and an additional numerical long-range
dispersion correction (EXP-LR) was applied as described by Shirts
et al.56 to address the failure of the isotropic assumption of the analytical
correction during simulations of protein−ligand complexes. No correction
for box-size effects was applied as it has been shown that, contrary to
charged ligands, such effects are negligible for neutral solutes.57

Relative free energy calculations were performed in order to estimate
the effect of the sulfonamide torsional parameters on the calculated
binding free energies for bromosporine. The force constant and phase of
the dihedrals were interpolated between the two models using 12
uniformly distributed λ values. The equilibration and production phases
were carried out as per the protocol described above for absolute free
energy calculations. No restraints have been used in this calculations,
and all ligand atoms were interacting with the environment during the
transformations. For the ligand in solution, five repeats were carried out,
while for the protein−ligand complexes simulations a single repeat was
performed.
Data Analysis. Free energy estimates were obtained with the imple-

mentation of the multiple Bennet acceptance ratio (MBAR) provided
with the python package pymbar (https://github.com/choderalab/
pymbar) and using the alchemical analysis tool (https://github.com/
MobleyLab/alchemical-analysis).56,58 The data from each lambda state

were subsampled in order to include only uncorrelated data-points by
calculating the autocorrelation time and statistical inefficiency of the
derivative of the potential energy with respect to lambda (dhdl). Only
the dhdl components that were changing at a particular lambda state
were used as the observable for the calculation of the autocorrelation
times.59 The equilibrated region was determined by visualizing the
forward and reverse convergence plots as suggested by Klimovich et al.58

Multiple such plots were generated by discarding data at increments of
1 ns, from aminimum of 1 ns to a maximum of 12 ns, and identifying the
equilibration time producing a convergence plot with the least drift in
free energy in any one direction. The uncertainty of the free energy
estimate was taken from the MBAR asymptotic variance-derived uncer-
tainty as the square root of the statistical variance of the total free energy.
For the free energy of decoupling the ligand from solution, the mean and
sample standard deviation of multiple repeats were used. For
bromosporine and RVX-OH, the five initial conformations of the ligand
in solution were determined by the five docked poses; for RVX-208,
which only had two poses returned by the docking and clustering
procedure,10 another three snapshots were extracted from the
simulations in order to provide three additional random starting
conformations. The final binding free energy is the difference between
the decoupling of the ligand from the solution and from the solvated
complex; the final uncertainty in the binding free energies is thus the
root sum square of the uncertainties of ligand and complex calculations.
The binding free energies for the bromosporine models with modified
torsional parameters were obtained by adding the relative free energy
values to the absolute free energy ones that were predicted with the
original model. The final uncertainty was derived as the root sum
square of the standard errors of the absolute and relative free energies.
The 95% confidence intervals (CIs) for the performance statistics (mean
unsigned error (MUE), root-mean-square error (RMSE), Pearson
product-moment correlation (rp), Spearman rank correlation (rs)) were
calculated with percentile bootstrap,60 after building 105 bootstrap
samples by resampling the experimental and calculated free energies
according to their mean and standard errors, assuming normality.
Throughout the text we report the 95% CI in square brackets imme-
diately after the statistics.

■ RESULTS

Predicting the Different Poses and Selectivity of
Similar Ligands. RVX-208 is an orally available small molecule
that is currently being investigated in clinical trials for the
treatment of atherosclerosis, diabetes, and cardiovascular diseases.
It has been found to inhibit the bromo and extraterminal (BET)
family of bromodomains.37,61,62 RVX-208 shows a slight selectivity
(from about 8- to 21-fold in affinity) for the second (BD2) versus
the first bromodomains (BD1) of the BET family.37 RVX-OH is
the synthetic precursor of RVX-208 and also targets the BET
bromodomain family; however, it does not show the same
preference for the second bromodomains. The compound in fact
rearranges in the binding pockets of the first BET bromodomains
and binds with a different pose as compared to RVX-208, where it
occupies the WP/ZA shelf (see Figure 1b for the bromodomain
structure). In such a way, RVX-OH achieves similar affinities for
both first and second BET bromodomains, abrogating the subtle
selectivity observed for RVX-208. The crystallographically
observed binding poses for RVX-208 and RVX-OH in the
binding pockets of a first and second BET bromodomains are
shown in Figure 2. For ease of description, and consistently with
the orientation of the figures in this text, we denote the binding
orientation of RVX-OH in BD2 pockets as the “vertical” V-pose,
and the binding orientation of RVX-OH in BD1 pockets as the
“horizontal” H-pose, despite such naming not having any
physical or biological meaning. Note that it is not possible for
RVX-208 to bind in the H-pose, due to the presence of an
additional hydroxyethyl group that would clash with the protein.
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These ligands thus represent an interesting case scenario to test
the ability of the calculations to identify both the binding modes
and slight selectivity of a ligand for multiple proteins. In this
study, the 7 BET BRDs (out of 8) with at least a crystal structure
available in the RCSB Protein Data Bank (PDB) and affinity data
determined by ITC were considered.
The docking pose for RVX-208 was taken from a previous

study, in which absolute free energy calculations were shown to
be able to identify the crystallographic pose for this ligand in
BRD4(1).10 Similarly, the two docking poses for RVX-OH
corresponding to the V- and H-poses were taken from the same
study; in this case, too, it was shown how the calculations
identified the correct pose for BRD4(1). Here, however, we were
interested in assessing whether the calculations could predict the

difference in its binding orientation between BD1s and BD2s;
therefore, we rescored both the V-pose and H-pose for all 7
BRDs considered. The relevant docking poses are shown in
Figure 2. The two poses for RVX-OH, and the one for RVX-208,
were modeled into the structures of the other six BET brom-
odomains considered. In order to allow the binding pockets
to relax around the ligands, a short (15 ns) MD simulation of
the complexes was run before performing the free energy
calculations.
Given the two potential binding poses of RVX-OH for the

BET bromodomains, the calculations were run starting from
both orientations for all the seven BET bromodomains con-
sidered (no structure is yet available for BRDT(2)) in order to
test whether the computational protocol could reliably identify
the correct pose for the first (H-pose) versus second (V-pose)
BET bromodomains. Table 1 summarizes the results of the
calculations obtained for RVX-OH, and shows how the orienta-
tion that would be expected to be the more stable based on the
crystallographic evidence was always predicted to have a more
negative binding free energy value, i.e. a higher affinity, than the
other competing orientation. For each bromodomain/RVX-OH
complex we then took the higher affinity pose as being the most
stable orientation, and compared the corresponding binding free
energy value to the ITC data. As previously mentioned, RVX-208
can bind only in one orientation (V-pose), thus this exercise was
not carried out for this ligand. However, it needs to be kept in
mind that it is the retrospective nature of this study that has
allowed us to confidently make such an assumption. In a pros-
pective drug discovery scenario, it is likely that limited information
will be available on the compound being investigated, so that one
might need to be more careful when assuming a conserved pose
across different proteins.
Table 1 and Figure 3 summarize the correspondence of the

computational predictions to the ITC data for the two ligands
together (full breakdown of free energy terms in Table S2). It is
possible to see how, in this case, the predictions reproduced
experimental values in absolute terms extremely well. All of the
predicted binding free energies were within 2 kcal/mol of the
ITC values, and about two-thirds were within 1 kcal/mol. This
resulted in low MUE and RMSE: 0.81 [0.74, 0.90] kcal/mol and
0.95 [0.87, 1.05] kcal/mol, respectively. The correlation with
ITC values was particularly good too for absolute calculations,
with a Pearson correlation (rp) of 0.75 [0.67, 0.80] and a
Spearman (rs) of 0.78 [0.64, 0.85]. Considering RVX-208 alone,
the calculations achieved rp = 0.84 [0.76, 0.90] and rs = 0.75
[0.71, 0.93]. On the other hand, when considering RVX-OH
only, lower correlation values with larger uncertainties were
returned (rp = 0.49 [0.27, 0.66] and rs = 0.46 [0.14, 0.71]) despite
the calculations performing well in terms of absolute errors for
both ligands. This is expected given the small dynamic range of
1.3 kcal/mol when considering RVX-OH alone.
If the predictions were grouped into first [BRD2(1), BRD3(1),

BRD4(1), BRDT(1)] and second [BRD2(2), BRD3(2),
BRD4(2)] BET bromodomains, it would be possible to anticipate
the slight selectivity of RVX-208 for BD2s, as one can visually
gather from Figure 3. In fact, the sample mean and standard
deviation of RVX-208 binding free energies for BD1s were of
−6.5 ± 0.7 kcal/mol, while for BD2s of −8.6 ± 1.1 kcal/mol. A
two-tailed t test returns a p-value of 0.03, which would suggest
that the predicted difference in affinity between the two groups
is unlikely to be caused by chance. Contrariwise, RVX-OH was
predicted to have an average binding free energy of −8.5 ±
1.6 kcal/mol for BD1s and of −7.9 ± 0.6 kcal/mol for BD2s,

Figure 2.Comparison of the X-ray structures of RVX-208 and RVX-OH
in the first (BD1) and second (BD2) BET bromodomains binding
pockets, and the corresponding docked structures. RVX-208 binds with
the same pose to both BD1 and BD2, while RVX-OH adopts two
distinct binding orientations. The two ligands have been docked into an
apo structure of BRD4(1) (PDB ID 2OSS), and the docking poses best
representing the crystal structures are shown. These poses are taken
from previous work.10 BD1s are represented by white cartoons, and
BD2s by gray cartoons; RVX-208 is highlighted in light blue, and
RVX-OH in light green; the conserved Asn residue and network of
waters are shown as reference points.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.6b11467
J. Am. Chem. Soc. 2017, 139, 946−957

951

http://pubs.acs.org/doi/suppl/10.1021/jacs.6b11467/suppl_file/ja6b11467_si_001.pdf
http://dx.doi.org/10.1021/jacs.6b11467


showing a larger overlap of their distributions and consequently
returning a p-value of 0.57 when applying a two-tailed t test, cor-
rectly suggesting the probable lack of any preference for either
the first or second BET bromodomains.

For comparison, we used a recent machine learning scoring
function to test whether similar results might have been achiev-
able with a much cheaper computational method. More specif-
ically, we used CSM-Lig, a machine-learning method that relies

Figure 3. Scatter plot of calculated versus experimental affinities for the compounds RVX-208 and RVX-OH. The shaded gray areas indicate where the
1 and 2 kcal/mol error boundaries lie. On the right-hand side are the distributions of the calculated binding free energies for the two ligands, binding to
BD1s (light blue and light green) and BD2s (dark blue and dark green); Gaussian curves have been fitted to the data.

Figure 4. Docking poses for bromosporine in the binding pocket of BRD4(1). (a) Comparison of the pose with highest predicted affinity to the X-ray
structure of bromosporine in complex with BRPF1B (PDB-ID 5C7N). (b−e) The five diverse bromosporine poses suggested by docking, with their
predicted binding affinity and RMSD with respect to the binding mode found in the crystal structure.
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on graph-based signatures and showed a performance statistically
comparable to RF-Score63,64 and superior to 18 other common
scoring functions.45 The input protein−ligand structures were
the docking poses modeled in all BRDs considered after
minimization of the whole system in explicit solvent using
Gromacs. The scoring function identified the correct pose for
RVX-OH five out of seven times, and returned more modest
correlation with experimental affinities (rp = 0.44 and rs = 0.35).
Furthermore, the predictions systematically underestimated the
binding for these two ligands (Table S5), returning large values
for the MUE and RMSE of 5.82 and 5.86 kcal/mol, respectively.
No prediction was within 2 kcal/mol of the experimental value.
Figure S3 plots the predicted versus experimental binding free
energies and shows how the scoring-based predictions deviated
substantially from the line of identity.
Reproducing the Affinity Profile of a Broad-Spectrum

Inhibitor. Bromosporine (Figure 1c) is a broad-spectrum brom-
odomain inhibitor that binds across all bromodomain families
with a relatively wide range of affinities (from ∼25 μM to ∼
10 nM; from −6.2 to −10.7 kcal/mol in binding free energy
terms). As affinities for a number of BRDs have been experi-
mentally determined by ITC (Table 2),39 it is an ideal system to
test the ability of free energy calculations to capture the affinity
profile of a ligand across many similar binding pockets. As for
RVX-OH and RVX-208, all bromodomains with at least a crystal
structure available in the PDB and affinity data determined by
ITC were considered, for a total of 22 bromosporine/BRD pairs.
At the outset of this study, no structure of bromosporine

in complex with a bromodomain had been deposited in the
PDB. We therefore docked the ligand in the binding pocket of
BRD4(1) in order to determine its likely binding pose. Five
different clusters of poses were identified and free energy cal-
culations were performed on one pose from each cluster in order
to determine the most stable orientation. These were distinct
poses that did not interconvert within the simulations time scale.
Figure 4 provides an overview of these docking poses, ranked
by their predicted affinity. In July 2015 the first bromosporine

structure in complex with a human bromodomain (BRPF1B,
family IV) was released on the PDB (PDB ID 5C7N),65 so that
we were able to compare the docked poses to this experimentally
resolved structure. Figure 4a shows the superimposition of the
docking pose with highest predicted affinity in BRD4(1) and the
X-ray structure of bromosporine in complex with BRPF1B. The
predicted pose resembled well the crystallographic orientation,
with a RMSD of 2.3 Å, mainly due to a rotation of the ethyl
carbamate side chain. The fact that bromosporine was shown to
bind to BRPF1B in the same fashion as predicted for BRD4(1)
also gave us confidence that the binding mode for this ligand
was conserved across bromodomain families. The second pose
(Figure 4c) was close to the experimental structure as well
(RMSD of 3.4 Å), but with the sulfonamide group directed
toward the solvent rather than making contacts with the protein.
The remaining three poses (Figure 4d−f) were bound in
substantially different orientations as compared to the first two
docking poses and the crystallographic pose, as indicated by the
larger RMSDs of 4.6, 5.0, and 6.2 Å. The binding affinity of
bromosporine for BRD4(1) was, however, overestimated by over
1 kcal/mol: the calculated free energy of the most stable pose was
predicted to be −11.3 ± 0.3 kcal/mol, while the ITC measure is
of−9.7± 0.1 kcal/mol. Correspondingly, the docking poses c, d,
and e are unexpectedly assigned large affinities while binding very
differently from the X-ray pose.
After establishing the most likely binding orientation of

bromosporine in BRD pockets via docking, the ligand was
modeled into the X-ray structures of the other 21 bromodo-
mains, from 7 of the 8 bromodomain families. As for the RVX
ligands, a short MD simulation of the complexes was run before
performing free energy calculations for all the bromosporine/
BRD pairs. The results of the calculations are summarized in
Table 2 (full breakdown of free energy terms in Table S3) and
Figure 5a. A reasonable overall agreement with experiment
in terms of absolute values was achieved, with MUE of 1.76
[1.66, 1.90] kcal/mol and RMSE of 2.13 [2.03, 2.26] kcal/mol.
Roughly a third of the results were within 1 kcal/mol of the ITC

Figure 5. Scatter plots of calculated versus experimental binding free energies for bromosporine. (a) Calculated binding free energies for the initial
bromosporine model. (b) Calculated binding free energies for the bromosporine model with optimized benzensulfonamide torsions. The shaded gray
areas indicate where the 1 and 2 kcal/mol error boundaries lie.
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values, and two-thirds within 2 kcal/mol. However, this left
another third of the results being off by at least 2 kcal/mol, which
corresponds to about a 30-fold error in the dissociation constant.
The correlation with experiment was reasonable too, but not as
strong as for RVX-OH/RVX-208, with rp = 0.48 [0.41, 0.53] and
rs = 0.50 [0.41, 0.62]. The low number of samples from each
bromodomain family hampered a meaningful statistical analysis,
and in fact a one-way analysis of variance revealed that the error
distribution of each subfamily did not differ in a statistically
significant manner from any other subfamily. However, there
seemed to be a pattern where calculations involving bromodo-
mains from subfamilies II, VII, and VIII, returned better results
than other subfamilies.
Overall, in this set of predictions, the binding free energies are

overestimated; in fact, the mean signed error was of −1.29
[−1.42, −1.17] kcal/mol. As we were interested in identifying
possible sources for this issue, we evaluated the effect of the
charge model on the results by carrying out relative calculations
where RESP charges were transformed into AM1-BCC ones
(data not shown). However, this change aggravated the over-
estimation issue, resulting in higher MUE and RMSE (2.15 and
2.54 kcal/mol, respectively) and a more negative mean signed
error (−2.00 kcal/mol), while leaving the correlations almost
unvaried (rp = 0.46 and rs = 0.48). We then focused on the
parameters of the soft dihedrals present in the molecule, since
such terms are known to have limited transferability across
different molecules and might lead to inaccurate sampling of
ligand conformations.66 In particular, chemical groups such as
sulfonamides are especially challenging when considering that
also quantum effects like the interaction of the nitrogen lone pair
with antibonding orbitals involving the sulfur affect the torsional
energy around the N−S bond.67,68 For these reasons, we decided
to optimize the torsional parameters that determine the
ensemble of conformations explored by the benzensulfonamide
moiety in bromosporine. These dihedral terms were optimized
specifically for bromosporine using the program paramf it43

where the target energies were obtained with single-point energy
calculations at the MP2/6-31G* level of theory. The parameters
derived in such a way are specific for the bromosporine model we
used, and provided a better set of parameters in terms of
agreement with QM energies in vacuo (Figure S2). In order to
estimate the effect of the new set of torsional parameters on the
affinity predictions, RBFE calculations were carried out. The
predicted binding free energies for the optimized model were
derived by adding the ΔΔG obtained from the RBFE calcula-
tions, to the ΔGcalc values obtained with ABFE calculations for
the initial model. Table 2 and Figure 5b summarize the results
obtained for the bromosporine models with modified torsional
parameters for the benzensulfonamide group (full breakdown of
the free energy terms in Table S4). It is possible to note how the
optimization of the sulfonamidemoiety had a positive effect on the
absolute errors of the calculations, with MUE decreasing to 1.54
[1.46, 1.68] kcal/mol and RMSE to 1.88 [1.78, 2.02] kcal/mol.
The percentage of predicted binding free energy values with
error relative to ITC of less than 1 kcal/mol also increased
slightly, while the percentage of less than 2 kcal/mol remained
constant. Importantly, the strong overestimation problem was
alleviated, so that the errors were distributed more symmetrically
around zero, with a mean signed error of −0.53 [−0.65, −0.41]
kcal/mol. On the other hand, unexpectedly, the correlation
between calculated and experimental affinities slightly deterio-
rated (rp = 0.43 [0.36, 0.49] and rs = 0.46 [0.38, 0.58]). We fur-
ther proceeded to derive optimized parameters for other soft

torsions found in bromosporine: the ones found in the ethyl
carbamate side chain, and again the one between the two
aromatic rings. However, new parameters for these dihedrals did
not result in improved agreement with experiment in terms of
absolute error or correlation (data not shown). It thus appeared
that the sulfonamide parameters only (among the one tested)
were contributing toward the systematic overestimation of the
binding free energies for bromosporine. Nonetheless, the modi-
fication did not completely solve the overestimation issue, and
the overall accuracy of the predictions for this ligand was still
modest as compared to what achieved with the two RVX ligands,
and what previously reported for the binding of 11 other com-
pounds to BRD4(1).10 This suggests there probably are other
factors contributing toward the errors in the predictions for this
test case, which we have not yet been able to identify.
As it was done for RVX-OH and RVX-208, the ABFE calcu-

lations were also compared to a computationally cheaper, yet
state of the art, scoring function.45 In this case too, the CSM-Lig
method returned lower correlation to experiment as compared to
ABFE, with rp = 0.22 and rs = 0.19 (Figure S3). Moreover, the
predictions deviated substantially from the ITC measurements,
returning a MUE of 5.38 kcal/mol and a RMSE of 5.62 kcal/mol.
However, contrary to the case in RVX-OH and RVX-208, for
bromosporine this approach overestimated binding, with most
binding free energies being around −14 kcal/mol (Table S6).
As for the RVX compounds, none of these predictions was within
2 kcal/mol of the experimentally measured binding free energy.

■ DISCUSSION
Here, we presented two test cases in which the prediction of the
different affinities for single ligands binding to multiple brom-
odomains was attempted. Excellent agreement with experimental
data was achieved for the compounds RVX-OH and RVX-208,
while the broad-spectrum inhibitor bromosporine proved to be
more challenging. It is important to note how the quality of the
ligand parameters might vary largely between different small
molecules depending on the chemical groups present. The fact
that reparameterization of the soft torsions in the benzensulfo-
namide moiety for the bromosporine model alleviated the
systematic overestimation of binding affinities corroborates the
hypothesis that transferability of dihedral parameters in small
molecules can be an issue. Parameterization approaches where
some of the ligand parameters, such as charges and torsions, are
derived on an ad hoc basis for the specific molecule at hand might
provide more accurate organic molecule models for the study of
dynamics and binding free energies.66 Certainly, this is not the
only issue with classical force field models; nonetheless, it is
one that can be readily tackled without modification of cur-
rent functional forms. Small-molecule force fields are also
relatively young when compared to protein force fields, with
much room for improvement. As demonstrated by the recent
OPLS3 force field, little adjustments such as off-site charges and
careful parametrization that takes advantage of increasing
availability of experimental data can provide better models of
protein−ligand interactions within the framework of standard
functional forms.69 In this regard, also work on host−guest
systems, for which highly converged calculations can be obtained,
will prove valuable for the parametrization of the next
generations of small-molecule force fields.70,71

For bromosporine, even with the optimization of torsional
parameters, reasonable but not excellent agreement with ITC
data was eventually obtained, in particular in terms of correla-
tion. This was caused by large (>2 kcal/mol) overestimation or
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underestimation of the binding free energy in a number of cases.
The identification of the causes for such disagreement with ITC
proved challenging, as a large number of potential reasons can be
conceived. The imprecision of the calculations alone cannot
justify the magnitude of such errors (see SI Text T1 for a more
detailed analysis of the uncertainty estimates, and SI Text T2 for
a more comprehensive discussion on the possible sources of
error). However, severe sampling issues, such as the failure to
access relevant states (e.g., side-chain rotamers or loop motions),
might contribute toward the errors.25,72 Identifying specific
sampling deficiencies on a case-by-case basis can, however, be
both challenging and impractical, in particular with the prospect
of being able to apply these calculations to large numbers of
protein−ligand pairs. The combination of free energy calcu-
lations with enhanced sampling techniques might thus be
beneficial, as it does not require the identification of specific
degrees of freedom that have been under-sampled.12,73,74 Force
field inaccuracies can also have a large effect on the calculations.
Aside from bonded terms, inaccuracies in the nonbonded
parameters can cause over/under-estimation of interaction
energies and consequently protein−ligand affinities. While
parameters such as the Lennard-Jones can be improved with
larger sets of experimental data,75,76 effects such as polarization,
which can also affect the results of the calculations across dif-
ferent proteins, will likely need a more substantial alteration of
the current models.77−79 Cation-π interactions have been shown
to be important for the binding of certain ligands to brom-
odomains such as CREBBP,80−82 and this is an example of a
protein−ligand interaction that is unlikely to be captured
accurately by current classical force fields.83 These are only
some of the challenges that might, currently, negatively affect the
accuracy, reliability, and generality of binding free energy calcu-
lations. Tautomerisation, changes of protonation states, and
effects due to the presence of the buffer, are other issues that may
arise and can also affect predicted protein−ligand binding free
energies.83,84

Despite all the challenges, the results presented here are
encouraging. In terms of absolute errors, the predictions
achieved a RMSE below the 1 kcal/mol mark for the RVX-
OH/RVX-208 test case and below 2 kcal/mol for bromosporine.
The ability to quantitatively reproduce binding free energies,
rather than only correlate with them, has been a difficult task for
decades and for most computational approaches.10,11 Now,
physics-based models of chemical and biological matter and
computer simulations seem to be able to provide sufficient
physical accuracy and degree of sampling in order to reproduce
one of the most important thermodynamic quantities in biology
and pharmacology. It is, however, wise to exercise some cautious
optimism. In fact, while it is important to start assessing the
accuracy and precision of the calculations on specific systems, the
test sets used so far for ABFE calculations are limited in their size
and diversity. As the computer power available continues to
increase, along with algorithmic improvements,85 in the future it
will be possible to expand such validation studies to larger
benchmark sets,86 similarly to what has been only recently
possible for RBFE calculations.12,19,87 With an expanded chem-
ical and biological space used for testing, the results will provide a
better picture of the capabilities and pitfalls of the methodology
as well as its most fruitful fields of applicability.
We also showed how rigorous calculations based on MD, in

these two test cases, outperformed a state-of-the-art machine
learning scoring function, providing superior agreement to
experiment both in terms of correlation and absolute error.

Nonetheless, it is important to realize that the difference
in computational cost of the two approaches is vast. While,
currently, ABFE calculations need the use computer clusters for
hours to days, scoring functions can return a prediction within
seconds on a regular desktop machine. The calculations reported
here also required considerable human time for their setup. The
use of a few ad hoc in-house scripts aided the process; how-
ever, ligand parametrization, generation of input files, setup of
restraints, and the data analysis all involved some degree of
human intervention. The lack of automated workflows might be
partly due the method still being explored, so that strong
consensus around a generally applicable “standard protocol” is
missing. Nonetheless, the human effort needed to familiarize
and setup the calculations does constitute an entry barrier for
new users and might prevent a widespread use. In fact, the
development of automated and user-friendly software has con-
tributed to the spread of RBFE calculations in only the past few
years.12,88,89 Credit must be given, however, to developers of
freely available simulation software who keep improving the
capabilities of these programs for free energy calculations.90−92

We are confident that, gradually, as interest in these calculations
increases thanks to further developments and testing, workflows
will become more and more automated and user-friendly. The
reader who is already interested in learning how to run these
calculations can find some additional considerations, and ref-
erences to background information, in SI Text T3.
In our opinion, ABFE calculations can have the highest

potential at the hit discovery and lead development stages,
complementing established techniques such as docking as well as
emerging ones like RBFE calculations. The objective is not to
have perfect predictions and replace experiments, but to shorten
and reduce the cost of development cycles, and to promote the
testing of novel and synthetically challenging hypotheses. During
hit discovery, one can foresee virtual screening protocols where a
number of techniques are employed hierarchically.93 Docking
will always be faster than ABFE calculations, and could be used
for the initial enrichment of binders within the library screened;
this could be followed by intermediate approaches in terms
of accuracy and speed, such as implicit solvent calculations
like Molecular Mechanics Poisson−Boltzmann Surface Area
(MMPBSA);94 finally, for the most accurate rescoring and
ranking, ABFE calculations may be used. At the lead develop-
ment stage, such calculations could be employed to assess the
likelihood of a ligand with a very different scaffold to retain
binding, or to assess different ligands for their ability to hit the
target selectively, as discussed in this study.

■ CONCLUSION
In this work, we have shown how absolute binding free energy
calculations based onmolecular dynamics can be applied in order
to computationally predict the affinity profile of a ligand across
multiple proteins with no prior knowledge of the structure of
the complexes or affinities for similar ligands. The prediction of
binding affinities and the engineering of selectivity are both still
major challenges in drug design; however, with increasing com-
putational power at our hands and with more rigorous and
general computational approaches, these problems can start
being tackled. It is here shown how a thorough simulation
protocol can, in the cases considered, achieve good correlation
and agreement with experimental values for drug-like ligands.
It is, however, evident that the accuracy of the calculations is
system dependent, and further investigation is needed in order to
assess the effectiveness of such predictions in different case
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scenarios and on different protein and ligand systems. While the
accuracy of these calculations for other protein families still needs
to be established, the performance of the predictions here
reported is encouraging.
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B.; Lindahl, E. SoftwareX 2015, 1−2, 19.
(45) Pires, D. E. V.; Ascher, D. B. Nucleic Acids Res. 2016, 44, W557.
(46) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684.
(47) Goga, N.; Rzepiela, A. J.; de Vries, A. H.; Marrink, S. J.; Berendsen,
H. J. C. J. Chem. Theory Comput. 2012, 8, 3637.
(48) Van Gunsteren, W. F.; Berendsen, H. J. C. Mol. Simul. 1988, 1,
173.
(49) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182.
(50) Chodera, J. D.; Shirts, M. R. J. Chem. Phys. 2011, 135, 194110.
(51) Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M. J. Phys. Chem.
B 2003, 107, 9535.
(52) Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van
Gunsteren, W. F. Chem. Phys. Lett. 1994, 222, 529.
(53) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
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