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Abstract

Peroxisome proliferator activated receptor c (PPARc) agonists are effective antifibrotic agents in a number of tissues. Effects
of these agents on epithelial-mesenchymal transition (EMT) of primary alveolar epithelial cells (AEC) and potential
mechanisms underlying effects on EMT have not been well delineated. We examined effects of troglitazone, a synthetic
PPARc agonist, on transforming growth factor (TGF)-b1-induced EMT in primary rat AEC and an alveolar epithelial type II
(AT2) cell line (RLE-6TN). TGF-b1 (2.5 ng/mL) induced EMT in both cell types, as evidenced by acquisition of spindle-like
morphology, increased expression of the mesenchymal marker a-smooth muscle actin (a-SMA) and downregulation of the
tight junctional protein zonula occludens-1 (ZO-1). Concurrent treatment with troglitazone (or rosiglitazone), ameliorated
effects of TGF-b1. Furthermore, following stimulation with TGF-b1 for 6 days, troglitazone reversed EMT-related
morphological changes and restored both epithelial and mesenchymal markers to control levels. Treatment with GW9662
(an irreversible PPARc antagonist), or overexpression of a PPARc dominant negative construct, failed to inhibit these effects
of troglitazone in AEC. Troglitazone not only attenuated TGF-b1-induced phosphorylation of Akt and glycogen synthase
kinase (GSK)-3b, but also inhibited nuclear translocation of b-catenin, phosphorylation of Smad2 and Smad3 and
upregulation of the EMT-associated transcription factor SNAI1. These results demonstrate inhibitory actions of troglitazone
on TGF-b1-induced EMT in AEC via a PPARc-independent mechanism likely through inhibition of b-catenin-dependent
signaling downstream of TGF-b1, supporting a role for interactions between TGF-b and Wnt/b-catenin signaling pathways
in EMT.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive disorder of

unknown etiology characterized by accumulation of fibroblasts/

myofibroblasts and marked deposition of extracellular matrix

components [1]. Epithelial-mesenchymal transition (EMT), a

process whereby epithelial cells lose their phenotypic characteris-

tics and acquire mesenchymal features, has been suggested as a

mechanism that may contribute to fibroproliferation in pulmonary

fibrosis [2–5]. Currently, there is no effective treatment to improve

prognosis for IPF patients [6,7]. Given the lack of treatment

options and the possible contribution of EMT to the pathogenesis

of IPF, pharmacologic inhibition of EMT may represent a novel

therapeutic approach. Such inhibition could have the effect of

slowing or reversing established fibrosis of the lung.

Cumulative evidence, both in vivo [5] and in vitro [8], indicates

that transforming growth factor (TGF)-b1 is a primary regulator of

EMT. Development of strategies to inhibit active TGF-b1 and its

associated activities appears to be an attractive approach to

prevention of EMT and/or IPF. Recent investigations have

revealed that ligands of peroxisome proliferator-activated receptor

gamma (PPARc) are capable of opposing profibrotic effects of

TGF-b1 [9–11]. Additionally, in epithelial cells of the airways,

such ligands serve to inhibit proinflammatory cytokine release and

contribute to regulation of cellular differentiation [12], further

implicating them in the fibrotic process. PPARc ligands include

endogenous agents such as the cyclopentenone prostaglandin 15-

deoxy-D12,14-prostaglandin J2 (15d-PGJ2) and a group of

synthetic compounds known as thiazolidinediones (TZDs) that

are currently in clinical use for their anti-diabetic effects. Of note,

certain biological actions of TZDs have been shown to occur

independently of PPARc [11,13].

In murine models, TZDs ameliorate bleomycin-induced lung

fibrosis [14–16]. Specifically, they have been shown to inhibit

TGF-b1-induced differentiation of lung fibroblasts to myofibro-

blasts [9,11,15] as evidenced by suppression of a-smooth muscle

actin (a-SMA) upregulation, and effects appear to be mediated

via both PPARc-dependent [9] and -independent mechanisms
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[9,11]. In the context of EMT, recent studies in retinal pigment

and renal proximal tubule epithelial cells have demonstrated

that some PPARc ligands inhibit EMT induced by either TGF-

b1 or high glucose, respectively [10,17]. In the lung, inhibitory

effects of TZDs on EMT have been shown in a lung

adenocarcinoma cell line (A549) [18,19] to be PPARc-indepen-

dent. However, conflicting results with regard to Smad-

dependence or -independence of inhibitory effects of TZDs

emerged from these studies. It is not known if these results and

underlying mechanisms can be extrapolated to non-transformed

alveolar epithelial cells (AEC).

In the current study, we examined the effects of troglitazone, a

synthetic PPARc ligand, on TGF-b1-mediated EMT in both

primary AEC and a non-transformed rat lung epithelial cell line,

RLE-6TN [20]. Results reveal that troglitazone attenuates

transition of both primary AEC and RLE-6TN cells to myofibro-

blasts, effects that are independent of PPARc. Troglitazone

inhibited EMT-related phosphorylation of Akt, GSK-3b and

Smad2/Smad3, and two key downstream events (b-catenin

nuclear translocation and SNAI1 activation), suggesting that

effects of troglitazone are mediated by b-catenin-dependent

signaling downstream of TGF-b. Given the importance of EMT

in IPF, our findings point to a potential therapeutic role for TZDs

in this disorder.

Culture of RLE-6TN Cells
RLE-6TN cells, a rat alveolar epithelial type II (AT2) cell line,

were purchased from American Type Culture Collection (Manas-

sas, VA). Cells were maintained in Dulbecco’s Modified Eagle’s

medium, nutrient mixture F-12 Ham supplemented with 10% fetal

bovine serum, 40 mmol/L HEPES, 100 U/ml penicillin G and

100 mg/ml streptomycin. For EMT studies, cells were allowed to

attach overnight in media alone. For the majority of experiments,

cells were maintained in either media alone or media supplemented

with 2.5 ng/ml TGF-b1 (R&D Systems, Minneapolis, MN) with or

without 10 mM troglitazone (Cayman Chemical, Ann Arbor, MI)

for 3 days. Dose response effects of troglitazone (or rosiglitazone)

were investigated at concentrations from 0 to 20 mM (or from 10-

40 mM), respectively. Cultures were maintained in a humidified 5%

CO2 incubator at 37uC, and all media and additives were replaced

every other day, starting on day 2.

Primary AEC Isolation and Culture
AT2 cells were isolated from adult male Sprague-Dawley rats by

elastase disaggregation (2.0–2.5 U/ml) and panning on rat IgG-

coated bacteriological plates [21]. All animals were treated in

accordance with the guidelines and approval of the University of

Southern California Institutional Animal Care and Use Commit-

tee. AT2 cells were resuspended in minimal defined serum-free

medium (MDSF) [21]. Cells were seeded into 1.1-cm2 tissue

culture-treated polycarbonate (Nuclepore) filter cups (Transwell;

Corning Costar, Cambridge, MA). Media were supplemented

with 100 mg/ml cis-OH-proline (Sigma, St. Louis, MO) for the

first 24 to 48 hours of culture to selectively eliminate fibroblasts

[22]. Cells were subsequently maintained in MDSF or in MDSF

supplemented with 2.5 ng/ml TGF-ß1 (R&D Systems) with or

without 10 mM troglitazone in both apical and basolateral

compartments for up to 12 additional days (for a total of 14

days). Equivalent amounts of vehicle for each supplement (4 mM

HCl containing 1 mg/ml of bovine serum albumin (BSA) in the

case of TGF-ß1 and dimethyl sulfoxide (DMSO) in the case of

troglitazone) were added to control cultures. Cultures were

maintained in a humidified 5% CO2 incubator at 37uC. Media

were changed every other day. Cell viability (.95%) was

measured by trypan blue dye exclusion. In studies investigating

the impact of GW-9662 (Sigma), an irreversible PPARc antago-

nist, cells were treated with TGF-b1 (2.5 ng/ml) 6 troglitazone

(10 mM) 6 GW9662 (1.0–7.5 mM).

Monolayer Transepithelial Electrical Resistance (Rt)
Rt (KV?cm2) was measured using a rapid screening device

(Millicell-ERS; Millipore, Bedford, MA). Effects of TGF-b1

supplementation (in the presence or absence of troglitazone) on

Rt were evaluated on days 3, 5, 7, 9, and 10 following plating.

Western Analysis
Cells were lysed in 2% sodium dodecylsulfate (SDS) lysis buffer

(62.5 mM Tris-HCl, 2% SDS and 10% glycerol) on ice for 30 min

and briefly sonicated. Protein sample concentrations were

determined using a standard protein concentration assay (Bio-

Rad, Hercules, CA). Samples were separated by SDS-polyacryl-

amide gel electrophoresis and transferred to Immuno-Blot

polyvinylidene fluoride membranes (Bio-Rad). Membranes were

blocked in 5% nonfat dry milk in Tris-buffered saline with Tween

(TBS-T; pH 7.4) for 1 h at room temperature (RT). Incubation

with primary antibodies was carried out overnight at 4uC, and

with horseradish peroxidase-conjugated secondary antibodies at

RT for 1 h. Primary antibodies for a-SMA, FLAG and b-catenin

were obtained from Sigma and ZO-1 antibody was purchased

from Invitrogen (Carlsbad, CA). Phospho-Akt (Ser473), total Akt,

phospho-Smad2, total Smad2, phospho-Smad3, total Smad3,

phospho-GSK-3b and total GSK-3b antibodies were purchased

from Cell Signaling (Danvers, MA), and all secondary antibodies

were obtained from Promega (Madison, WI). Peroxidase activity

was detected with Super Signal (Pierce, Rockford, IL) and images

analyzed using a FluorChem imager (Alpha Innotech, San

Leandro, CA). To ensure equal loading, protein levels were

normalized to the levels of lamin A/C, glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) or b-actin detected using

anti-lamin A/C polyclonal antibody (Santa Cruz Biotechnology,

Santa Cruz, CA), anti-GAPDH monoclonal antibody (Abcam,

Cambridge, MA) or anti-b-actin monoclonal antibody (Sigma),

respectively.

Production of Lentivirus in 293T Cells
PPARc dominant negative expression plasmid, LV-PPARc-

DN (human PPAR LV-PPARc-DN 1-L466A/E469A mutant

cloned in pCDH1-MCS1-EF1-copGFP vector) was kindly

provided by R.P. Phipps (University of Rochester, Rochester,

NY). Infectious lentivirus was created by cotransfection of LV-

PPARc-DN or LV-control (pCDH1-MCS1-EF1-copGFP) with

pCMVDR8.91 and pMD.G into human 293T cells. Virus was

harvested after 48 hours, filtered through 0.45 mm filters,

concentrated with PEG-it virus precipitation solution (System

Biosciences, Mountain View, CA ) and titered with HIV p24

ELISA (Cell Biolabs, San Diego, CA).

Overexpression of PPARc-DN in RLE-6TN Cells
RLE-6TN cells were seeded at a density of 40,000/well in 24-

well-plates and transduced with virus expressing PPARc-DN (LV-

PPARc-DN) or LV-control at MOI = 2 on day 1 postseeding,

followed by TGF-b (2.5 ng/ml) 6 troglitazone (10 mM) treatment

16 hours after transduction. Protein was harvested for Western

analysis of a-SMA and expression of FLAG-tagged PPARc-DN

after 4 days of treatment.
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Immunofluorescence Microscopy
Rat AEC grown as monolayers on polycarbonate filters and

RLE-6TN cells grown on chamber slides were fixed in 4%

paraformaldehyde for 15 min and blocked in CAS Block

(Invitrogen) for 1 h at RT. Filters and slides were incubated with

primary antibodies overnight at 4uC and incubated with Alexa

Fluor 488 conjugated secondary antibodies (Invitrogen) at RT for

up to 2 h. Slides were mounted using Vectashield antifade

mounting medium with 49,6-diamidino-2-phenylindole (DAPI) or

propidium iodide (PI) (Vector, Burlingame, CA) for nuclear

staining. Slides were viewed with an Olympus BX60 microscope

equipped with epifluorescence optics (Olympus, Melville, NY).

Statistics
Data are shown as mean 6 SE (standard error of the mean).

Significance (P,0.05) for more than or equal to 3 group means

was determined by one-way analysis of variance followed by post

hoc procedures based on Student-Newman-Keuls approaches.

Where applicable, two group means were compared for signifi-

cance using Student’s t-tests. Z-tests were used to determine if

ratiometric data (i.e., normalized) were different from control.

Results

Troglitazone Inhibits TGF-b1-induced EMT in AEC
To evaluate the influence of troglitazone on TGF-b1-induced

EMT, cell morphology and expression of relevant epithelial and

mesenchymal markers were evaluated. Phalloidin, which binds to

filamentous actin (F-actin), was used to assess cell morphology.

Following treatment with TGF-b1 for 12 days, primary AEC

exhibited a marked alteration in cell morphology, changing from

the characteristic organized ‘cobblestone’ appearance of differen-

tiated epithelial cell monolayers to a disorganized elongated

fibroblast-like phenotype (Figure 1A). Cells treated with 10 mM

troglitazone in the presence of TGF-b1 maintained their

cobblestone shape, consistent with conservation of epithelial

phenotype. Similar morphological changes were noted in RLE-

6TN cells (Figure S1).

Figure 1. Troglitazone (Tro) inhibits EMT in primary AEC. A. Under control conditions, cells exhibit cobblestone appearance typical of
epithelial morphology. Following treatment with TGF-b1, loss of cell-cell contacts and acquisition of fibroblast-like morphology are seen. Troglitazone
attenuates TGF-b1-induced changes and maintains epithelial morphology. Nuclei are labeled with 4’,6-diamidino-2-phenylindole (DAPI). B. Primary
AEC treated with TGF-b16 troglitazone were fixed and stained for ZO-1 and a-SMA. Control cells exhibit ZO-1 staining along intercellular surfaces
with minimal a-SMA expression. Treatment with TGF-b1 gives rise to loss of cell membrane-associated ZO-1 with a marked increase in a-SMA. Cells
treated with both TGF-b1 and troglitazone maintain normal ZO-1 immunoreactivity with an absence of a-SMA. Nuclei are labeled with DAPI. C. TGF-
b1 (present from day 2 onward) induces a decrease in transepithelial resistance (Rt) of primary AEC monolayers. Decreases in Rt are prevented by
concurrent treatment with both TGF-b1 and troglitazone. *P,0.05 compared to vehicle; n = 3.
doi:10.1371/journal.pone.0038827.g001

Figure 2. Troglitazone (Tro) prevents EMT-associated alter-
ations in ZO-1 and a-SMA protein expression in primary AEC.
Western analysis reveals inhibition of TGF-b1-mediated decreases in ZO-
1 (A) and increases in a-SMA (B) by troglitazone in primary AEC. *P,0.05
compared to TGF-b1; n = 3.
doi:10.1371/journal.pone.0038827.g002

Figure 3. Inhibition by troglitazone (Tro) of TGF-b1-induced a-
SMA expression is independent of PPARc. A. Primary AEC were
incubated with TGF-b1 (2.5 ng/ml) alone or in combination with
troglitazone (10 mM) 6 GW9662 (1.0–7.5 mM). Western analysis
demonstrates that troglitazone prevents TGF-b1-induced increases in
the myofibroblast marker a-SMA independent of PPARc. *P,0.05
compared to TGF-b1; n = 3. B. RLE-6TN cells were transduced with virus
expressing LV-PPARc-DN or LV-control followed by TGF-b (2.5 ng/ml) 6
troglitazone (10 mM) treatment for 4 days. Western analysis shows that
overexpression of PPARc-DN did not block troglitazone-mediated
inhibition of a-SMA induced by TGF-b. Lamin A/C is the loading
control. Data shown are representative of three separate experiments.
doi:10.1371/journal.pone.0038827.g003
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To assess changes in epithelial and mesenchymal markers, we

investigated expression of ZO-1 (as a measure of junctional

integrity and epithelial organization) and a-SMA (a characteristic

mesenchymal marker). Following treatment with TGF-b1, prima-

ry AEC exhibited marked downregulation of ZO-1 relative to cells

under control conditions, and expression of a-SMA dramatically

increased (Figure 1B, middle panel). Importantly, in primary AEC,

simultaneous treatment with both troglitazone and TGF-b1 led to

maintenance of ZO-1 reactivity along cell borders with no increase

in a-SMA (Figure 1B, right panel). Moreover, the integrity of AEC

monolayers was maintained as indicated by preservation of Rt

(Figure 1C). Similarly, RLE-6TN cells exhibited a marked increase

in expression of a-SMA and a decrease in expression of ZO-1

following TGF-b1 stimulation (Figure S2). These effects of TGF-

b1 were inhibited by troglitazone treatment.

Consistent with immunofluorescence findings, Western analysis

of primary AEC revealed diminished levels of ZO-1 and increased

a-SMA expression following treatment with TGF-b1 (Figures 2A

and 2B). In cells treated with troglitazone and TGF-b1, expression

of both ZO-1 and a-SMA were unchanged compared to control

cells treated with vehicle for both conditions (Figures 2A and 2B).

Furthermore, in RLE-6TN cells, inhibition by troglitazone of

TGF-b1-induced increase in a-SMA was found to be dose-

dependent (Figure S3), with evidence of toxicity at 20 mM. To test

whether effects of troglitazone were specific to this agent or a more

generic effect of PPARc ligands, we tested effects of two other

troglitazone analogues, rosiglitazone and CAY10410, on a-SMA

activation by TGF-b. Rosiglitazone inhibited TGF-b-induced a-

SMA expression in RLE-6TN cells (Figure S4), but CAY10410

(which lacks an electrophilic center) did not show any inhibitory

effect (data not shown). These data suggest that inhibitory effects of

PPARc ligands on EMT are dependent on their physical

properties, similar to a previous report in the context of

fibroblast-myofibroblast differentiation [23].

Inhibitory Effects of Troglitazone are Independent of
PPARc

Consistent with previous studies showing that PPARc is widely

expressed in lung, including in AEC [24,25], RNA profile analysis

(Illumina RatRef-12) using freshly isolated AT2 cells from rat lung

and AT1-like cells cultivated in vitro for 8 days confirmed

expression of PPARc (data not shown). In order to determine if

troglitazone exerts its inhibitory effects via PPARc-dependent or -

independent pathways, primary AEC were concurrently treated

with troglitazone and TGF-b1 in the presence or absence of

GW9662, a selective irreversible antagonist of PPARc. As shown

by Western analysis (Figure 3A), troglitazone inhibited TGF-b1-

mediated increases in a-SMA expression in primary AEC.

However, blockade of PPARc using GW9662 (1.0 to 7.5 mM)

failed to antagonize inhibitory actions of troglitazone (Figure 3A).

To further confirm that PPARc is not involved in troglitazone-

mediated inhibition, RLE-6TN cells were transduced with

lentivirus expressing a PPARc dominant negative construct (LV-

PPARc-DN) or control (LV-control), followed by treatment with

TGF-b and/or troglitazone. Overexpression of a LV-PPARc-DN

did not prevent troglitazone-mediated inhibition of a-SMA

induction by TGF-b (Figure 3B), indicating that attenuation of

EMT by troglitazone is primarily mediated by PPARc-indepen-

dent pathway(s).

Troglitazone Reverses TGF-b1-induced EMT
While several pharmacological agents have been shown to

inhibit EMT, few exhibit the ability to also reverse this process.

Accordingly, we assessed troglitazone’s capacity to reverse the

characteristic alterations associated with alveolar EMT. Following

acquisition of mesenchymal phenotype after stimulation with

TGF-b1 for 6 days, primary AEC were treated with troglitazone.

This gave rise to complete reversal of EMT-associated morpho-

logical changes, together with complete restoration of ZO-1 at cell

borders and return of a-SMA expression to control levels, when

assessed 6 days after onset of troglitazone treatment (Figure 4A,

fourth panel). In contrast, simple removal of TGF-b1 led to only

partial reversion of EMT by day 14 (Figure 4A, third panel). To

further examine whether troglitazone works as a competitive

inhibitor of TGF-b1 binding to the TGF-b1 receptor, primary

cells were treated with troglitazone (10 mM) and increasing

concentrations of TGF-b (2.5, 5, 7.5 and 10 ng/ml). As shown

in Figure 4B, increasing concentrations of TGF-b did not

overcome inhibitory effects of troglitazone. Nevertheless, troglita-

zone inhibited phosphorylation of both Smad3 and Smad2 in a

dose-dependent manner, suggesting that TGF-b-mediated EMT is

Smad-dependent and that troglitazone effects involve signaling via

TGF-b receptors (Figure 4C).

Troglitazone Inhibits TGF-b1-associated Phosphorylation
of Akt and GSK-3b

TGF-b1-induced EMT is associated with activation of

numerous intracellular signaling pathways. We found that

TGF-b1 induced phosphorylation of Akt at Ser437 in primary

AEC (Figure 5A). When cells were treated concomitantly with

troglitazone and TGF-b1, activation of Akt was inhibited

Figure 4. Troglitazone (Tro) reverses TGF-b1-induced EMT in
primary AEC. A. Following treatment with TGF-b1 starting on day 2
for 6 days, ZO-1 immunoreactivity was markedly decreased while a-SMA
was robustly expressed, reflecting that cells are undergoing EMT (ii,vi).
Following subsequent treatment with troglitazone for an additional 6
days (from day 8 through day 14), ZO-1 expression was restored and a-
SMA returned to control levels (iv, viii). Nuclei are labeled with DAPI.
Cells treated with TGF-b1 vehicle (i,v) serve as negative control. TGF-b1
removal (iii, vi) only shows partial reversal of EMT. B. Treatment with
increasing amounts of TGF-b1 (2.5–10 ng/ml) in the presence of
troglitazone (10 mM) does not prevent inhibitory effects of troglitazone
on TGF-b1-induced a-SMA expression. These data are representative of
three separate experiments. C. Treatment with increasing amounts of
troglitazone (2.5–10 mM) in the presence of TGF-b1 (2.5 ng/ml) for 2
hours reduced phosphorylation of Smad2 and Smad3 induced by TGF-
b1. These data are representative of two separate experiments.
doi:10.1371/journal.pone.0038827.g004
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(Figure 5A), indicating that troglitazone modulates Akt phos-

phorylation. Furthermore, treatment with the PI3-K/Akt

pathway specific inhibitor LY294002 showed inhibition of

TGF-b-induced Akt phosphorylation and subsequent a-SMA

induction in a dose-dependent manner (Figure 5B and 5C),

confirming a role for signaling via PI3-K/Akt in TGF-b1-

induced EMT.

Having established troglitazone’s ability to inhibit TGF-b1-

induced phosphorylation of Akt, we explored potential signaling

pathways downstream of Akt. Akt phosphorylates a variety of

substrates, including GSK-3b [26]. Inhibition of GSK-3b activity

by phosphorylation mediates disruption of epithelial junctional

complexes coupled with nuclear translocation of b-catenin (an

important component of EMT) [27]. TGF-b1 increased levels of

pGSK-3b relative to total GSK-3b (Figure 5D). However,

concomitant treatment with troglitazone blocked this process such

that GSK-3b activity was maintained at levels comparable to that

of controls (Figure 5D).

Inhibition of TGF-b1-induced Nuclear Translocation of b-
catenin and SNAI1 Activation by Troglitazone

When stimulated with TGF-b1, AEC exhibited marked

accumulation of b-catenin in nuclear and peri-nuclear regions,

as shown by immunofluorescence (Figure 6A), which was

markedly reduced following simultaneous treatment with troglita-

zone (Figure 6A). To further test the importance of nuclear

accumulation of b-catenin, we treated cells with a combination of

TGF-b, troglitazone and LiCl (an activator of the Wnt pathway by

inactivation of GSK-3b) [28]. As shown in Figure 6B, treatment

with LiCl prevented troglitazone-mediated inhibition of a-SMA

by TGF-b, suggesting that troglitazone effects are mediated, at

least in part, by inhibition of TGF-b-induced nuclear accumula-

tion of b-catenin. Similarly, TGF-b1 was shown to upregulate

SNAI1 in AEC, as shown by Western analysis (Figure 6C).

Moreover, concurrent treatment with troglitazone effectively

inhibited EMT-related stabilization of SNAI1 (Figure 6C). Taken

together, these results suggest that troglitazone inhibits EMT via

Figure 5. Troglitazone (Tro) inhibits TGF-b1-mediated phosphorylation of Akt and GSK-3b in primary AEC. A. Following treatment with
TGF-b1 for 1 h, primary AEC exhibit marked phosphorylation of Akt at Ser437 by Western analysis. Concomitant treatment with troglitazone (10 mM)
and TGF-b1 (2.5 ng/mL) attenuated Akt phosphorylation. Membranes used for Western analysis were stripped and re-probed for total Akt to confirm
equal protein loading and for normalization of p-Akt levels. *P,0.05 compared to TGF-b1; n = 3). B. Concomitant treatment with the PI3-K/Akt
inhibitor LY294002 (0.5–3 mM) and TGF-b1 (2.5 ng/ml) attenuated Akt phosphorylation and subsequent induction of a-SMA by TGF-b1 in primary
AEC. C. Quantitative analysis of a-SMA protein in primary AEC concomitantly treated with LY294002 (0.5–3 mM) and TGF-b1. *P,0.05 compared to
TGF-b1; n$3. D. Following treatment with TGF-b1 for 2 h, primary AEC exhibit marked phosphorylation of GSK-3b by Western analysis. Concomitant
treatment with troglitazone (10 mM) and TGF-b1 (2.5 ng/mL) attenuated GSK-3b phosphorylation. Membranes were re-probed for total GSK-3b to
confirm equal protein loading and for normalization of pGSK-3b levels. *P,0.05 compared to TGF-b1; n = 3.
doi:10.1371/journal.pone.0038827.g005
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an Akt- and GSK-3b-dependent pathway, effecting changes in b-

catenin- and SNAI1-related signaling.

Discussion

Evidence continues to accumulate indicating that natural and

synthetic PPARc ligands exert beneficial effects in experimental

models of IPF [14,15]. Mechanisms by which PPAR ligands exert

their antifibrogenic effects are poorly understood but potentially

involve numerous complementary pathways, including antago-

nism of TGF-b signaling, upregulation of phosphatase and tensin

homologue deleted on chromosome 10 (PTEN) and increased

hepatocyte growth factor activity [29]. Specifically, PPARc ligands

have been shown to attenuate TGF-b1-driven differentiation of

both pulmonary- and hepatic-derived fibroblasts to myofibroblasts

[9]. EMT has been shown to contribute to myofibroblast

accumulation in the lung in vivo and is primarily driven by TGF-

b1 [5]. For these reasons, EMT and its underlying mechanisms

represent attractive targets for pharmacological intervention in

IPF. In the current study, we investigated a potential therapeutic

approach for maintenance and restoration of alveolar epithelial

integrity via inhibition of TGF-b1-induced EMT with troglita-

zone. We demonstrate that, in both primary rat AEC and RLE-

6TN cells, troglitazone maintained epithelial morphology and cell-

cell junctional architecture when cells were challenged with TGF-

b1. Moreover, troglitazone blocked TGF-b1-mediated changes in

ZO-1 distribution and increases in a-SMA expression, consistent

with inhibition of EMT.

Although inhibition of EMT offers the possibility of slowing or

halting the fibrogenic process, existing EMT-associated fibrotic

lesions could remain unaffected. Thus, from a therapeutic

perspective, reversal of both EMT and fibrosis is especially

desirable. In addition to troglitazone’s strongly antifibrotic activity

and its observed inhibition of EMT, our results show that

troglitazone is able to revert established a-SMA-expressing (myo-)

fibroblasts to their original epithelial phenotype. Troglitazone may

therefore represent a promising therapeutic agent with which to

effectively facilitate re-epithelialization within the lung.

It is known that TZDs and other agonists such as 15d-PGJ2

exhibit both PPARc-dependent and -independent effects [30].

Several lung-related studies emphasizing the anti-fibrotic role of

these agents have indicated PPARc-independent effects [9,11,15],

although these questions have not been addressed in the context of

EMT in primary AEC. In order to explore if this inhibition of

TGF-b1-induced EMT is PPARc-dependent, we employed an

irreversible PPARc antagonist GW9662 in combination with a

PPARc DN approach (Figure 3) to show that troglitazone’s effect

is independent of PPARc. Interestingly, it has been demonstrated

that both GW9662 (whose actions are mediated predominantly via

PPARc) and PPARc DN are poor inhibitors of fibroblast-to-

myofibroblast differentiation [23]. Mechanisms underlying

PPARc-independent effects of these agonists have not been fully

characterized, especially in the context of EMT. A recent study

revealed that both rosiglitazone and cioglitazone effectively inhibit

key components of EMT in the A549 alveolar adenocarcinoma

cell line via a Smad-independent mechanism [18]. In contrast,

work by Reka and colleagues [19] suggested that troglitazone and

rosiglitazone antagonize Smad3 signaling during TGF-b1-induced

EMT in A549 cells in a PPARc-dependent fashion, leaving the

precise mechanism(s) unresolved, although mechanistic observa-

tions derived from cell lines of cancerous origin may not be

effectively translated to the in vivo setting in the context of IPF.

To further address mechanisms by which troglitazone inhibits

EMT in non-malignant AEC, we focused on components

downstream of TGF-b1 signaling. Activation of the Akt pathway

in response to TGF-b1 has been shown to mediate EMT in non-

malignant mammary and renal epithelial cells [31,32]. Moreover,

inhibition of Akt activity attenuated TGF-b1-mediated EMT in

rat kidney epithelial cells [33], while in oral squamous cell

carcinoma, Akt inhibition induces mesenchymal-to-epithelial

transition [34]. Our findings indicate that troglitazone inhibits

TGF-b1-mediated phosphorylation of Akt at Ser437, while the

Figure 6. Troglitazone (Tro) abrogates TGF-b1-induced b-
catenin nuclear translocation and SNAI1 expression in primary
AEC. A. Membrane localization of b-catenin decreased while nuclear/
perinuclear b-catenin (white arrows) increased in TGF-b1-treated cells
compared to untreated (vehicle) controls. Concurrent treatment with
both TGF-b1 and troglitazone maintained b-catenin at the cell plasma
membrane and prevented b-catenin nuclear translocation. Nuclei are
labeled with propidium iodide. *P,0.05 compared to TGF-b1; n = 3. B.
Following concomitant treatment with LiCl (7.5 mM), troglitazone and
TGF-b1 (2.5 ng/ml), LiCl prevented inhibition of TGF-b1-mediated a-
SMA expression by troglitazone. *P,0.05 compared to vehicle;
**P,0.05 compared to vehicle in the presence of TGF-b1 and
troglitazone; n = 4. C. SNAI1 activity was increased upon stimulation
with TGF-b1 and attenuated with troglitazone by Western analysis.
*P,0.05 compared to TGF-b1; n = 3.
doi:10.1371/journal.pone.0038827.g006
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PI3-K inhibitor LY294002 inhibits Akt phosphorylation and a-

SMA induction in response to TGF-b1 (Figure 5), suggesting a

novel pathway by which troglitazone attenuates EMT of AEC,

consistent with observations in other cellular systems [35–37].

Inactivation of GSK-3b, a key downstream effector of Akt, leads

to stabilization of SNAI1 and b-catenin, both key mediators of

EMT [26,27,38–40]. We recently reported that TGF-b-induced

phosphorylation of b-catenin at Tyr654 and dephosphorylation at

Ser37 and Thr41, in conjunction with interaction of b-catenin

with Smad3 and CBP, upregulates a-SMA expression during

TGFb1-induced EMT in AEC [41]. This led us to postulate that

troglitazone’s inhibitory effects on TGFb1-mediated EMT may be

mediated by inhibition of both b-catenin- and SNAI-dependent

signaling downstream of the PI3-K/Akt/GSK-3b pathway.

Consistent with this hypothesis, we demonstrate significant

reductions in SNAI1 expression (Figure 6C), and inhibition of

nuclear translocation of b-catenin (Figure 6A), upon concurrent

treatment with troglitazone and TGF-b1. Although PPARc
ligands are known to inhibit b-catenin signaling [42], this is the

first demonstration to our knowledge that TZDs oppose effects of

TGF-b on EMT by modulating b-catenin and SNAI1 activation

via PI3-K/Akt/GSK-3b signaling. Consistent with our findings, a

recent study in renal proximal tubular cells showed an inhibitory

effect of troglitazone on SNAI1 expression and b-catenin nuclear

translocation in EMT induced by high glucose [17]. In addition to

troglitazone’s inhibition of TGF-b1 action, PPARc ligands have

also been shown to reduce TGF-b1 synthesis, both in vivo [15] and

in vitro [43]. While our findings have revealed a novel molecular

pathway by which troglitazone overrides profibrotic action of

TGF-b1, effects on TGF- b1 synthesis by AEC remain to be

elucidated.

The present study reveals effectiveness of troglitazone in

attenuation of TGF-b-induced EMT in AEC by inhibiting a

PI3-K/Akt- and GSK-3b-dependent pathway responsible for

key EMT events, namely, SNAI1 upregulation and b-catenin

activation. Our data suggest a potentially useful role for

troglitazone as a therapeutic agent to reduce and/or reverse

EMT of alveolar epithelium associated with IPF, in which

colocalization of b-catenin and Smad3 have been identified in

hyperplastic AT2 cells [41]. Although systemically administered

troglitazone has been shown to exhibit hepatotoxic effects in

some instances [44], employment of aerosol therapy could

facilitate a reduction in the rate and severity of any potential

off-target effects, as have been shown for other drugs (e.g.,

inhaled corticosteroids and beta-agonists). Alternatively, since

rosiglitazone similarly inhibits TGF-b effects, our results suggest

that effects of troglitazone on EMT may be generalizable to the

TZD subclass of PPARc ligands.

Supporting Information

Figure S1 Troglitazone (Tro) attenuates TGF-b1-in-
duced changes in morphology of RLE-6TN cells. Under

control conditions, cells exhibit cobblestone appearance typical of

epithelial morphology. Following treatment with TGF-b1, loss of

cell-cell contacts and acquisition of fibroblast-like morphology are

seen. Troglitazone attenuates TGF-b1-induced changes and

maintains epithelial morphology. Nuclei are labeled with 49,6-

diamidino-2-phenylindole (DAPI). Data are representative of two

separate experiments.

(TIF)

Figure S2 Troglitazone (Tro) inhibits EMT in RLE-6TN
cells. Following treatment with TGF-b16 troglitazone for 3 days,

RLE-6TN cells were fixed and stained for ZO-1 and a-SMA.

Control cells exhibit ZO-1 staining along intercellular surfaces

with minimal a-SMA. Treatment with TGF-b1 gives rise to loss of

membrane-associated ZO-1 with a marked increase in a-SMA

expression. Cells treated concurrently with both TGF-b1 and

troglitazone maintain ZO-1 immunoreactivity and absence of a-

SMA. Nuclei are labeled with 49,6-diamidino-2-phenylindole

(DAPI). Data are representative of three separate experiments.

(TIF)

Figure S3 Effects of troglitazone (Tro) on a-SMA
expression are dose dependent. RLE-6TN cells were treated

with TGF- b1 in the presence of increasing doses of troglitazone.

Representative Western blot demonstrates dose-dependent reduc-

tion in a-SMA.

(TIF)

Figure S4 Effects of rosiglitazone (Ros) on a-SMA
expression are dose dependent. RLE-6TN cells were treated

with TGF-b1 in the presence of increasing doses of rosiglitazone.

Representative Western blot (upper panel) and quantitation (lower

panel) demonstrate dose-dependent reductions in a-SMA induced

by TGF-b1. *P,0.05 compared to TGF-b1; n = 3. GAPDH is

used as loading control.

(TIF)
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