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Learning induces coordinated neuronal plasticity of
metabolic demands and functional brain networks

Sebastian Klug 15 Godber M. Godbersen® ">, Lucas Rischka® ', Wolfgang Wadsak 23

Verena Pichler® 24, Manfred KIobl', Marcus Hacker@® 2, Rupert Lanzenberger® ' & Andreas Hahn@® 1™

The neurobiological basis of learning is reflected in adaptations of brain structure, network
organization and energy metabolism. However, it is still unknown how different neuroplastic
mechanisms act together and if cognitive advancements relate to general or task-specific
changes. Therefore, we tested how hierarchical network interactions contribute to
improvements in the performance of a visuo-spatial processing task by employing simulta-
neous PET/MR neuroimaging before and after a 4-week learning period. We combined
functional PET and metabolic connectivity mapping (MCM) to infer directional interactions
across brain regions. Learning altered the top-down regulation of the salience network onto
the occipital cortex, with increases in MCM at resting-state and decreases during task
execution. Accordingly, a higher divergence between resting-state and task-specific effects
was associated with better cognitive performance, indicating that these adaptations are
complementary and both required for successful visuo-spatial skill learning. Simulations
further showed that changes at resting-state were dependent on glucose metabolism,
whereas those during task performance were driven by functional connectivity between
salience and visual networks. Referring to previous work, we suggest that learning establishes
a metabolically expensive skill engram at rest, whose retrieval serves for efficient task
execution by minimizing prediction errors between neuronal representations of brain regions
on different hierarchical levels.

TDepartment of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria. 2 Department of Biomedical Imaging and Image-guided
Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria. 3 Center for Biomarker Research in Medicine (CBmed), Graz, Austria.
4 Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria. “These authors contributed equally:
Sebastian Klug, Godber M Godbersen. ®email: andreas.hahn@meduniwien.ac.at

COMMUNICATIONS BIOLOGY | (2022)5:428 | https://doi.org/10.1038/s42003-022-03362-4 | www.nature.com/commsbio 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03362-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03362-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03362-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03362-4&domain=pdf
http://orcid.org/0000-0001-8714-6608
http://orcid.org/0000-0001-8714-6608
http://orcid.org/0000-0001-8714-6608
http://orcid.org/0000-0001-8714-6608
http://orcid.org/0000-0001-8714-6608
http://orcid.org/0000-0002-9739-0724
http://orcid.org/0000-0002-9739-0724
http://orcid.org/0000-0002-9739-0724
http://orcid.org/0000-0002-9739-0724
http://orcid.org/0000-0002-9739-0724
http://orcid.org/0000-0002-6766-857X
http://orcid.org/0000-0002-6766-857X
http://orcid.org/0000-0002-6766-857X
http://orcid.org/0000-0002-6766-857X
http://orcid.org/0000-0002-6766-857X
http://orcid.org/0000-0003-4479-8053
http://orcid.org/0000-0003-4479-8053
http://orcid.org/0000-0003-4479-8053
http://orcid.org/0000-0003-4479-8053
http://orcid.org/0000-0003-4479-8053
http://orcid.org/0000-0003-4544-2438
http://orcid.org/0000-0003-4544-2438
http://orcid.org/0000-0003-4544-2438
http://orcid.org/0000-0003-4544-2438
http://orcid.org/0000-0003-4544-2438
http://orcid.org/0000-0002-4222-4083
http://orcid.org/0000-0002-4222-4083
http://orcid.org/0000-0002-4222-4083
http://orcid.org/0000-0002-4222-4083
http://orcid.org/0000-0002-4222-4083
http://orcid.org/0000-0003-4641-9539
http://orcid.org/0000-0003-4641-9539
http://orcid.org/0000-0003-4641-9539
http://orcid.org/0000-0003-4641-9539
http://orcid.org/0000-0003-4641-9539
http://orcid.org/0000-0001-9727-7580
http://orcid.org/0000-0001-9727-7580
http://orcid.org/0000-0001-9727-7580
http://orcid.org/0000-0001-9727-7580
http://orcid.org/0000-0001-9727-7580
mailto:andreas.hahn@meduniwien.ac.at
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03362-4

organism to adapt to its environment throughout its entire

lifetime. As neuroscientific research has moved beyond the
behavioral level to examine the underlying neurobiological
mechanisms, numerous structural, functional, and molecular
aspects of learning have been demonstrated.

Human magnetic resonance imaging (MRI) studies have
revealed learning-induced neuroplastic changes in gray and white
matter structure! as well as in functional networks that undergo
dynamic reconfigurations®>. These consistently showed that
interactions of higher-order brain networks of cognitive control,
such as cingulo-opercular, salience, and fronto-parietal networks,
among each other® and with lower-level visual areas* predict
learning-related gain in task efficiency®. On the other hand,
positron emission tomography (PET) imaging with the radi-
olabeled glucose analogue ['8F]FDG further showed that brain
areas involved in a visuo-spatial task performance also undergo
metabolic adaptations after learning, indicating a more cost-
effective use of metabolic resources®.

However, most of the previous work only employed a single
imaging modality at the same time, thus impeding to draw
conclusions about how the different parameters of brain function
act together in the process of learning. In addition, neuroplastic
effects were investigated either in a general manner at resting-
state (e.g., gray and white matter structure!, network adaptations)
or specifically during task execution (e.g., metabolic demands®,
neuronal activation), while the direct comparison between the
two states largely remains missing’. In sum, it is not clear whether
intrinsic resting-state or task-related effects drive the improve-
ment in cognitive performance after learning. Furthermore, the
interaction between different indices of brain function and net-
work adaptations is poorly understood.

The application of functional PET (fPET)3 in the framework of
metabolic connectivity mapping (MCM) provides a valuable
approach to address both of these open questions. MCM com-
bines MRI-derived functional connectivity and glucose metabo-
lism obtained with [!8F]FDG PET, thereby enabling the
computation of directional connectivity’. The underlying ratio-
nale is that the integration of metabolic information identifies the
target region of a connection since the majority of energy
demands emerge post-synaptically!0-12, The two imaging para-
meters are also tightly linked on a physiological basis through
glutamate-mediated processes that occur upon neuronal activa-
tion. Glutamate release increases cerebral blood flow via neuro-
vascular coupling!®!4, which in turn affects the blood oxygen
level-dependent (BOLD) signal used for the assessment of func-
tional connectivity. On the other hand, glutamate release also
triggers glucose uptake into neurons!” and astrocytes!®, to meet
increased energy demands for the reversal of ion gradients!1:17:18,
MCM thus constitutes a validated framework to investigate the
associations of glucose metabolism and functional connectivity
and decipher hierarchical interactions across brain regions by
assigning directionality to connections. For an in-depth discus-
sion on the rationale and the underlying biological mechanisms
of MCM the reader is referred to the previous work®1%. Using
MCM, we have recently demonstrated that first-time perfor-
mance of a cognitive task strengthened the interplay of functional
connectivity and glucose metabolism, specifically for feedforward
connections to higher-order cognitive processing areas'®. How-
ever, the corresponding effects induced by prolonged training of a
task remain unknown.

In the current work we aimed to address the open questions
outlined above, namely (i) the interaction of training-induced
changes between functional connectivity and glucose metabolism,
(ii) the neurobiological contributions of resting-state and task-
specific effects that drive improvements in cognitive performance,

I earning is a fundamental cognitive process that allows an

and (iii) the hierarchical interplay across brain regions involved
in the learning process. We investigated learning-induced neu-
ronal adaptations in functional brain networks and the under-
lying energy demands with MCM before and after healthy
volunteers practiced a challenging visuo-spatial task for 4 weeks.
Proceeding from the convergence of functional connectivity and
glucose metabolism already during the first execution of a novel
task!® we expect that after continuous skill learning this task-
specific association is consolidated also at resting-state. We
hypothesize that training effects will be further reflected in the
interaction of higher-order brain regions involved in cognitive
control.

Results

Multimodal brain imaging data and behavioral performance were
acquired for 41 healthy participants in a longitudinal study design
(Fig. 1). Subjects were assigned to either the training (n = 21) or
control group (n = 20), which were carefully matched regarding
the distributions of age, sex, and general intelligence (all p > 0.5).
All subjects completed two PET/MRI scans ~4 weeks apart
(p = 0.2 between groups) with simultaneous acquisition of fPET
using ['8F]FDG, functional connectivity (blood oxygen level-
dependent signal (BOLD)) as well as fMRI (BOLD and arterial
spin labeling (ASL), Supplementary Fig. S1). Imaging was
obtained at rest and during the performance of a cognitively
challenging task (an adapted version of the video game Tetris®) at
two levels of difficulty (easy, hard), which required rapid visuo-
spatial processing, motor coordination, and planning. Between
the two PET/MRI measurements the training group practiced the
cognitive task on a regular basis with the explicit aim to be able to
manage the hard level at the second scan. Both PET/MRI sessions
were accompanied by cognitive assessment to relate improve-
ments in task performance to mental rotation, visual search, or
spatial planning.

First, we combined the imaging parameters of glucose meta-
bolism (CMRGlu), blood flow (CBF), and the BOLD signal for a
functional delineation of brain regions with increased metabolic
demands during task performance. In the next step, learning-
induced changes in the networks encompassing the task-specific
regions were investigated in the framework of MCM. MCM
represents the associations between regional patterns of CMRGlu
and BOLD-derived functional connectivity (FC), thereby enabling
inference on directional connectivity®>1°. For a thorough assess-
ment of neuroplastic network effects, MCM was computed in an
unbiased whole-brain approach for all three conditions (rest,
easy, and hard task). In addition, simulations were carried out to
identify whether the metabolic underpinnings or network reor-
ganizations drive the training-induced changes by manipulating
spatial MCM correlations based on values of CMRGlu of FC.
Finally, changes in gray matter volume and white matter
microstructure were assessed to identify whether learning-
induced adaptations of MCM are also mirrored by structural
adaptations. Please see the supplement for a thorough metho-
dological description.

Learning-induced improvement in cognitive skill performance.
Task performance was given by score per minute achieved during
Tetris®, which underlined the successful training (Fig. 2). At the
first PET/MRI measurement (i.e., before the training period), the
training and control group did not differ regarding task perfor-
mance, neither for the easy nor the hard task condition (both
p>0.5). Subjects in the training group then practiced 53.6 + 5.2 min
per day for 20.9 £ 1.5 days within a 4-week period using an online
training program. This training period elicited significant changes
in task performance (group*time*condition interaction, p < 107>),
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Fig. 1 Design and analysis. a After the initial screening, participants were randomly assigned to the training or the control group. All subjects underwent
two simultaneous PET/MRI examinations for acquisition of structural, functional and metabolic data at resting-state and while performing a challenging
visuo-spatial processing task (the video game Tetris®, Supplementary Fig. S1). In the 4-week period between the two PET/MRI scans, the training group
regularly practiced the task using an online platform, whereas the control group did not. After the second PET/MRI scan, no further training was carried out
and the training group completed a final task session on a laptop. Additional testing of different cognitive domains was performed at both PET/MRI
examinations. b To obtain a robust estimate of task-specific increases in energy demands, the imaging parameters of glucose metabolism (blue), cerebral
blood flow (green) and BOLD-derived activation (red) were combined in a conjunction analysis (intersection, orange). Joint active areas served as target
regions for the subsequent network analysis (Supplementary Fig. S2). ¢ We extended metabolic connectivity mapping (MCM) to the whole-brain level to
assess learning-induced adaptations in directional connectivity towards regions with high task-specific energy demands. The BOLD signal of each brain
voxel (exemplarily shown as yellow/orange squares) yields a certain functional connectivity pattern in the target region (here the occipital cortex).
Computing the spatial correlation between patterns of functional connectivity (yellow/orange) and glucose metabolism (blue/green) results in an MCM
value for each brain voxel that reflects the directional connectivity to the target. d Finally, simulations were carried out to disentangle the individual
contribution of glucose metabolism and functional connectivity to MCM learning effects. Voxels in the target region were gradually removed based on
values of connectivity or metabolism (here 50% black voxels in left and right columns, respectively), followed by recalculation of MCM values and the
corresponding learning effects.
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Fig. 2 Behavioral data for the video game Tetris® measured as score per minute. Changes in task performance differed between the two PET/MRI
measurements (M1 and M2), groups and task conditions (group*time*condition interaction, p<10~>). a For the easy task condition, the training group
(n=21) showed a 2.7-fold increase in performance, which was significantly higher compared to the control group (n = 20). b For the hard task, changes in
performance followed a similar pattern but effects were more pronounced, with the training group showing a 3.1-fold improvement in performance. Also,
task performance for the hard task condition further increased even without training until the final visit (FV). The time between measurements/visits was
4 weeks. Initial performance at measurement 1 was not significantly different between the groups for both task conditions (p > 0.5). ¢ Monitoring the task
performance during the training period highlights the continuous improvement. The learning curve further matched with the performance of the two PET/
MRI measurements as indicated by the dots (average values of M1 and M2 in b). Solid and dotted lines represent mean and standard deviation,
respectively. Data were cut after 21 days as less than 1/3 of the subjects trained longer than this period. For a and b, post-hoc comparisons indicate
significant differences for the group*time interactions (¥p < 0.05, ####p <10-9), for the differences between the two measurements (**p < 0.01,

1 < 0.001, ***p <10~10) and for the difference between measurement 2 and the final visit (#p < 0.05). All p-values were corrected for multiple
comparisons with the Bonferroni-Holm procedure. Boxplots indicate median values (center line), upper and lower quartiles (box limits) and 1.5x
interquartile range (whiskers). Data for the plots are provided in Supplementary Data 1-3.

with the training group performing significantly better in both task
conditions after training. However, the improvement in task per-
formance was particularly more pronounced for the hard task
condition (group*time interaction, p < 10~2, Fig. 2b) as compared
to the easy condition (p <0.05, Fig. 2a), indicating a more robust

learning effect in conjunction with higher task load and skill
demand. In the training group, the task performance of the two
PET/MRI scans also matched that obtained during the online
training (Fig. 2c). Interestingly, task performance even further
improved in the training group for the hard task level another
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4 weeks after the second PET/MRI scan (p < 0.05, Fig. 2b), although
no additional training was carried out. Furthermore, the training
group (p<0.001) but not the control group (p>0.1) showed
improved mental rotation performance after learning (group™time
interaction p <0.05). A similar pattern was observed for the visual
search task (interaction p =0.05, training group before vs. after
learning p = 0.09, control group p >0.2), but not for spatial plan-
ning performance (all p > 0.6).

Overlapping task-specific neuronal activation across imaging
modalities. To identify regional increases in neuronal activation
elicited by task execution, we combined three imaging parameters
that represent different indices of metabolic demands obtained
during the first PET/MRI measurement. CMRGlu, CBF, and
BOLD signal changes during task execution (all p <0.05 FWE-
corrected) showed high spatial overlap in task-specific increases
(Dice coefficient = 0.48-0.57, Supplementary Fig. S2), similar to
our previous work!®. Brain regions with mutual task-specific
effects across imaging modalities (i.e., intersection) comprised the
occipital cortex (Occ, 14.0cm3), intraparietal sulcus (IPS,
20.3 cm3), and frontal eye field (FEF, 6.9 cm3), with the latter two
representing the dorsal attention network (DAN). These three
areas served as target regions for the subsequent assessment of
learning-induced changes with MCM. Two other clusters of
overlapping task increases were observed in the ventral premotor
cortex and occipital/temporal inferior cortex, which were how-
ever not further considered due to their limited spatial extent (0.3
and 0.9 cm3, respectively).

Learning-induced adaptations in metabolic connectivity map-
ping. Proceeding from the above conjunction of metabolic
demands during acute task execution, we investigated the corre-
sponding network changes after practicing the same task over a
4-week training period by computing the association between
CMRGIlu and BOLD-derived FC. With Occ as the target region,
learning-induced effects in MCM were observed in the dorsal
anterior cingulate cortex (dACC) and the insula, both being
integral parts of the salience network (SN, group*time*condition
interaction, all p <0.05 FWE-corrected, Fig. 3). This result was
obtained independent of the contrast of interest, whereas two
other regions (left insula and primary visual cortex) were
observed just for one of the contrasts and will thus not be con-
sidered further. Post-hoc analysis showed that after the learning
period MCM values of these two connections directed towards
Occ increased at the resting-state for the training group as
compared to the control group (group*time interaction, all
p<0.01). In contrast, MCM of connections from dACC and
insula decreased during the execution of the hard task level
(p <0.01-0.05). Further analysis confirmed that these differences
emerged exclusively from changes in the training group
(p<0.01-0.05) with no significant differences in the control
group (all p>0.09). MCM values obtained at the first PET/MRI
measurement were not significantly different for the two men-
tioned connections. Moreover, the results remained stable when
defining the target region only from task-specific CMRGlu and
BOLD changes (i.e., without CBF, Supplementary Fig. S3). Fur-
thermore, no significant training-induced effects in MCM were
observed for the other two target regions that showed overlapping
task-specific activation (i.e., FEF and IPS).

Based on the diverging training effects in the salience network
(i.e., increased MCM at rest after training vs. decreased MCM
during the task) we further tested whether the combination of
these changes was related to cognitive performance. Indeed, the
difference in MCM values between rest and the hard task for the
connection from dACC to Occ was positively associated with the

Tetris® score of the second PET/MRI scan (p = 0.46, p <0.05)
and the area under the curve of scoring obtained during the entire
4-week training period (p=0.56, p<0.01, Fig. 4a-b). MCM
values of the dACC were also associated with mental rotation
performance obtained during cognitive testing (normalized
duration, p = —0.56, p <0.01, Fig. 4c).

Differential role of glucose metabolism and functional con-
nectivity in neuroplasticity. In a simulation analysis, we disen-
tangled the individual contributions of CMRGlu and FC to the
training-induced changes in MCM described above (Fig. 5). This
revealed that learning-specific increases in MCM at resting-state
were dependent on CMRGlu, but not FC for the two connections
(insula and dACC towards Occ). Conversely, the inverse pattern
was observed for the hard task condition, where MCM training
effects were driven by FC, but were largely independent of
CMRGlu for both connections. However, random removal of
voxels up to 90% did not affect the learning-induced MCM
changes. This further supports the specificity of CMRGlu and FC
driving MCM training changes and indicates that effects were not
dependent on the size of the target region.

Structural imaging. There were no significant learning effects
regarding gray matter volume or white matter microstructure
(group*time interaction, all p > 0.05 FWE-corrected).

Discussion

We employed brain network analyses of simultaneous PET/MR
imaging to investigate learning-induced neuroplastic changes in
functional network reorganization and the underlying metabolic
demands that relate to cognitive performance improvements.
MCM served as a suitable multimodal approach to assess task-
specific and resting-state adaptations, which earlier have been
examined independently. Four-week training of a visuo-spatial
processing task resulted in adaptations of MCM from the salience
network to the occipital cortex, with an increased association
between glucose metabolism and BOLD-derived functional con-
nectivity at resting-state, but decreases during the execution of the
hard task condition. This divergence between resting-state and
task-related MCM adaptations also explained cognitive perfor-
mance after learning but was not simply driven by gray or white
matter changes. Simulations further enabled a specific attribution
of training effects at resting-state to CMRGlu and those during
task execution to FC. Together, these findings highlight that the
interaction of both metabolically expensive general neuroplastic
adaptations and task-specific network reorganizations is required
for improvement in the behavioral performance of visuo-spatial
skill learning.

Similar to our previous work!?, task-specific activations were
observed for the DAN and Occ. This result complies with the
employed task as Occ is involved in visual attention-drawing?0-21
and provides spatial representations of the visual field?2:23,
whereas the DAN is known for its role in controlling visuo-spatial
attention’*. However, the DAN represented by FEF and IPS
showed no relevant training effects, indicating that this network
mirrors a more general involvement in visuo-spatial processing
required for planning and problem-solving of the current task.

In comparison, the main training effect was a pronounced
alteration of the influence from the SN (insula and dACC) to Occ.
The right anterior insula mediates switching between task-
irrelevant and task-specific networks that convey externally
oriented attention?>-28 through the dorsal visual pathway and the
intraparietal sulcus?®2°. This pathway thus represents a crucial
bottom-up connection to the SN with the anterior insula as a
feedforward stimuli filter and working memory access hub?6:30-31,
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Fig. 3 Learning-induced changes in metabolic connectivity mapping (MCM) with the occipital cortex as target region. Four weeks of training the video
game Tetris® resulted in specific adaptations of connectivity from the right insula (a) and the dorsal anterior cingulate cortex (dACC, b) to the occipital
cortex (group*time*condition interaction, p < 0.05 FWE-corrected cluster level). Post-hoc comparisons showed that at rest MCM increased for both
connections in the training group (n = 21) as compared to the control group (n=20). In contrast, MCM decreased during the hard task condition in the
training group. There were no significant changes in the control group between the two measurements (M1, M2). Furthermore, MCM values between
training and control groups at measurement 1 were not significantly different. Boxplots show the MCM z-scores of the clusters indicated by the crosshair.
Post-hoc comparisons indicate significant differences for the group*time interaction (¥p < 0.05, ##p < 0.01) and for the differences between the two
measurements (*p < 0.05, **p < 0.01), corrected for multiple comparisons with the Bonferroni-Holm procedure. Boxplots indicate median values (center
line), upper and lower quartiles (box limits) and 1.5x interquartile range (whiskers). Data for the plots are provided in Supplementary Data 4-7.
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Fig. 4 Associations between MCM adaptations and cognitive performance. Based on the training-induced effects in the salience network (Fig. 3), one
would expect that subjects with high MCM values at rest and low values during task execution (i.e., a high divergence between rest and task) show the
best cognitive performance after learning. Thus, the difference of MCM values between rest and the hard task condition at the second PET/MRI scan was
correlated with task performance. Positive associations of JACC MCM values were observed with the Tetris® score (high score = high performance) of the
second PET/MRI measurement (a, rho = 0.46, p <0.05) and that obtained during the 4-week training period (b, rho = 0.56, p < 0.01, normalized area
under curve). Further, dACC MCM values were negatively associated with the mental rotation performance (duration/number of correct answers with low
value = high performance, ¢, rho = —0.56, p < 0.01). All values were rank transformed to account for one outlier, thus correlation values represent
Spearman'’s rho (n = 21). Data for the plots are provided in Supplementary Data 8-10.

On the other hand, the dACC plays an essential role in cognitive  experimental design of our Tetris® task, where only the hard level
control32-37 error monitoring>®40 and negative feedback?!, was set to require specific training. The accompanying behavioral
whereas inhibition of dACC functioning results in poorer accuracy  data further suggest that improvements in task performance were
and reduced learning®2. These cognitive aspects have led to an  specific to abilities of mental rotation and, to a lesser extent, visual
integrative account of dACC function to provide optimized task search and working memory, but not spatial planning and
representations through adaptive coding of task-relevant variables, ~problem-solving. Following the assumption that mental rotation
which further guide behavior®. reflects a continuous transformation performed on visual repre-

Furthermore, the anterior insula and dACC were both identi-  sentations in the human brain®, we speculate that the observed
fied to exert activation patterns preceding task errors*> and were improvement is based on the representational adaptation
associated with performance monitoring>°. Since training led to a  described below.
marked improvement in task performance, the associated To sum up, the observed adaptations of SN connections
decrease of the insula and dACC input to Occ during task indicate an optimized hierarchical top-down influence on the
execution might indicate a reduced error rate. The observation of Occ. In this context, the anterior insula seems to play a unique
changes in cognitive performance and MCM mainly for the hard  role as the switching point between bottom-up saliency and top-
task condition is well in line with other reports*$#> and the down control, whereas the dACC provides monitoring of
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Fig. 5 Simulated perturbations of learning-induced changes in MCM. We aimed to identify whether learning-specific MCM effects in Fig. 3 were driven
by glucose metabolism (CMRGIu) or functional connectivity (FC). Voxels of the occipital cortex (i.e., the MCM target region) were progressively removed
based on increasing values of CMRGIu (solid lines) or FC (dashed lines) and training effects were recalculated (F-value of group*time interaction). At

resting-state simulated removal of voxels based on CMRGIu abolished training-induced MCM effects for both connections towards the occipital cortex,
which was, however, not the case for FC (top row). The inverse pattern was observed for the hard task condition, where training-specific decreases in
MCM were nullified when removing voxels based on FC, but not CMRGIu (bottom row). #/solid black lines: p < 0.05 when removing voxels based on

CMRGlu. */dashed black lines: p < 0.05 when removing voxels based on FC values. 0% of voxels removed represents the results shown in Fig. 3 (i.e., when
using the entire target region). Of note, randomly removing up to 90% of voxels in the occipital cortex did not affect the learning-induced changes in MCM
at all (right top panel, all p < 0.05), highlighting the specificity of CMRGIu and FC to drive MCM changes and indicating that effects are not dependent on
the size of the target region. The colors for the random removal match those of the other panels. Data for the plots are provided in supplementary

data 11-13.

cognitive control and adjustment of task representations. These
mechanisms emphasize a successive shift from basic task execu-
tion, instantly implemented by feedforward activation through
Occ to the DAN!, to the optimized top-down control of salient
input from the SN to Occ after successful training, thus enabling
improved cognitive performance.

The hierarchical interaction across brain regions as assessed
with MCM revealed divergent yet complementary effects of the
learning process at resting-state and during task execution. This
approach further enabled us to provide a unified interpretation of
skill learning as an advancement of regionally specific neuronal
representations of the task.

While the retinal image is represented by early visual pathway
areas, higher-order brain regions create edited representations of
the visual field to fulfil immediate goals of attention and behavior
as a function of task demands?*’. Our findings thus integrate the
spatio-temporal dynamics underlying bottom-up and top-down
attentional control via the SN2° into the conception of learning to
reduce prediction errors between task representations of brain
regions of different processing levels, based on synaptic
modifications?S.

The initial learning stage comprises interactions with unknown
task demands and high perceptional load, thus requiring adap-
tation of attention due to limited processing resources#?-0,
Attention can be understood as a Bayesian optimization of
hierarchical perception to infer the precision of a probabilistic
representation of the environment*8>1, The model is also sup-
ported by rodent studies, where projections from the ACC to the
visual cortex encoded the discrepancy between predicted and
actual sensory input®?=>>. The attentional optimization is
implemented across different hierarchical levels of cortical
systems®®>7, based on synaptic gain or responsiveness of

postsynaptic neurons that encode prediction errors®!->8. Here, so-
called state and error units characterize the different representa-
tions and their inaccuracy (ie., the prediction error),
respectively*8. The prediction error itself is optimized through
top-down modulatory control?8, e.g., by the SN2°, which enables
to select**°%60 and sharpen® representations and to distinguish
between efficient and unsuccessful task rules, thereby imple-
menting an advanced representation of the task®0:61,

Training will continuously alter the task representation by
incorporating relevant and discarding irrelevant information,
approaching an optimal solution, and finally yielding a sparse
representation®203, Following a sufficiently long training period,
the task representation is saved within these state units. We
refer to this stored representation as ‘skill engram’, extending the
term ‘engram’, first introduced in 1904 to describe memory
representations®. For the herein employed task the skill engram
is equivalent to a specific pattern of functional connectivity that
matches the underlying metabolic demands between SN and Occ
as reflected by MCM increases at the resting-state. Importantly,
the stored skill engram can be retrieved instantaneously at the
next task performance. Then, the optimized representations yield
a small prediction error between higher- and lower-order brain
regions. A minimized prediction error requires only minor cog-
nitive control, resulting in decreased directional influence (lower
MCM values) from SN to Occ during task execution. We would
like to note that these representations can still be subject to
adaptations and reconsolidation with further training, high-
lighting that engrams are dynamic in nature®>-67. This strongly
emphasizes that the observed effects in resting-state and during
task execution complement each other by representing the stable
and fluid/plastic components of memory (or skill) traces,
respectively®®. The above interpretation is further supported by
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our observation that a high divergence of neuroplastic changes
between rest and task was associated with improved task
performance.

In this study, the complementary task- and resting-state
learning effects were identified by simultaneous PET/MR ima-
ging. While interpreting our results at the neurobiological level,
we acknowledge that the following section relies on previous
work mostly obtained from preclinical studies. We propose that
the dynamic process of representational advancement is mole-
cularly implemented by synaptic tagging and capture, together
referred to as long-term potentiation®-70, whereas the skill
engram’s storage and retrieval might comply with synaptic (re)
consolidation.

Neuronal stimulation through task performance elicits synaptic
tagging, which describes short-lasting adaptations of the post-
synaptic density of dendritic spines. We interpret a high number
of tagging events as high prediction error, since numerous dif-
ferent traces are explored, which is reflected in high task-specific
MCM before the learning process. Repeated tagging through
continuous training of the task then induces synaptic capture,
where plasticity-related products (e.g,, ARC, AMPA receptor
subunit GluR1) are mobilized to stabilize the spine architecture.
These structural adjustments enable functional synaptic poten-
tiation by anchoring additional postsynaptic AMPA receptors’!,
finally representing the consolidated skill engram. Importantly,
the synaptic adaptations of the learning process beyond tagging
are metabolically expensive’2. Particularly the insertion of AMPA
receptors has been shown to double the postsynaptic energy
consumption in terms of ATP!L. Since BOLD-derived FC reflects
glutamate-mediated processes’3, we propose that the observed
MCM increases at rest (i.e., the increased association between FC
and CMRGlu) indicate long-term potentiation via an increased
expression of glutamatergic AMPA receptors. As mentioned
above, this consolidated engram obtained through training results
in a low prediction error during task execution and thus also in a
few additional tagging events, which is reflected in a decreased
task-specific MCM value after training (summarized in Fig. 6).

Recent metabolic simulations of synaptic adaptations supported
the neurobiological process of synaptic tagging and capture as a
plausible physiological mechanism to increase energy efficiency®%74.
Computations emphasized that storage of transient memories
without protein synthesis is up to ten-fold more energy-efficient,
compared to the immediate formation of long-term potentiation
that requires a high amount of metabolic resources”. This is in line
with our own simulations, indicating that energy-demanding
(synaptic capture) learning effects at rest were dependent on
CMRGlu, while transient storage of information (synaptic tagging)
elicited by task execution was driven by FC. We therefore speculate
that simulations affecting CMRGlu equal a perturbation of state
units that represent the skill engram at resting-state. On the other
hand, FC-based deletion may disrupt the ability to establish a
correct prediction error during task execution as encoded by error
units. Thus, the two aspects will either alter the molecular basis of
neuronal task representations or the actual cognitive control,
respectively. However, disruption of any of the two will nullify the
training effect, again highlighting the complementary importance of
both effects for successful learning.

We are aware that causal relationships between the observed
findings from human brain imaging and more invasive work
underpinning the prediction error model as well as the process of
synaptic tagging and capture still need to be established. Although
these models can be unified in our data, future work should aim
to resolve this knowledge gap by directly testing the suggested
associations.

In sum, applying MCM to simultaneous PET/MR imaging data
of visuo-spatial learning enabled the combined assessment of

brain network dynamics and their underlying metabolic demands
at resting-state and during task performance. Future studies may
build on these findings by investigating if the described effects can
be transferred to other learning paradigms or if they are specific
to the visuo-spatial domain. Although we have carefully assessed
the cognitive domains relevant for the Tetris® task, we
acknowledge the possibility that further aspects may have an
effect when investigating brain function longitudinally. However,
testing these would have exceeded the scope of this work.

Another limitation of our work is that only two time points of
the learning process were assessed (baseline and 4-week training).
In this context, future investigations should determine the
minimum training time to obtain an effective skill engram and
how long it remains stable after the training is terminated. Our
behavioral data suggest that efficient task execution persists for at
least after 4 weeks without further training. Finally, it needs to be
determined if vulnerable development phases or adverse life
events may alter the learning process. Disentangling the meta-
bolic and functional requirements for neuroplasticity might prove
beneficial to differentiate between different forms of neurode-
generative diseases and evaluate the severity of tissue damage in
traumatic brain injury, feasibly with the use of cohort-specific or
individually adapted tasks. Furthermore, the approach might
prove valuable for assessing cognitive deficits in psychiatric dis-
orders like depression or schizophrenia and their respective
treatment. Thus, the application in patient cohorts may identify if
pathological deficits in learning and memory are driven by the
failure to establish the engram on a molecular basis or insufficient
functional error optimization.

Methods

The cognitive task as well as PET/MRI data acquisition and first-level analyses have
been described in detail in our previous cross-sectional work!?.

Experimental design. In this longitudinal study participants were randomly
assigned to the training or control group (dynamic balanced randomization stra-
tified by age, sex, and general intelligence) and underwent two PET/MRI mea-
surements (training: 28.0 + 1.2 days apart, control: 29.5 + 5.0 days, Fig. 1). The
training group practiced the cognitive task regularly between the two imaging
sessions while the control group did not perform a task. After the second PET/MRI
scan, also the training group stopped practicing the cognitive task but completed
the last task session on a laptop at the final visit to assess long-term skill con-
solidation (30.6 + 2.8 days after the second PET/MRI scan).

During each PET/MRI measurement subjects performed a challenging cognitive
task at two predefined levels of difficulty (easy, hard). The PET/MRI acquisition
lasted 100 min and has been described in detail in the previous work!®. Briefly, this
included a T1-weighted structural (8 min) and diffusion-weighted scan (12 min) as
well as blood oxygen level-dependent (BOLD), arterial spin labeling (ASL), and
simultaneous fPET imaging (Supplementary Fig. S1). Prior to the administration of
the radiotracer [!8F]FDG, BOLD and ASL was acquired at rest. Subjects were
instructed to look at a crosshair, relax and not focus on anything in particular.
Afterwards, fPET started with an initial baseline (8.17 min) and subsequent periods
of continuous task performance (6 min for two easy and two hard conditions,
randomized). During the task, BOLD and ASL data were recorded in
pseudorandomized order. BOLD data acquired at rest and during continuous task
performance was used for the computation of metabolic connectivity mapping. All
periods of task execution were followed by periods of rest (5 min). After fPET was
completed, BOLD data were also acquired in a conventional block design (four 30 s
blocks of easy, hard, and control conditions each, randomized with 10 s baseline in-
between, 8.17 min) to obtain another proxy of task-specific activation.

Cognitive tasks and online training. The cognitive task comprised an adapted
version of the video game Tetris®!® (https://github.com/jakesgordon/javascript-
tetris, MIT license), implemented in electron 1.3.14, and was chosen for various
reasons. First, a computerized task enables execution during the training period
and also within the PET/MRI scanner (as opposed to e.g., juggling’>7°), offering
the key possibility to assess learning effects at rest and during task performance.
Also, the individual task performance can be easily monitored to follow the
training success of the participants. Furthermore, the task is well suited to maintain
high levels of attention during prolonged and continuous task performance, which
in turn provides an optimal setting for fPET imaging’’. Finally, the computerized
task enables the programming of different levels of task difficulty. Thereby, we
intentionally set the easy level to be manageable for a novice, whereas the hard level
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Fig. 6 Schematic illustration of training effects and potential neurobiological mechanisms. Cognitive skill learning results in complementary metabolic
adaptations at rest (top row) and functional network reorganization during task execution (bottom row). Glass brains depict directional connectivity from
the higher-order salience network (grayscale circles) to the lower-order occipital region (colored circles) as assessed with metabolic connectivity mapping
(MCM, number of lines). a Training naive subjects exhibit low directional connectivity at resting-state (solid lines) between unorganized state units (blue-
green circles), since the skill trace is not yet established (random circle arrangement, crossing lines). b Due to the lack of training, higher-order
representations in the SN are inaccurate (blurred grayscale Tetris®) in comparison to lower-order visual sensory information (colored Tetris®), resulting in
a high prediction error (large thunderbolt) encoded by error units (red-yellow circles). The representational inaccuracy requires substantial dynamic
optimization between brain regions of different hierarchies (numerous dashed lines). ¢ With repeated task performance during the learning period
functional network reorganization approaches an optimal solution. Presumably, this is realized by a high frequency of synaptic tagging, where optimal task
representations are gradually encoded in the salience network by synaptic capture and subsequent anchoring of glutamatergic AMPA receptors. d After
the learning period, state unit directional connectivity increases, which equals the consolidated skill engram (parallel lines between organized circles). The
metabolic emphasis of this process suggests the energy-intensive formation of clustered and potentiated synapses (line thickness). e The established skill
engram can then be retrieved for task execution. This results in a decreased prediction error (small thunderbolt) as representations between higher- and
lower-order brain regions became more accurate (sharpened grayscale Tetris®). Thus, only minor cognitive control is required (few dashed lines) to apply
an efficient task strategy. In sum, these observations indicate that effects of skill learning at resting-state and during task execution are two sides of the
same coin, where different neurobiological mechanisms complement each other to improve task performance. The glass brain was kindly provided by Dr.
Gill Brown (https://neuroscience-graphicdesign.com/) under CC BY-NC 4.0.

requires specific training. We therefore expected the most pronounced effects
regarding behavioral data and neuroplasticity for the hard task condition. In this
task bricks of different shapes drop from the top of the screen. By rotation and
alignment of the bricks, the aim is to build complete horizontal lines which dis-
appear and increase the score. Bricks were moved by operating four buttons with
the right hand only (index finger: move brick left, middle: rotation, ring: down,
small: right; same fixed assignment for in-scanner and online version).

For the PET/MRI measurements, the two levels of difficulty differed regarding
the speed of the falling bricks (easy/hard: 1/3 lines per sec) and the number of
incomplete lines that were already built at the bottom (easy/hard: 2/6 lines out of
20). An additional control condition was employed for the BOLD block design,
where bricks were navigated through a chimney and disappeared at the bottom.
Participants familiarized themselves with the task and control buttons by a 30's
training of each task condition right before the scan started. For the online learning

phase between the two PET/MRI scans participants were instructed to train on a
regular basis (45-60 min per session, at least 20 sessions within 4 weeks). An
individual username and password were provided to access the web-based training
platform in the web browser Chrome. Subjects were able to select any combination
of brick speed and prebuilt lines freely. However, the explicit aim of the 4-week
training period was to be able to manage the hard task condition as carried out in
the PET/MRI session. The implemented scoring was identical for the PET/MRI
measurements and online training, following the original scheme of Tetris®. The
score for each complete line was k*(n + 1), with n being the speed level of the
falling bricks and k representing the score for one (40), two (100), three (300), or
four (1200) lines removed simultaneously.

At each PET/MRI examination, participants also completed a cognitive testing
session outside the scanner to relate improvements in task performance to specific
cognitive domains of mental rotation, visual search, and working memory, as well
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as spatial planning and problem-solving. For the mental rotation task, subjects
viewed pairs of 3D objects (similar to Tetris bricks) and indicated if the objects are
congruent after mental rotation or not’® (images obtained from http://www.tarrlab.
org/ under CC BY-NC-SA 3.0). The paradigm comprised 20 stimuli pairs of 40°,
80°, 120° and 160° rotation (5 each) and 50% congruent pairs (random
presentation order). Abilities of visual search and working memory were tested
with the delayed match to sample task”®. After the presentation of an abstract
pattern (10 x 10 square of black and white tiles) for 1s and a delay of another
second, subjects were required to choose the matching pattern from a set of 2, 4, 6,
or 8 similar patterns (3 each, 12 stimuli sets in total, random presentation order).
Spatial planning and problem-solving abilities were assessed with the Tower of
London task3081. Within the task, starting from an initial configuration of three
colored discs on three pegs of different height, subjects are required to move the
discs to reach a specific target configuration. The paradigm included 3-8 moves (2
each) and 12 stimulus sets in total (random presentation order).

Participants. For this study, 53 healthy subjects were initially recruited and data
from 41 healthy subjects were included in the analysis (all right-handed). Reasons
for study dropout were voluntary discontinuation (# = 6), omission to acquire
fPET due to issues with arterial cannulation or radiotracer synthesis (n = 3), failure
of arterial blood sampling (n = 2), and excessive head motion during the BOLD
acquisition (n = 1). Among the 41 subjects, 21 were assigned to the training group
(mean age +sd =23.0 + 3.6 years, 11 women) and 20 to the control group
(23.1+3.1 years, 10 women). For two subjects of the training group, no ASL data
were available due to technical issues. As no longitudinal MCM studies are
available, the sample size was based on previous cross-sectional work using this
technique®!?. Parts of this sample were already included in previous studies for the
assessment of cross-sectional datal® and test-retest reliability®2. At the screening
visit, the general health of all subjects was ensured through a routine medical
examination performed by an experienced psychiatrist, including blood tests,
electrocardiography, neurological testing (comprising examinations of mental
status, cranial nerves, motor system, deep tendon reflexes, sensation, cerebellum)
and the structural clinical interview for DSM-IV. All subjects also underwent a
shortened version of the Raven standard progressive matrices test at the screening
visit as an index of general intelligence (training group: 113.3 9.5, control group:
115.1 £9.0; two parameter logistic model®3). Urine pregnancy tests were carried
out for female participants at the screening visit and before each PET/MRI mea-
surement. Exclusion criteria were current and previous somatic, neurological or
psychiatric disorders (12 months), substance abuse or psychopharmacological
medication (6 months), current pregnancy or breastfeeding, previous study-related
radiation exposure (10 years), bodyweight of more than 100 kg for reasons of
radiation protection, MRI contraindications and previous experience with the
video game Tetris® within the last 3 years. Experience with and regular playing of
similar video games, specifically games primarily involving visuo-spatial skills like
“Candy Crush,” was another explicit exclusion criterium. Furthermore, participants
of both groups were instructed not to play and especially not to learn any (new)
video games while participating in the study. After a detailed explanation of the
study protocol, all participants provided written informed consent, and they were
insured and, after study completion, reimbursed for participation. The study was
approved by the ethics committee of the Medical University of Vienna (ethics
number: 1479/2015) and procedures were carried out in accordance with the
Declaration of Helsinki. The study was pre-registered at ClinicalTrials.gov
(NCT03485066).

PET/MRI data acquisition. Participants had to fast for at least 5.5 h before the
start of the PET/MRI scan (except for unsweetened water), according to [!8F]FDG
procedure guidelines®4. The radiotracer 2-['8F]fluoro-2-deoxy-D-glucose ([!8F]
FDG) was administered in a bolus (510 kBq per kg per frame for 1 min) plus
infusion protocol (40 kBq per kg per frame for 51 min) with a perfusion pump
(Syramed pSP6000, Arcomed, Regensdorf, Switzerland) which was kept in an MRI-
shield (UniQUE, Arcomed)?”.

MRI recordings included a structural T1-weighted acquisition (MPRAGE
sequence, TE/TR = 4.21/2200 ms, TI = 900 ms, flip angle = 9°, matrix
size = 240 x 256, 160 slices, voxel size =1 x 1 x 1 mm + 0.1 mm gap, 7.72 min) and
diffusion-weighted imaging (EPI sequence, TE/TR = 86/8800 ms, 64 diffusion
directions with b-value = 1000 s per mm?, 6 b0-images, matrix size = 104 x 104,
70 slices, voxel size =2 x 2 x 2 mm, 11.73 min).

Simultaneously with fPET, functional MRI was obtained using ASL (2D
pseudo-continuous ASL sequence, TE/TR = 12/4060 ms, post label
delay = 1800 ms, flip angle = 90°, matrix size = 64 x 64, 20 slices, voxel
size = 3.44 x 3.44 x 5 mm + 1 mm gap, 3 x 6 min®®) and BOLD imaging (EPI
sequence, TE/TR = 30/2000 ms, flip angle = 90°, matrix size = 80 x 80, 34 slices,
voxel size =2.5x 2.5 x 2.5 mm + 0.825 mm gap, 3 x 6 min for functional
connectivity and 8.17 min for neuronal activation in the block design).

Blood sampling. Blood glucose levels were assessed right before the PET/MRI scan
(Glupjasma, triplicate) and were 5.45 + 0.73 mmol per 1. Manual arterial blood

samples were taken at 3, 4, 5, 14, 25, 36, and 47 min after starting the radiotracer
administration, providing a sufficiently sampled input function for the used bolus

plus infusion protocol”’. For all samples, whole-blood activity and following
centrifugation also plasma activity were measured in a gamma-counter (Wizard?,
Perkin Elmer). Whole-blood activities were linearly interpolated to match PET
frames and multiplied with the average plasma-to-whole-blood ratio, yielding the
arterial input function.

Cerebral metabolic rate of glucose metabolism (CMRGIu). The reconstruction
and processing of fPET data were carried out as described previously””. PET list mode
data were corrected for attenuation with an established database approach8¢ and
reconstructed to frames of 30 s (matrix size = 344 x 344, 127 slices). Preprocessing
was done in SPM12 (https://www.filion.ucl.ac.uk/spm/) and included motion cor-
rection (quality = 1, register to mean), spatial normalization to MNI space via the T1-
weighted structural MRI, and spatial smoothing with an 8 mm Gaussian kernel.
Masking was applied to include only gray matter voxels and a low pass filter was
employed with the cutoff frequency being 3 min (i.e., half the task duration). The
general linear model was used to separate baseline from task-specific effects. The four
regressors described the baseline, both task conditions (easy and hard, linear ramp
function with slope = 1kBq per frame), and head motion (the first principal com-
ponent of all six motion regressors). The baseline regressor was computed as the
average time course of all gray matter voxels, excluding those activated during the
hard task of the individual BOLD block design (p < 0.05 FWE-corrected at voxel
level). This multimodal approach has been shown to provide the best model fit””.
Furthermore, including the BOLD changes in the baseline definition does not affect
fPET task effects’” or their test-retest reliability®2. For absolute quantification of
glucose metabolism, the Patlak plot was applied to calculate the influx constant, K;.
This was subsequently converted to CMRGlu by

CMRGlu = K, # Glu,, . /LC * 100 1)

plasma

with the lumped constant (LC) set to 0.89. This procedure yields separate maps of
CMRGlu at baseline and for each task condition (easy, hard), which were then used as
an index of neuronal activation and for computation of metabolic connectivity
mapping (see below). The approach has been shown to yield excellent test-retest
reliability for CMRGlu at rest and fair-to-good reliability during task performance®2.

Cerebral blood flow (CBF). ASL data were processed according to standard
procedures®”. Voxels with a signal intensity below 0.8 times the mean value were
set to zero to remove spurious effects, followed by motion correction in SPM12
(quality = 1, register to mean). The equilibrium magnetization of the brain M, was
calculated as the average of all non-labeled images. A brain mask was computed
from the M, image with the brain extraction tool (FSL, https:/fsl.fmrib.ox.ac.uk/
fsl/fslwiki/). All data were masked accordingly, spatially normalized to MNI space
via the T1-weighted MRI (as for the fPET data), and spatially smoothed with a
8 mm Gaussian kernel. CBF was then calculated by

. AAMR,,
" 2aMy{exp(—wR,,) — exp[—(7 + @)Ry,]}

CBF @
In this equation A = 0.9 ml/g represents the blood-tissue water partition coefficient,
AM the pairwise difference between labeled and non-labeled images, R, = 0.67 s~!
the longitudinal relaxation rate of blood, a = 0.8 the tagging efficiency, w the post-
labeling delay adapted for slice timing effects (=1800 at slice 1) and = 1508 ms the
duration of the labeling pulse. CBF was then averaged across time series separately for
each condition (rest, easy, hard). As the maps obtained during task performance
represent the sum of resting and task effects, the CBF at rest was subtracted to finally
obtain the sole task-specific changes in CBF as a further proxy of neuronal activation.

Blood oxygen level-dependent (BOLD) signal changes. BOLD data of the block
design were processed with SPM12 as described previously’’. Data were corrected for
slice timing effects (reference = middle slice) and head motion (quality = 1, register
to mean). Similar to fPET and ASL, normalization to MNI space was carried out via
the T1-weighted MRI, followed by spatial smoothing with an 8 mm Gaussian kernel.
Task-specific changes were estimated with the general linear model, which included
one regressor for each task condition (easy, hard, and control) and nuisance

regressors for motion, white matter, and cerebrospinal fluid. The contrasts of interest
used for the subsequent analyses were easy vs. control and hard vs. control.

Overlap in task-specific neuronal activation. The three different indices of task-
specific metabolic demands (CMRGlu, CBF, BOLD) were combined to obtain a
robust estimate of regions involved in task processing. This approach was chosen to
enable comparison to our previous work!® and to maximize the specificity of the
MCM target regions. Still, we also compute the main MCM training effects for the
combination of CMRGlu and BOLD only (Supplementary Fig. S3). For each
imaging modality, separate one-sample t-tests were performed for the hard task
condition of the first PET/MRI measurement across the entire sample. As ASL data
were missing for two subjects, the sample used for this overlap analysis was n = 39.
The resulting statistical maps were thresholded (p < 0.05 FWE-corrected voxel
level), binarized, and combined in a conjunction analysis by computing the
intersection across all three imaging modalities (Supplementary Fig. S2). The brain
regions identified in this analysis were used as target regions for the subsequent
MCM analysis, where homologous regions in the left and right hemispheres were
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combined. The spatial overlap between the different imaging modalities was
assessed by the Dice coefficient applied to the thresholded and binarized maps.

Metabolic connectivity mapping (MCM). MCM is a multimodal framework that
investigates the association of regional patterns between glucose metabolism and
BOLD-derived functional connectivity (FC)°. Considering that the majority of
energy demands emerge post-synaptically!®-12, the incorporation of CMRGlu
identifies the target region and thus the MCM framework allows to assign direc-
tionality to a specific connection. In short, it is assumed that the seed region exerts
an influence on the target region, yielding a particular voxel-wise FC pattern. If this
influence is indeed causal, it will result in a corresponding CMRGlu pattern due to
the coupling between the BOLD signal and metabolism!!4, which is reflected in a
non-zero MCM value given by the spatial correlation between patterns of CMRGlu
and FC. For a detailed description of the underlying neurobiological effects of this
approach and the analysis details the reader is referred to the previous work®1°.

FC was computed at rest and for the two task conditions (easy, hard) from
continuously acquired BOLD data using the preprocessing pipeline employed for
the BOLD block design described above. After spatial smoothing, motion scrubbing
was carried out to remove spurious connectivity induced by head motion®s.
Rotational motion parameters were converted to mm (displacement on a 50 mm
sphere) and summed with the translational parameters. Frames with a
displacement > 0.5 mm (plus one frame back and two forward) were discarded
resulting in an average removal of 4.3 +4.7% of frames. There was no significant
difference in head motion between groups, PET/MRI measurements, and
conditions (p > 0.3 for all interactions and post-hoc tests). Subsequently, further
confounding signals were removed by linear regression (motion parameters, white
matter, cerebrospinal fluid) and a bandpass filter (0.01 < f < 0.15 Hz, enabling
comparison of connectivity at rest and task performance®?).

In this work, we extended the MCM framework from a region-of-interest to the
whole-brain level, thereby avoiding a bias inherent to the a priori selection of brain
regions. First, a specific target region B was chosen, herein defined as the overlap of
neuronal activation across imaging modalities (see results and Supplementary
Fig. S2). Next, the BOLD signal of any single voxel A; in the brain was (temporally)
correlated with the time course of all voxels in the target region B and z-transformed,
yielding a voxel-wise pattern of FC in B. This FC pattern of B was then (spatially)
correlated with the corresponding CMRGlu pattern of B. The resulting MCM value
was again z-transformed and assigned to the voxel A;. Repeating the computation for
every voxel A; in the brain gives a whole-brain map of MCM, where each voxel A;
represents the directional connectivity to the target region B.

Previous studies have demonstrated that MCM is not affected by the size of the
target region’, spatial smoothing, or the preprocessing order of FC datal®. Furthermore,
directionality inferred from MCM has been validated by dynamic causal modeling!®.

Gray matter volume. T1-weighted structural images were segmented and spatially
normalized to MNI-space using the longitudinal pipeline implemented in the CAT12
toolbox for SPM12 with default parameters to detect learning-induced changes. Gray
matter volume was calculated by multiplication of the corresponding segment with
the Jacobian determinants, adjusting for nonlinear deformation effects. The resulting
images were spatially smoothed with an 8 mm Gaussian kernel.

White matter microstructure. Diffusion-weighted images were processed with
FSL as described previously”. This included removal of non-brain tissue with the
brain extraction tool as well as correction for eddy currents, head movement, and
distortions with outlier replacement. For estimation of the diffusion tensors, the
rotated b-vectors as obtained during the previous step were used, resulting in
images of axial, radial, and diffusivity as well as fractional anisotropy (FA). Spatial
normalization to MNI space was carried out with tract-based spatial statistics’! by
creating a white matter skeleton from the mean FA image and subsequent mapping
of individual FA images. The obtained transformations were applied to the three
diffusivity metrics.

Statistics and reproducibility. All statistical tests were two-sided and the reported
p-values were corrected for multiple comparisons. For imaging data, this was
realized with family-wise error correction (MCM and gray matter volume: p < 0.05
FWE cluster level, following p < 0.001 uncorrected voxel level in SPM12; white
matter microstructure: p < 0.05 FWE-corrected with threshold-free cluster
enhancement, 500 random permutations in FSL). For behavioral data, head
motion, and all post-hoc tests, the corrections were done with the Bonferroni-
Holm procedure (number of performed tests for each analysis given below in
brackets).

Behavioral data acquired during the execution of Tetris® was defined as the
score per minute, allowing a comparison between task performance during the
PET/MRI scans and the online training. For the mental rotation task, the overall
duration to solve all image pairs (low = good performance) divided by the number
of correct answers (high = good performance) was used as a summary measure.
For the Tower of London and match-to-sample tasks, the processing time and the
number of correct answers were used as the outcome, respectively. Behavioral data
were analyzed with a repeated-measures ANOVA in Matlab with factors group

(control, training), time (PET/MRI scan 1 and 2), and condition (easy, hard).
Training-induced changes were assessed by the interaction effect
group*time*condition (one interaction). In the post-hoc analysis the interaction
group*time was tested for each condition separately (two conditions), followed by
paired t-tests of the time effect within each group (two groups). Independent-
samples t-tests were used to assess differences in initial task performance between
the training and control group (two conditions). For the training group, additional
paired t-tests were conducted to test for differences in Tetris® score between the
second PET/MRI scan and the final visit (two conditions).

Imaging data were evaluated in a similar manner, testing for training-induced
changes in MCM. First, a repeated-measures ANOVA was implemented in SPM12
with factors group (control, training), time (PET/MRI scan 1 and 2), and condition
(rest, easy, hard). As SPM allows only two factors (in addition to the subject factor),
the factor time was implicitly included by entering the difference maps between
PET/MRI scan 2 vs 1 into the model. Based on our experimental design and the
subsequent expectation that the hard task level will show the strongest neuroplastic
changes, we tested for a conventional interaction effect. However, considering the
previous similarity of MCM effects between the easy and the hard task conditions!?
the second contrast of interest was chosen as rest vs. (easy + hard). For the
subsequent post-hoc analysis regional MCM values were extracted from the
significant clusters and analyzed in Matlab. Here, the interaction group*time was
tested for each condition separately (three conditions), followed by paired ¢-tests of
the time effect within each group (two groups).

MCM values at measurement 2 (i.e., after training) were correlated with the
corresponding behavioral data. Based on our findings (see results), the divergence
between MCM increases at rest and decreases during the task can be summarized
by their difference. Normalization by the mean value further takes the absolute
value into account while avoiding mathematical coupling®>. The MCM difference
was also correlated with the overall learning performance, quantified by the
normalized area under the curve of scoring obtained during the entire 4-week
training period. Spearman’s rho was calculated to account for one outlying value.

Structural changes in gray matter volume and white matter microstructure were
calculated by repeated-measures ANOVA in SPM12 and FSL, respectively. The
analysis included the factors group (control, training) and time (PET/MRI scan 1
and 2), testing for their interaction.

Differences in head motion (i.e., framewise displacement) during FC acquisition
were assessed by repeated-measures ANOVA in Matlab with factors group
(control, training), time (PET/MRI scan 1 and 2), and condition (rest, easy, hard).
Again, we tested the interaction effect group*time*condition (one interaction) and
post-hoc interactions group*time for each condition separately (three conditions).

To verify the reproducibility of the results at the individual level, the first PET/
MRI measurements of the first 22 subjects were partly analyzed twice by two
different investigators. At the group level all statistical tests were reproduced again
after 4 months to confirm the initial findings by the same person originally
conducting the analyses. All mentioned attempts at replication were successful.

Simulations. Simulations were carried out to identify whether the training-specific
changes in MCM were driven by CMRGlu or FC. As MCM represents the spatial
correlation between voxel-wise patterns of CMRGIu and FC, voxels in the target
region were removed in a step-wise manner and the training effects (i.e., F-value of
group*time interactions) were recalculated. Thus, a decrease in the training effect is
expected if the observed changes in MCM are indeed driven by one of the
parameters.

First, voxels of the target region were removed randomly and the resulting
MCM z-scores were averaged for 500 random selections of voxels. Second, voxels
were progressively removed based on the amplitude values of the two imaging
parameters. More specifically, voxels were removed either on the basis of the
underlying CMRGlu or FC values, starting with those voxels that contained the
lowest values. For both the random and specific approaches, an increasing amount
of voxels were removed in steps of 10% up to 90%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw data will not be publicly available due to reasons of data protection. Processed data
can be obtained from the corresponding author on request with a data-sharing
agreement.

Code availability

Custom code can be obtained from the corresponding author on request.
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