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Single-cell atlas of diverse immune populations in the
advanced biliary tract cancer microenvironment
Xuebing Shi 1,2,10, Zhixuan Li2,10, Renqi Yao3,4,10, Qingbao Cheng1, Wei Li1, Rui Wu1,2, Zhihua Xie1,2, Yanjing Zhu2, Xinyao Qiu5,
Shuai Yang5, Tao Zhou2, Ji Hu2, Yangqianwen Zhang2, Tong Wu2, Yan Zhao6, Yani Zhang6, Jianmin Wu6, Hongyang Wang 2,7,8✉,
Xiaoqing Jiang 1✉ and Lei Chen 2,7,9✉

Immunotherapies have been explored in treating solid tumors, albeit with disparate clinical effects in distinct cancer types.
Systematic interrogation of immune cells in the tumor microenvironment (TME) is vital to the prediction of immunotherapy
response and the development of innovative immunotherapeutics. To comprehensively characterize the immune
microenvironment in advanced biliary tract cancer (BTC), we utilized single-cell RNA sequencing in unselected viable cells from 16
matched samples, and identified nineteen cell subsets from a total of 45,851 cells, in which exhausted CD8+ T cells, macrophages,
and dendritic cells (DCs) in BTC were shown to augment and communicate within the TME. Transcriptional profiles coupled with
T cell receptor (TCR) sequences revealed that exhausted CD8+ T cells retained clonal expansion and high proliferation in the TME,
and some of them highly expressed the endoplasmic reticulum stress (ER) response gene, XBP1, indicating the role of ER stress in
remodeling TME. Functional assays demonstrated that XBP1 and common immune checkpoints (PD1, TIGIT) were significantly
upregulated in CD8+ T cells cocultured within the TME of BTC cells (GBC-SD, HCCC-9810). When treating the coculture groups with
the specific inhibitor of IRE1α-XBP1 (4μ8C), the downregulation of TIGIT was observed in the treatment group. Collectively,
comprehensive transcriptome profiling provides deep insights into the immune atlas in advanced BTC, which might be
instrumental in exploring innovative immunotherapy strategies.
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INTRODUCTION
Biliary tract cancer (BTC) is composed of a group of tumors derived
from anatomically different epithelial cells of the biliary tree,
including intrahepatic cholangiocarcinoma (iCCA), extrahepatic
cholangiocarcinoma (eCCA), and gallbladder carcinoma (GBC),
which together account for approximately 1% of all adult cancers
worldwide1,2. Over the past decade, it has become a major global
concern due to its increasing morbidity and noticeable mortal-
ity3,4. However, compared with other common tumor types, BTC is
still significantly understudied, and the progress of therapeutics
has been limited in recent decades5.
During the last decade, checkpoint blockade therapies, CTLA-4

and PD-1 antibodies, have been a great success, especially in
melanoma6, and they have also been applied in clinical trials for
subsets of patients with advanced BTC7,8. However, pronounced
clinical responses have been observed only in a fraction of
patients. The observed discrepancy in treatment efficacy has been
linked to the heterogeneity of infiltrating immune cells in the
tumor microenvironment (TME)9,10. Recently, evolutionary single-
cell transcriptome analysis has become a powerful technique for
understanding cellular components and their heterogeneous
phenotypic states residing in a highly complex TME at unprece-
dented resolution. This technique has been used to characterize
immune cell populations in the TME of distinct cancers, including
hepatocellular carcinoma (HCC)11,12, non-small-cell lung cancer13,

melanoma14, and breast cancer15. These studies depicted high
intratumor and interpatient heterogeneity in the immune
spectrum, including prominent immunosuppressive subsets,
newly defined cell populations, and communications crossing cell
types, which have an essential influence on cancer progression.
Recently, single-cell transcriptional analysis has been applied to
unselected viable cells from iCCA patients, revealing that the
intercellular crosstalk between malignant cells and vascular
cancer-associated fibroblasts promotes tumor progression16.
However, a comprehensive immune landscape of the TME in
advanced BTC at single-cell resolution remains lacking.
In tumors, metastasis to drainage lymph nodes and other

organs is a major cause of mortality. To corroborate the immune
landscape of BTC in the process of tumor metastasis, we
performed droplet-based 10X genomic single-cell RNA sequen-
cing (scRNA-seq) on unselected viable cells isolated from five
surgically removed BTC tumors and their matched peripheral
blood samples, lymph node, or liver metastases (if available). In
our study, we identified exhausted CD8+ T cells, DCs, and
macrophages enriched in tumors with more frequent commu-
nications, indicating an immune-suppressed TME in advanced
BTC. Strikingly, we found that an endoplasmic reticulum (ER) stress
response gene, XBP1, was enriched in exhausted CD8+ T cells and
functional assays revealed its role in the process of T cell
dysfunction, which might help us to develop innovative
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immunotherapy strategies and predict clinical responses. Our
results demonstrate the landscape of the immunosuppressive
microenvironment in advanced BTC, which might provide a
prospect for applying and exploring immunotherapies for BTC.

RESULTS
Single-cell profiling of TME in advanced BTC
To better portray the complexity of immune cell populations in
advanced biliary tract cancer, we undertook droplet-based 5′
scRNA-seq (10X Genomics) on unselected viable cells isolated
from surgical tumor specimens, paired metastatic tissues and
peripheral blood samples from 5 BTC patients. Selected patients

including 2 iCCA, 2 GBC, and 1 distal cholangiocarcinoma (dCCA)
were treatment naïve prior to tumor resection. Patients who met
the inclusion criteria for scRNA-seq were identified by a specialist
surgeon during the operation and immunohistochemical staining
was performed after surgery. Detailed clinical and pathological
information is provided in Table S1.
To construct a global immune landscape, we filtered out CD45-

cells and a total of 45,851 CD45+ cells passing quality control were
used for further analysis. On average, 67,192 uniquely mapped reads
and 1277 genes per cell were profiled. As shown in Fig. 1a, four major
immune cell types across disparate anatomic sites were verified in
each patient and visualized using the uniform manifold approxima-
tion and projection (UMAP) algorithm (Fig. 1a, Table S3_ST.1)17.
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Fig. 1 ScRNA-seq profiling of TME in advanced BTC. a The UMAP plot identified 4 main cell types in BTC, metastatic tissues and peripheral
blood. b The number (right) and average proportion (left) of assigned cell types in different tissue types were presented. c UMAP plots of
normalized marker expression of immune cells from all samples. d Bar plots depict percentage of B, T, NK, and myeloid cells in different
tissues. Error bars indicate mean ± SEM. Two-tail paired t tests, **p < 0.01, *p ≤ 0.05.
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Based on expression of canonical genes, the identified immune
cells included T cells (CD2, CD3D); NK cells (KLRD1, NKG7); B cells
(MS4A1, CD79A) and myeloid cells (LYZ) (Fig. 1c, Table S3_ST.3). All
these cell populations were shared among patients and between
distinct tissues with different proportions and cell counts (Fig. 1b,
Table S3_ST.2), revealing substantial inter-and intra-patient
heterogeneity of immune cell compositions among BTCs. In
agreement with other studies18, we found that the T-cell lineage
was the most prevalent immune cell type in all tissues (Fig. 1d).
Meanwhile, we observed that the proportion of B cells isolated
from lymph nodes was much higher than those in tumor and
peripheral blood (Fig. 1d), which was consistent with the finding
of Elham et al.15, whereas myeloid cells in lymph node were
significantly lower, indicating the immune microenvironment of
tumor draining lymph node is not negatively regulated by
myeloid cells, which may represent a completely different tumor
microenvironment from primary or other metastatic foci (Fig. 1d).

Clustering and subtype analyses of T, B, NK, and myeloid cells
Given that immune cells have a major influence on oncogenesis
and progression19,20, T, B, NK and myeloid cells were further
partitioned through reclustering analyses and yielded 11, 10, 11,
and 8 clusters, respectively (Fig. 2a, Table S3_ST.4). These clusters
were further categorized and annotated by canonical marker
genes (Fig. 2b) as well as the enrichment of differentially
expressed genes (DEGs) (Fig. 3a). For B cells, five kinds of cell
types were obtained, including naïve unswitched B cells
(characterized by the expression of IGHD and CR2), activated
memory B cells, resting memory B cells, plasma blast cells and
transitional B cells (Fig. 2a). The distribution of B cells was
comparable among patients (Fig. 2c, Table S3_ST.5). For
example, naïve unswitched B cells were prevalent in peripheral
blood and lymph nodes. In contrast, resting memory B cells
increased significantly in tumors and metastases (Fig. 2d).
Likewise, by using known functional NK cell markers, we
identified four populations, including NCAM1-FCGR3A+ NK cells,
NCAM1+FCGR3A+ NK cells, NCAM1+FCGR3A- NK cells, and NK
T cells (Fig. 2a). Of which, NCAM1-FCGR3A+ NK cells accounted for
the majority (~85%) of all tissues, whereas NCAM1+FCGR3A- NK
cells and NCAM1+FCGR3A+ NK cells were less than 5%. The
number of NK T cells in the tumor and metastatic foci was
significantly higher than in peripheral blood (Fig. 2d), suggesting
their complex antitumor effect in the TME21. Additionally, we
confirmed the diversity of myeloid cells, and FCGR3A- monocyte,
FCGR3A+ monocyte, macrophage, and dendritic cell subsets
were identified (Fig. 2a). The composition of myeloid cells was
distinct from that of their primary, metastatic tissues and
peripheral blood counterparts (Fig. 2c). For example, unique
distributions of the FCGR3A- monocyte subset were enriched in
the peripheral blood, accounting for 50%–70% of the total
percentage (Fig. 2d). In contrast, we observed significantly
increased DCs, macrophages and FCGR3A+ monocytes in primary
foci, metastatic tissues (Fig. 2d), suggesting their regulatory
role in the TME. We found that macrophages in our study
preferentially expressed C1Qs (Fig. 3a). As suggested in colorectal
cancer, C1Q+ macrophages tend to be dominant in tumors and
play roles in recruiting and regulating regulatory CD4+ T cells
(Tregs) and exhausted CD8+ T cells, implying the immunosup-
pressive function of C1Qs+ macrophages22,23.
Tumor-infiltrating T cells are highly heterogeneous and have

been shown to play crucial roles in immune evasion and
immunotherapy response. To gain insight into the intrinsic
structure and potential functional states of overall T cell
populations, we performed unsupervised clustering of T cells
and a total of 11 stable clusters emerged, including three clusters
for naïve CD4+ T cells (T01, T02, T05), two for naïve CD8+ T cells
(T08, T11), three for memory CD8+ T cells (T03, T04, T10), one for

effector CD8+ T cells (T07), exhausted CD8+ T cells (T06) and Treg
(T09) (Fig. 2a). Naïve CD4+ T cells were dominant in peripheral
blood and lymph nodes (Fig. 2d) and specifically expressed “naïve”
marker genes such as TCF7, IL7R and SELL (Fig. 3a, Table S3_ST.6),
representing immature T cells24. Of interest, memory, effector, and
exhausted CD8+ T cells shared differentially expressed genes,
containing a subset of cytotoxicity-associated genes including
granzymes and perforins (GZMB and PRF1) (Fig. 3a), suggesting an
activated effector state. In addition to the gene characteristics of
the effector program in these cells, exhausted CD8+ T cells
alternatively expressed remarkably well-described exhausted
genes such as CXCL13 (Fig. 3a)12,25, which suggested that these
cells respond reactively to tumor antigens and transformed into
different subsets and immune states. Notably, we observed fewer
effector T cells but more memory and exhausted T phenotypes in
the TME (Fig. 2c). Recent studies26,27 from the Held and Reiner
groups demonstrated that TCF1+/TCF7+ stem-like CD8+ T cells
early after activation differentiate into a small number of effector
cells and a large number of memory T cells28. Moreover, several
studies12–14 have reported that GZMK+CD8+ T cell defined as a
pre-dysfunctional or transitional state could transform into an
exhausted state under persistent tumor antigen stimulation.
Interestingly, in our study, naïve CD8+ T cells highly expressed
TCF7, and GZMK was differentially enriched in memory CD8+

T cells (Fig. 3a). Consequently, we speculate that naïve CD8+

T cells may differentiate into different functional states under the
stimulation of tumor antigen29. Moreover, Núñez and colleagues30

observed that Treg frequencies increase with metastatic lymph
nodes of breast cancer, and a common transcriptomic signature,
CD80, in Tregs is significantly associated with poor survival, which
is more aligned with our findings (Figs. 2c, d, 5a). Collectively, we
obtained diverse immune cell phenotypes, especially immuno-
suppressive cells in the TME at single-cell resolution.

Cell-cell interactions between myeloid cells and exhausted
CD8+ T cells form an immunosuppressive milieu
Cell-cell communications, mainly through ligand-receptor (L–R)
interactions, play unique roles in reprogramming the tumor
microenvironment and response to therapeutics31. Hence, we
quantified the potential cell-cell communications across all
immune cell types using the CellPhoneDB package32 with a
reference list of literature-supported interactions including L–R
pairs from chemokines, tumor necrosis factor super family (TNFSF),
costimulatory/inhibitory, adhension, major histocompatibility
complex (MHC), growth, and others (Fig. 3b, Table S3_ST.7), and
found more frequent interactions between myeloid cells
(FCGR3A+monocyte, macrophage, DCs) and exhausted CD8+ T
cell (Fig. 3b), which is consistent with the vital roles of myeloid
cells as immune regulators33,34. Most of the highest-scoring
interactions were part of the chemokine family (Fig. 3c), implying
that these immunosuppressive cells may transmit across tissues
through chemokine L-R pairs. Zhang et al.35 found that
CXCL10 secreted by M2 macrophages interacts with CXCR3 on
Tregs to recruit Tregs and induces an immunosuppressive
microenvironment. Moreover, we also observed substantial
costimulatory/inhibitory receptors between exhausted CD8+

T cells and myeloid cells, including CD47-SIRPG, TIGIT-NECTIN2,
and CTLA4-CD86 interactions. As found by Ho’s work36, macro-
phages suppressed tumor-infiltrating lymphocytes (TILs) and,
through TIGIT-NECTIN2 interaction with complementary T cells,
shaped an immunosuppressive environment in HBV-associated
hepatocellular carcinoma. Collectively, frequent crosstalk between
exhausted T cells and myeloid cells may play an important role in
promoting immune escape, and targeting these receptors for
immunotherapy may help to restore the antitumor immune
response in advanced BTC37.
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Clonal enrichment of exhausted CD8+ T cells in the TME
revealed by TCRs
Because TCRs often serve as specific identifiers of T cell
ancestries38, we used our scRNA-seq data to trace the lineage of
each single T cell according to their full-length TCR. We obtained
TCRs with α and β chains for 21,879 cells and 21,224 cells,
respectively, of which 57.9% contained unique TCRs (clonal
size= 1) and 28.9% harbored repeated use of TCRs (clonal
size ≥ 2), indicative of clonal expansion (Fig. 4a), which is
compatible with previous studies that most cells expressed
unique TCR α and β alleles12,18. We found that T cell infiltrations
in peripheral blood showed a diverse TCR spectrum with minimal
clonal expansion, while those in tumor lesions were strongly
dominated by oligoclonal expansion of specific T cell phenotypes,
especially more abundant clonally exhausted CD8+ T cells (Fig. 4b,
c). In light of the low clonal enrichment of exhausted CD8+ T cells
in blood, the clonal accumulation of exhausted CD8+ T cells was
probably the result of local activation and proliferation in
the tumor environment, as suggested by previous reports12,39.

In addition, memory CD8+ T cells displayed increased clonal
expansion across all tissues, especially in blood and lymph nodes
(Fig. 4c), implying that the infiltration of these cells into tumors
may be a mechanism that provides the external sources of
exhausted CD8+ T cells in tumors in addition to local expansion23.
Currently, a pivotal role of memory CD8+ T cells in providing
antitumor function has become more appreciated. Clonotypic
expansion of memory T cells in our study may represent a kind of
precursor cell of TILs that might be replenished in tumor sites
following immunotherapy40,41.
We further analyzed and obtained a total of 132 clone types

across exhausted CD8+ T cells (Fig. 4d). The induction of the
exhaustion subsets of these tumor-infiltrating CD8+ T cells may be
due to long-term exposure to their respective antigens. Interest-
ingly, approximately 1/3 of the exhausted CD8+ T cell clone types
showed monoclonal expansion in the TME, while the others
showed shared TCRs between transitional CD8+ T cells and
exhausted CD8+ T cells, indicating ongoing transitional CD8+

T cell differentiation toward exhausted CD8+ T cells (Fig. 4d).
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When comparing cell distribution with exhausted CD8+ T cell
distribution, we observed noticeable shared TCRs among periph-
eral blood and tumor lesions and more exhausted CD8+ T cells
enriched in the tumor loci by decreasing in peripheral blood
(Fig. 4d), indicating that a fraction of exhausted CD8+ T cells are

derived from circulating blood. Combined with TCR analysis, these
results confirm our previous speculation that exhausted CD8+

T cells can not only be cloned and expanded locally, but also can
be transformed from other T cell types, and even from peripheral
blood-derived T cell types. Similarly, we found that distinct T cell
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types in different tissues represent shared TCR β alleles (Fig. 4e),
suggesting that these cells may target the same antigen but
undergo disparate state transitions in different tissue environ-
ments. To understand the links between distinct T cell subsets, we
carried out an unsupervised inference method, Monocle42, to
construct the potential developmental trajectories of T cell
clusters. The inferred developmental trajectory yielded a branched
structure, in which exhausted T cells were positioned at the
opposite end of naïve clusters (Fig. 4f, g, Table S3_ST.8). These
exhausted T cells were highly enriched in the late pseudotime
period (Fig. 4f, g, Table S3_ST.9). Collectively, coupled TCR and
trajectory analysis suggested that, during the chronic stimulation
of cognate antigen, T cells gradually activated and transformed
into a late dysfunction state and clonally expanded in situ43.

A proliferative state in dysfunctional T cells
Among T cells, costimulatory receptors, such as CD28, ICOS, and
CD40, markedly enhance TCR-dependent T cell activation,
whereas high levels of the inhibitory receptors CTLA-4, PDCD-1,
and TIGIT are signatures of progressive T cell exhaustion44,45.
These receptors could be pursued as cancer immunotherapy
targets in current clinical trials46. Interestingly, some of these
genes activated in Tregs overlapped with those features of
exhausted CD8+ T cells (e.g., TNFRSF9, and TIGIT). In contrast,
CTLA4 and CD80 were enriched only in Tregs, while PDCD1 and
LAG3 were preferentially enriched in exhausted CD8+ T cells
(Fig. 5a, Table S3_ST.10, ST.11), implying a highly activated and
dysfunctional state in exhausted CD8+ T cells and Tregs (Fig. 5a).
Furthermore, we generated a proliferation score for each cell by
pooling the expression level of cell cycle-related genes (TUBB4B,
HMGB2)47,48. The highest proportion of proliferative cells was
observed in exhausted CD8+ T cells (Fig. 5b, c). In addition,
compared to naïve-like or cytotoxic T cells, Treg populations also
showed a higher proportion of cells expressing proliferation-
associated genes (Fig. 5b, c). Furthermore, we explored DEGs in
exhausted CD8+ T cells, including CXCL13, and STMN1, etc.
(Fig. 5d). KEGG analysis of these DEGs suggested that these cells
were exposed to varying degrees of DNA replication, cell cycle,
and p53 signaling pathway (Fig. 5d), indicating their proliferative
states. As such, cell cycle analysis, transcriptional profiling and TCR
revealed that although exhausted CD8+T cells and Tregs clonally
expanded and highly proliferated in situ, these cells had
developed varying degrees of functional impairment, which might
be the major reason for immunosuppression in the TME and
indicate their potential ability to respond to immunotherapy49.

TME induced XBP1 and other classical immune checkpoints
(PD1, TIGIT) in CD8+ T cells
To further address the intrinsic exhausted CD8+ T cell hetero-
geneity, we applied unsupervised clustering based on UMAP
and identified five exhausted CD8+ T cell subsets (Fig. 5e,
Table S3_ST.12, ST.13). Exhausted marker genes exhibited
distinct expression patterns among our corresponding five
exhausted CD8+ T cell clusters: Tex01, Tex02, Tex03, Tex04,
and Tex05, although LAG3 and TIGIT were uniformly highly

expressed among exhausted CD8+ T cell subtypes. For example,
Tex01 and Tex03 cells expressed high levels of PDCD1, LAYN,
CTLA4, and HAVCR2 but low levels of XBP1, whereas Tex02 and
Tex05 cells exhibited the opposite pattern (Fig. 5f, Table
S3_ST.14). Notably, a higher number of coinhibitory receptors
within the Tex01 and Tex02 clusters may represent more severe
exhaustion44. The mutually exclusive expression pattern of
PDCD1 and XBP1 suggests that XBP1 might serve as a marker
for a different subset of exhausted CD8+ T cells. Accordingly, we
roughly divided exhausted CD8+ T cells into two groups: the
preferential PDCD1 enrichment group and the typical XBP1
expression group. To this end, we hypothesize that multiplex
immunohistochemistry (mIHC) staining based on CD3, CD8, PD1,
and XBP1 antibodies may validate the distinction and the
quantity of the two exhausted CD8+ T cell groups at the protein
level in an additional 18 iCCA patients who received anti-PD-1
therapy and had available clinical response data evaluated by
RECIST criteria (n= 9, partial response (PR)/complete response
(CR); n= 9, progressive disease (PD); talbleS2)50. As expected,
representative mIHC images confirmed varying expression levels
of PD1+CD8+ T cells and XBP1+CD8+ T cells in these iCCA tumor
tissues (Fig. 6a). Strikingly, by interrogating the clinical response
with respect to the effects of different exhaustion subsets, we
noticed that in the response group, a higher level of PD1+CD8+

T cell infiltrates was observed, while the proportion of
XBP1+CD8+ T cells was lower (Fig. 6b). Therefore, it is plausible
that the compartment of such cell types might allow effective
patient stratification, and distinct subgroups of patients may
need to adopt different immunotherapy strategies.
To corroborate whether the BTC tumor microenvironment can

induce the upregulation of common checkpoint receptors and ER
stress in CD8+ T cells, we treated CD8+ T cells isolated from the
peripheral blood of healthy people with conditioned media
collected from two human BTC cell lines (GBC-SD, HCCC-9810) and
a normal bile duct cell line (HIBEpiC, as a control). Intriguingly,
CD8+ T cells cultured in conditional medium from GBC-SD and
HCCC-9810 showed significantly potentiated IRE1α-XBP1 pathway
in comparison with that of CD8+ T cultured in HIBEpiC medium, as
evidenced by increased expression level of both IRE1α and XBP1
using western blot analysis (Fig. 6c). In addition, using flow
cytometry analysis, the expression of XBP1 (Fig. 6d) and
checkpoint receptors (TIGIT, PD1) (Fig. 6e, f) in cocultured CD8+

T cells from BTC cells was parallelly upregulated, accompanied
with overactivated ER stress, as evidenced by the enlargement of
the ER via confocal laser scanning microscopy (Fig. 6g). As
expected, when treating the coculture groups with the specific
inhibitor of IRE1α-XBP1 (4μ8C), we observed the downregulation
of TIGIT in the treatment group, suggesting that XBP1 might serve
as an underlying target for innovative antitumor therapy (Fig. 6e).
Intriguingly, inhibiting XBP1 did not reverse the expression of PD1
(Fig. 6f). Our transcriptome and functional analysis show that there
are two main types of exhausted CD8+ T cells in the TME, one of
which is a group of generally defined exhausted T cells expressing
substantial checkpoint receptors, and the other is a mass of
dysfunctional T cells that specifically express XBP1 due to ER
stress. In turn, the mechanism of ER stress in immune cell

Fig. 4 Clonal enrichment of exhausted CD8+ T cells in the TME revealed by TCRs. a pie charts illustrate the composition of every individual
TCR. b Bar plots depict the number of clone types in different tissues. c Clonal compositions of T cell in different tissues across patients,
showing from top to bottom the number/types of clone, the distribution of clones by size (size = 1, size = 2, size ≥3 cells), and Pie charts
illustrating the composition of subsets of T cell stratified by clone size. d Clonal types of exhausted CD8+ T cell in different tissues across
patients, showing from top to bottom the number of exhausted CD8+ T cells corresponding to each clone type, the ratio between exhausted
CD8+ T cell and transitional CD8+ T cells, the cell and exhausted CD8+ T cells distribution among different tissues across individual patients.
e distribution of distinct T cell subtypes in different tissues with the same TCR β alleles (black font). f Monocle 2 trajectory analysis of T cells
annotated by cell subgroups (left panel) and pseudotime (right panel). g The pie chart showing the fraction of T cell compositions at different
states of pseudotime trajectory analysis. Arrows show the increasing directions of certain T cell properties. Error bars indicate mean ± SEM.
Two-tail paired t tests, **p < 0.01.
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dysfunction and its potential value in immunotherapy deserve
further effort.

DISCUSSION
Despite the durable response in cancer immunotherapy, the
roadblock of understanding the mechanisms of the immune
response or predicting efficacy remains the heterogeneous
components of immune cells within tumors. Several studies have
conducted scRNA-seq to assess the heterogeneity of the tumor
microenvironment across a variety of malignancies11,16,18. These
studies provided deeper insights into a better understanding of
the immunosuppressive tumor microenvironment. Using
unbiased scRNA-seq analysis, we constructed an immune atlas
in advanced biliary tract cancers and unveiled vast versatile
immune cells from both the innate and adaptive immune systems,
especially in the TME. Of interest, we observed that NK cells
absented in the primary focus of iCCA1 and GBC2 patient,
accompanied by remarkable clonally expanded (clonal size ≥ 3)
exhausted CD8+ T cells (Figs. 1b, 2c, 4c), which may indicate a

longer course of disease and an advanced stage of illness12.
Comparing the pathological data of iCCA1 with iCCA2, albeit they
were in the same stage of Tumor-Node-Metastasis (TNM), we
found that iCCA1 developed diffuse peritoneal metastasis, while
iCCA2 had locally resectable intrahepatic metastasis. Similarly,
when comparing GBC2 with GBC1, we found that GBC2 developed
more lymph node metastases (3 vs. 1 nodes), indicating that the
value of immunophenotype in patient stratification may be more
sensitive than that of the traditional pathological staging51,52. In
addition, we found that, compared with iCCA or dCCA, more Tregs
with clonal expansion (clonal size = 2) were observed in primary
lesions of GBC (Fig. 4c). Considering that the overall survival rate
(OS) of GBC patients is worse than that of other anatomical BTC
patients53, whether there is a correlation between the two needs
further research. It is noteworthy that the arguments were derived
from our inadequate data, and a more robust conclusion needs to
be confirmed with analyses of large samples and investigations of
the potential mechanism.
Since exhausted CD8+ T cells and Tregs preferentially enriched

in primary tumors and metastatic foci may serve as potential
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clinical targets, we characterized T cells through transcriptome
and TCR analysis and found that dysfunctional T cells clonally
expanded and highly proliferated in situ. Notably, this character-
istic seems to be shared among different tumor types14,18. By
reference, proliferative exhausted CD8+ T cells in advanced BTC

may respond to immune checkpoint inhibitors and be character-
ized as potential immunotherapy targets54,55. With this strategy,
we further focused on and explored exhausted CD8+ T cells.
Interestingly, we found that ER stress response gene, XBP1, was
dramatically enriched in a group of exhausted CD8+ T cells, which
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was different from conventional exhausted CD8+ T cells expres-
sing a number of coinhibitory receptors. To identify the varying
expression levels of these two exhausted CD8+ T cell types, we
used multiplex immunohistochemistry method of marker genes
(CD3, CD8, PDCD1, XBP1) in paraffin slices from 18 iCCA patients
who were treated with anti-PD1 therapy. Interestingly, we noticed
that a high ratio of PD1+ CD8+ T cells to XBP1+ CD8+ T cells was
associated with better response to anti-PD-1 therapy, which
indicates that it might be used as a biomarker to predict the
response to anti-PD-1 therapies56–58. Notably, several studies have
shown that XBP1, an ER stress response gene, plays an important
role in T cell exhaustion, and suggest a new strategy for activating
T cell cytotoxicity by targeting ER stress to enhance T cell-based
immunotherapy59–61. However, the role of ER stress in biliary tract
cancer is still unclear. Consistent with expectations, the upregula-
tion of inhibitory receptors (PD1, TIGIT) and XBP1 was observed
when coculturing CD8+ T cells with the supernatant of BTC cells,
suggesting that ER stress and exhausted CD8+ T cells were
induced and formed in the tumor microenvironment. In turn, a
small molecular inhibitor (4μ8C) targeting IRE1α-XBP1 signaling
could significantly downregulate the expression of the coinhibi-
tory receptor TIGIT. Johnston and colleagues62 observed that the
deletion of TIGIT was able to enhance both CD4+ and CD8+ T cell
effector functions. As inference, the exhaustion process may be
potentially abrogated when treated with XBP1 inhibitors, and
manipulating XBP1/changing TILs metabolism may improve the
clinical response and prolong the prognosis of BTC patients59,63,64.
Clinically, statins, cholesterol-lowering drugs that represent a
mechanism to manipulate ER stress, have been reported to reduce
cancer-related mortality65. A recent study from the Roberts group
reported that statins improve survival in patients with dCCA66.
Intriguingly, XBP1 inhibitor did not reverse the expression of PD-1
in our assays, which may consist with the work from Song et al.61

that targeting XBP1 is likely to be independent of common
immune checkpoint (PD1, CTLA-4, or TIM-3) signaling. In general, it
is plausible that controlling ER stress or inhibiting XBP1 may be a
potential prospective immunotherapy strategy for BTC patients.
ScRNA-seq has been applied to explore the tumor microenvir-

onment of a variety of cancer types, while the research on biliary
tract cancer is still insufficient. Of which, Liu et al.35 analyzed the
difference between ErbB pathway mutation and non-mutation
group within 13 patients with gallbladder cancer, and found that in
the mutation group, the higher levels of midkine (MDK) secreted
by epithelial cells interacted with its receptor LRP1 expressed by
macrophages to promote immunosuppressive microenvironment.
Likewise, Chen et al.67 revealed the heterogeneity and interactions
of cells in gallbladder cancer, indicating its potential role in tumor
progression. In our study, we used single-cell RNA and TCR
sequencing on CD45+ immune cells, including their heterogeneity,
dynamics, and potential functions. Consistent with previous
studies, a group of exhausted CD8+ T cells expressing substantial
exhaustion genes with remarkable clonal expansion were observed
in the immunosuppressive TME. Specifically, a group of less
described exhausted CD8+ T cells highly expressing XBP1 were
observed in the TME, suggesting the potential role of ER stress in

the process of T cell dysfunction, and the potential opportunity of
developing innovative immunotherapeutics.
Notably, considering the accessibility of specimens from patients

with advanced diseases, we pooled the three subtypes of BTC by
necessity to obtain adequate sample size, which inevitably
introduced bias. In addition, compared with previous studies11,13,
we found that the number of TILs in our study was slightly small.
Therefore, we failed to obtain vast diversity subtypes, such as pre-
exhausted CD8+ T cells or highly exhausted CD8+ T cells. We
hypothesize that fluorescence-activated cell sorting (FACS) before
constructing the library may augment the number of target cells.
In summary, our transcriptional map of immune cells from

advanced BTC provided a framework for understanding the
various immune status and portrayed the dynamic characteristics
of immune cells in the BTC setting. Coupled with TCR sequencing,
we identified highly proliferative and clonally expanded dysfunc-
tional T cells in the tumor microenvironment, indicating an
immune-suppressive state and potential targets for developing
immunotherapies in BTC. Finally, we observed a less described
dysfunctional marker, XBP1 (an ER stress response gene), enriched
in exhausted CD8+ T cells, which may help us to stratify patients
and evaluate therapeutic efficacy. Collectively, our results revealed
an atlas of suppressive immune cells in the TME and set the
horizon for the application and development of immunotherapies
for biliary tract cancer.

METHODS
Clinical specimen collection
Five patients diagnosed with cholangiocarcinoma in the Eastern Hepato-
biliary Surgery Hospital were incorporated into the current study, including
two iCCA, two GBC and one dCCA patients. Of note, none of the patients
have undergone any preoperative treatments (chemotherapy, radiation, or
antitumor medicines) prior to tumor resection. Tumor primary locus and
metastasis as well as lymph node were consistently harvested for each
participant, if available. Meanwhile, peripheral blood samples were
collected prior to surgical procedures using anticoagulant tubes. The
collection of human samples was approved by the Ethics Committee of
Eastern Hepatobiliary Surgery Hospital (Shanghai, China).

Tissue dissociation and processing
Fresh surgical resected samples were rinsed with Hank’s balanced salt
solution (HBSS), which were subsequently minced and digested with
digestive buffer, followed by incubation for 60min at 37 °C with gentle
shaking. The digestive buffer was configured by dissolving digestive
enzyme into RPMI with 10% serum, including deoxyribonuclease type I,
collagenase IV, and hyaluronidase type V. After digestion, the mixture was
filtered using 300-mesh filter screen, and was then collected in the
centrifuge tubes. Thereafter, leukocytes were isolated from tissues via
density-gradient centrifugation in line with the manufacturer’s instructions.
Filtered cell suspensions were centrifuged with 450 g for 8 min, and the
resuspended precipitates were subsequently centrifuged with 50 g for
1 min. Washed cell suspensions were carefully layered on the surface of
lymphoprep liquid, followed by centrifugation of 450 g for 25min at room
temperature. Tissue-derived leukocytes were obtained by collecting the
middle layer of the mixture.

Fig. 6 Functional assays for exhausted CD8+ T cells. a Detection of PD1+CD8+ T cells and XBP1+CD8+ T cells in BTC tissue by multiplex
immunohistochemistry staining. Representative data from eighteen patients were shown. b Quantitation of XPB1+CD8+ T cells and
PD1+CD8+ T cells as a percentage of total exhausted CD8+ T cells in two different response groups. c–f CD8+ T cells were stimulated with
anti-CD3 and anti-CD28 for 96 h and cultured with the supernatant from HIBEpiC, HCCC-9810 and GBC-SD for 48 h. c the protein level of both
IRE1α and XBP1in cocultured CD8+ T cells tested by western blotting. β-actin were used as loading control. (representative plots on left;
quantitation on right). d Representative FASC plots gated on XBP1+ cells, with positive cells (XBP1+CD8+) boxed (left). Shown is the
quantitation of positive cells as a percentage of total CD8+ T cells (right). e, f. 10 µM 4μ8C was added to the above medium for 24 h before
harvesting. Quantitation of FACS plots of positive TIGIT+ T cells (e) and PD1+ T cells (f) as a percentage of total CD8+ T cells. g CD8+ T cells
were stained with ER tracker (red) and nuclei were stained using DAPI (blue). Morphologies of endoplasmic reticulum were analyzed by laser
scanning confocal microscopy from control, GBS-SD, and HCCC-9810 cell lines. Error bars indicate mean ± SEM. Two-tail paired t tests,
****p < 0.0001, ***p < 0.001, **p < 0.01, *p ≤ 0.05, no significance.
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Peripheral blood mononuclear cell isolation
Peripheral blood mononuclear cells (PBMCs) were isolated from blood
sample using density-gradient centrifugation. Whole blood was collected
by sodium heparin blood collection tubes and diluted three times with PBS
(without calcium or magnesium). Suspensions were then superimposed on
the surface of lymphoprep carefully, followed by centrifugation with 800 g
for 15min. Interphase-containing PBMCs were obtained and washed with
PBS twice prior to further processing.

Single-cell RNA-seq and TCR clonotype profiling
CountessII Automated Cell Counter (Thermo Fisher Scientific, USA) was
applied to determine viability and density of mononuclear cells from
tumor, lymph node, and peripheral blood. Single-cell suspensions were
then processed for single-cell gene expression (scRNA-seq) as well as
single-cell T cell receptor (TCR) clonotypes (scTCR-seq) using Chromium
Controller. Single cells were adjusted to an ideal concentration of 5 × 105

to 1 × 106 cells/mL with a viability higher than 70%. Single-cell library was
prepared in line with the protocol of 10X Genomics for Single Cell V(D)J
and 5′ Gene Expression (10X Genomics, Pleasanton, CA, USA). In brief,
single-cell suspensions were then loaded onto the Chromium Controller
combined with the reverse transcription (RT) master mix and Gel beads
containing barcode information. Following single-cell gel bead-in-
emulsions reverse transcription, PCR amplification was carried out to
generate adequate cDNAs for the construction of scRNA-seq as well as TCR
V(D)J libraries. Thereafter, the libraries were sequenced on HiSeq4000
(Illumina) following the manufacturer’s specification.

Single-cell RNA-seq processing
Cell Ranger software (Version 2.0) was applied to convert Illumina base call
files to FASTQ files with the ‘cellranger mkfastq’ command, which were
subsequently aligned to the hg19 human genome. Meanwhile, Cell Ranger
carried out default quality control, and generate files containing raw
unique molecular identifier (UMI) counts matrix. Downstream analyses
were performed using the “Seurat” package (3.1.1) form R software (4.0.3).
Cells with lower than 200 identified genes were removed during quality
control process. Of note, quality-control parameters also included UMI
counts, proportion of UMIs derived from mitochondrial and dissociation or
sorting associated genes. After exclusion of low-quality cells, UMI counts
were normalized by the function ‘NormalizeData’, in which normalization
method was set as ‘logNormalize’ with the scale factor of 10000 total UMIs
per cell. Thereafter, ‘FindVariableGenes’ function was performed with
default parameters to detect 2000 highly variable genes, in which
ribosome as well as heat shock response related genes were regressed
out due to potential confounding effect. Principal component analysis
(PCA) was subsequently conducted based on the processed expression
matrix containing highly variable genes, followed by secondary UMAP
visualization on selected PCA using the ‘RunUMAP’ function at a perplexity
value of 30. Differentially expressed genes across clusters were calculated
and identified using function “FindAllMarkers”.
Similarly, TCR sequencing data was generated and extracted via Cell

Ranger. By obtaining positions 80–130 bp located in the hypervariable
region, sequencing coverage of TCR molecules was normally high.
Correspondingly, low coverage UMIs were filtered, which might be
correlated with error and contaminations. Thereafter, filtered reads were
mapped to the reference sequences via IgBlast (ftp://ftp.ncbi.nlm.nih.gov/
blast/executables/igblast/release/1.7.0/) and then categorized in line with
the TCR sequence represented them best. TCR sequence data were
matched to Sc-seq data by using cell barcodes. Validating analysis revealed
that obtained TCRs were never overlapped for cells from disparate
participants. TCR sequence extracted form scTCR-seq can be employed as
clonal identifier for T lymphocytes. T cells sharing consistent TCR were
deemed to be derived from the identical clonal cells.

Cell cycle and Trajectory analysis
Based on the relative expression levels of G2/M and S phase-related gene
sets, cells were initially assigned a fraction of cycle. For the cells not
expressed these cell cycle-related genes, it may be at G1 phase.
‘CellCycleScoring’ function was applied to generate cell cycle score which
was then matched into the metadata. Meanwhile, the predicted
classification for each cell in disparate proliferative phases was also
calculated and grouped via the above package.

Trajectory as well as pseudotime analysis were performed using
‘Monocle’ algorithm that designed to identify differentially expressed
genes (DEGs) varied across disparate clusters. Generalized additive models
(GAMs) is established to determine the average expression level of each
isoform. The formula was presented as follow:

g E Yð Þð Þ ¼ β0þf1 x1ð Þþf2 x2ð Þþ� � �þ fm xmð Þ;

where the Y and xi’s represents the response variable and predictor
variables, respectively. The function g and function fi’s is link function and
nonparametric functions, respectively. To estimate the relative gene
expression level across cells, Tobit model was used accordingly. Therefore,
the following formula of monocle’s GAM was adopted:

E Yð Þ ¼ s Ψt bx; sið Þð Þþ2;

where Ψt (bx, si) is the allocated pseudotime of cell and ϵ is the error term
normally distributed around mean of zero. Function s is a cubic smoothing
function with 3 effective degrees of freedom.

Multiplex immunohistochemistry staining
iCCA tissue from 18 patients were stained using Opal Multiplex
Immunohistochemistry Detection Kit (Akoya), followed by imaging with
Vectra 3.0 Pathology Imaging System Microscope (Perkin-Elmer). Tissue
slides were initially deparaffinized and rehydrated, followed by antigen
retrieved via microwave treatment. Thereafter, slides were then treated
with 3% H2O2 for 15 min and blocked with 1% BSA containing 0.1% Triton
X-100 (Sigma). Slides were subsequently incubated with primary anti-
body, including anti-CD3 (Abcam cat#ab16669, dilution 1/100), anti-CD8
(Abcam cat# ab210067, dilution 1/150), anti-PD-1 (Abcam Cat# ab52587,
dilution 1/50) and anti-XBP-1 (Abcam Cat# ab109221, dilution 1/200).
Detection dye for each antibody were listed as follow: Opal570 dye (CD3),
Opal520 dye (CD8), N700 dye (PD-1), Opal620 dye (XBP1). Meanwhile,
DAPI was employed to counterstain nuclei. The digital images were
analyzed using Halo Image Analysis software (indicalabs) with Highplex FL
module. Immune cells were evaluated as the positive cell number in
independent fields.

CD8+ T Cell Isolation and In vitro cell culture
PBMCs were isolated from healthy individuals using Ficoll density-gradient
centrifugation in accordance with the manufactory’s instruction. There-
after, human CD8+ T cell positive selection kit (StemCell Technologies) was
applied to enrich CD8+ T cells. CD8+ T cell were then stimulated with
plate-bound anti-CD3 and anti-CD28 (Thermo Fisher Scientific) at a 1:1
ratio in 96-well plates for 72 h prior to subsequent experiments. On the day
of harvesting, activated CD8+ T cells were resuspended with 50%
diafiltrated supernatant from HIBEpiC, HCCC-9810 or GBC-SD, and cultured
for additional 48 h. To testify the efficacy of IRE1α-XBP1 inhibition on
T cells, 10 µM 4μ8C (EMD Millipore) was added to the RPMI medium for
24 h before harvesting.
HIBEpiC, HCCC-9810, and GBC-SD were purchased from the Shanghai

Cell Bank of the Chinese Academy of Sciences, China. These cell lines were
routinely cultured in complete RPMI 1640 medium containing 10% fetal
bovine serum (FBS), penicillin (100 IU/ml), and streptomycin (100 µg/ml).
Cells were maintained in the incubator at 37 °C and 5% CO2.

Western blot analysis
Cells were collected and lysed with lysis buffer, followed by incubation on
ice for 30min. Lysates were subsequently centrifuged at 12,000 rpm for
30min at 4 °C, prior to water bath for 5 min at 95 °C after mixing with SDS-
loading buffer. Equal amounts of qualified samples were loaded onto and
separated by 8–12% SDS polyacrylamide gel electrophoresis (Pulilai Co.,
Beijing, China), transferred to nitrocellulose membrane (Merk Millipore,
Darmstadt, Germany). Thereafter, the transferred membrane was incu-
bated with primary antibodies (IRE1α: Cell Signaling Technology, #3294,
dilution 1/1000; XBP1: Cell Signaling Technology, #40435, dilution 1/1000;
Beta Actin: proteintech, 66009-1-lg, dilution 1/1000) at 4 °C overnight,
followed by incubation of HRP-conjugated anti-rabbit secondary antibody
(proteintech, SA00001-2, dilution 1/5000) at RT for 1 h. The blots were
visualized and analyzed by using the ECL system to determine the relative
expressions (Fig. S1).
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Flow cytometry
After processing cells into single-cell suspensions, flow cytometry analysis
was performed using antibodies purchased from BioLegend (CD279,
#367410, dilution 1/100; TIGIT, #372710, dilution 1/100; CD8, #344714,
dilution 1/100; XBP1, #647506, dilution 1/50). For the detection of surface
markers, Cells were stained in PBS containing 2% FBS with fluorochrome-
conjugated antibodies for 30min at 4 °C. To determine the expression of
intracellular cytokines, cells were permeabilized and fixed using the
FoxP3 staining buffer kit (Thermo Fisher Scientific) in line with the
manufacturer’s protocols. Aforementioned cytometric analyses were carried
out through an LSR II instrument (BD Biosciences). All data were analyzed via
FlowJo software (Version 10).

Confocal microscopy
The Morphological alterations of ER were measured by applying Laser
scanning confocal microscopy (LCSM). Collected cells were fixed with 4%
paraformaldehyde for 20min at 4 °C after PBS washes for 3 times, followed
by permeabilization using block buffer (0.3% Triton X-100 in PBS) for
20min at room temperature. After 3 times PBS wash, cells were then
blocked with 1% bovine serum albumin (BSA) for 1 h at room temperature.
Thereafter, Cells were stained with ER tracker (1:2000; Invitrogen, E34250)
for 1 h in 5% CO2, 37 °C incubator after PBS washes for 3 times. Finally,
after 3 times PBS wash, cells were stained with 4’, 6’-diamidino-2-
phenylindole (DAPI; Sigma-Aldrich, D9542), and mounted onto slides. The
slides were further observed through a laser scanning confocal microscope
(Leica, Mannheim, Germany).

Statistical analysis
All statistical analyses were conducted using R software (4.0.3) as well as
GraphPad Prism software 7. All grouped data were shown as mean ± SEM.
An unpaired student t test and one-way analysis of variance (ANOVA) were
applied to assess statistical significance when two groups and more than
three groups were compared, respectively. Two-tailed P values less than
0.05 were regard as statistical significance.

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in
accordance with the Helsinki declaration. And all patients whose tissue
samples were used in this research provided written informed consent,
and the study protocol was approved by the committee for the Ethical
Review of Research, Eastern Hepatobiliary Surgery Hospital.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Processed single-cell RNA sequencing data, T cell receptor sequencing data, and raw
data are publicly available in Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/info/linking.html.) under the accession number (GSE201425).

CODE AVAILABILITY
Our scRNA-seq analysis pipelines and codes can be obtained from the original
author’s open source R package and script on Bioconducter (https://satijalab.org/
seurat/; http://cole-trapnell-lab.github.io/monocle-release/docs/#getting-started-with
-monocle; https://www.cellphonedb.org; https://www.bioconductor.org/packages/
release/bioc/html/clonotypeR.html). The default standard parameters are used in
the analysis process.
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