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Identification of outliers in a 
genomic scan for selection along 
environmental gradients in the 
bamboo locust, Ceracris kiangsu
Xiao-Jing Feng, Guo-Fang Jiang & Zhou Fan

Identification of loci under divergent selection is a key step in understanding the evolutionary 
process because those loci are responsible for the genetic variations that affect fitness in different 
environments. Understanding how environmental forces give rise to adaptive genetic variation 
is a challenge in pest control. Here, we performed an amplified fragment length polymorphism 
(AFLP) genome scan in populations of the bamboo locust, Ceracris kiangsu, to search for candidate 
loci that are influenced by selection along an environmental gradient in southern China. In outlier 
locus detection, loci that demonstrate significantly higher or lower among-population genetic 
differentiation than expected under neutrality are identified as outliers. We used several outlier 
detection methods to study the features of C. kiangsu, including method DFDIST, BayeScan, and 
logistic regression. A total of 97 outlier loci were detected in the C. kiangsu genome with very 
high statistical supports. Moreover, the results suggested that divergent selection arising from 
environmental variation has been driven by differences in temperature, precipitation, humidity 
and sunshine. These findings illustrate that divergent selection and potential local adaptation 
are prevalent in locusts despite seemingly high levels of gene flow. Thus, we propose that native 
environments in each population may induce divergent natural selection.

Various environmental conditions, including distinctive latitude, may result in different physiological 
challenges, which in turn lead to morphological and molecular adaptations to local conditions1. Evidence 
from population genetics indicates that divergence evolution generally occurs in the presence of gene 
flow2, and it is well accepted that differentiation among populations can occur in the face of gene flow if 
adaptively driven3, and divergent selection may result in local adaptation and reduced gene flow between 
populations. Moreover, populations in different environments will initially genetically differ at a few key 
sites in their genomes, and the surrounding DNA may differ due to linkage disequilibrium. Uncovering 
the genetic basis of important adaptive traits in natural populations is a major goal to better understand 
how populations adaptively diverge in heterogeneous environments4. Recent studies have examined the 
number and location of genes involved in adaptation and evolution, and it has been suggested that geno-
types caused by environment interactions allow for populations to evolve traits in their local habitat. This 
process and the resulting patterns are termed “local adaptation”5. Habitat fragmentation may weaken the 
connection between populations (isolation by distance) and lead to genetic divergence between popula-
tions. Differential adaptation or natural selection can then result in large allele frequency differences at 
loci between populations that control the involved traits, and these differences occur at a small number 
of DNA sites, but are potentially identifiable because linkage leads to ‘islands’ of differentiation around 
the selected sites, and a marker sampled within an ‘island’ will also be distinct. In particular, methods 
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for genotyping large populations for many markers, including single nucleotide polymorphisms (SNPs), 
amplified fragment length polymorphisms (AFLPs), comparative anchor tagged sequences (CATs), and 
Expressed Sequence Tags (ESTs), have been developed. Although SNPs have been widely used to identify 
genome-wide loci by environment associations in model organisms6, we concentrated on the utility of 
AFLP markers because they can be easily applied to non-model organisms and used to generate hun-
dreds of potential loci widely distributed across the genome7. AFLPs provide a quick and low-cost means 
of obtaining allele frequency data for large sample sizes and organisms for which little prior genetic 
knowledge is available8.

The detection of natural selection signatures within a genome allows for the understanding of what 
proportion of a genome or which genes are under the influence of natural selection. Genomic regions 
under selection are generally functionally important; hence, inferences regarding selection may pro-
vide useful information for identifying important genes5. Population genetics relies on the principle that 
all genomic loci are influenced by genome-wide evolutionary forces (genetic drift, gene flow), whereas 
locus-specific forces, such as selection, imprint a particular variability pattern on select loci. By com-
paring the genetic diversity of loci across the genome, it is possible to identify loci that have an atypical 
variation pattern (outlier loci), which are likely to be affected by selection. Strategies using population 
genomics are free from any prior knowledge about selectively advantageous genes or phenotypes and do 
not focus on a few loci but examine the effect of selection over the entire genome9,10. Outlier locus detec-
tion is a population-level analysis that uses estimates of population genetic differentiation (e.g., FST). In 
outlier locus detection, loci with significantly higher or lower genetic differentiation than expected under 
neutrality are identified as outliers and are thus considered to possibly be under selection. Although a 
large number of markers are usually surveyed in the method, less than 5% are generally identified as 
outliers11.

The main drawback of the above methods is that they seldom link outlier loci with specific selection 
pressures (e.g., environmental) because it is notoriously difficult to determine genetic mechanism from 
the environmental effects on phenotypes. For adaptive divergence of populations to occur, the evolu-
tionary force of directional selection must be stronger than the homogenizing effect of migration among 
populations and random genetic drift12. Spatial and temporal changes are heterogeneous in the natural 
environment, so divergent selection across natural environments can induce adaptive divergence result-
ing in local adaptation12,13. In addition to environmental variation, phylogeographic history, gene flow 
and population demographic processes all contribute to spatially structured genetic variation. Here, we 
examined genetic variation from an environmental angle to complement results from population genetic 
models. We applied the recently developed Samβ ada14 method to detect signatures of natural selection 
in locusts genotyped with AFLP markers. The idea behind this individual-based method is to correlate 
marker occurrence with environmental data in an allele distribution model, which uses geo-referenced 
environmental data and geo-referenced individual molecular genetic data. Molecular marker detection 
adaptive relevance relates the presence/absence of alleles to environmental data. It thus provides direct 
evidence to which ecological factor acts as a selective force. Over the last two decades, Samβ ada has been 
utilized in analyses of a wide variety of ecological patterns, including goat breeds15, ocellated lizards4 and 
gobiid fishes16.

Genome scans used in parallel with environmental data provide distinct clues for selective forces 
that act on molecular markers of adaptive relevance in the real landscape17 and will complement and 
strengthen robustness of the final set of loci identified as potentially under selection18. It is now possible 
to implement such an approach relatively cheaply on a genome-wide scale.

The Ceracris kiangsu bamboo locust is an important forest pest in China, and it is widely distrib-
uted throughout southern China19. One distinct characteristic of the species is its greater flight ability, 
presumably leading to frequent gene flows between populations. Fan et al. previously reported that this 
species has low levels of genetic structure and relatively high gene flow17, suggesting shallow evolutionary 
trajectories and limited or absent adaptive divergence among local populations.

In this study, we conducted an AFLP genome scan in C. kiangsu bamboo locust populations to iden-
tify candidate loci influenced by selection along an environmental gradient in southern China. Our 
objectives were to (1) test whether C. kiangsu populations adapted to local environmental conditions due 
to adaptive divergence and thus now display genomic signatures of divergent selection and (2) determine 
the environmental factors involved in local adaptation by explorative landscape genetic analysis.

Results
AFLP analysis. Four different primer combinations allowed us to amplify 360 AFLP bands, of which 
the mean number of fragments per individual was 81.8. The number of segregating fragments was 310, 
which accounted for 86.1% of the total fragments. We obtained 224 polymorphic markers.

Outlier detection. We successfully tested a total of 224 polymorphic AFLP markers in 24 C. kiangsu 
populations across all sample sites in southern China (Fig.  1; Table  1). We performed all three outlier 
detecting methods with the same data set for global analysis.

In DFDIST, the power for detecting differentiated outlier was high because of the low overall FST 
across sites20. This method identified a total of 16 outliers (Fig. 2). Among these outliers, one outlier pre-
sented a lower FST value than expected under neutrality, which suggests that it has potentially undergone 
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balancing selection; the other 15 outliers presented higher FST values than expected under neutrality, 
corresponding to loci potentially influenced by directional selection.

In the BayeScan program, we detected 15 polymorphic loci with statistically significant patterns of 
divergent genetic differentiation (Fig. 3). Bayes factor identified high differentiation outliers at a thresh-
old of PO >10. Among these, 13 loci had log 10 values above 1.5 (particularly strong) and ten had a 
log 10 Bayes factor of 1000, which corresponds to a posterior probability of one. Outliers detected by 
BayeScan were all considered candidate loci potentially under divergent selection.

Using Samβ ada, we identified 83 loci that significantly correlated to environmental variables following 
Bonferroni correction for both the Wald and G tests. Many loci were associated with more than one 
environmental variable. Among these loci, DFDIST consistently detected five loci : 6, 35, 55, 73 and 
224. Though both Samβ ada and BayeScan detected 11 loci, BayeScan may be more effective in detecting 
outliers.

The three methods identified a total of 97 outliers. Samβ ada identified the most outliers, up to 83 loci. 
DFDIST and BayeScan detected 29 candidate loci, which are demonstrated in Fig. 3. Among the 29 loci, 
DFDIST detected 17 loci and BayeScan detected 15 loci. The two programs identified two loci. BayeScan 
and Samβ ada both detected 11 loci, which are likely due to population divergence (Fig. 4).

Association with environmental variables. We used in Samβ ada to test AFLP marker frequency 
variation in bamboo locusts in China for the environmental variables of annual sunshine (Sun), lati-
tude (Lat), annual mean relative humidity (Hum), annual precipitation (Prec), annual mean temperature 
(Tmean). We detected significant associations for 138 molecular markers and environmental variables out 
of 1120 combinations in wald score (p <  0.05). Samβ ada analysis results highlighted 14 outliers associ-
ated with annual sunshine (Sun), three outliers associated with latitude (Lat), thirteen outliers associated 
with annual relative humidity (Hum) and six with annual precipitation (Prec). Four loci showed an asso-
ciation with annual mean temperature (Tmean). Loci 60 and 80 were associated with the most variables 
(each with four variables, Table 2), loci 8, 27, 30, 59, 80, 110, 126 and 224 associated with three variables 
and loci 35 and 55 associated with only one variable. On average, the strongest and most associated 
environmental variable was latitude, followed by annual sunshine, annual mean relative humidity, annual 
mean temperature and annual precipitation.

Figure 1. Map of the 24 sample localities for the bamboo locust with complete data. Each number beside 
black dots represents a sample locality respectively. Details for each site can be found in Table 1. Outline of 
China was downloaded from National Administration of Surveying, Mapping and Geoinformation (http://
en.nasg.gov.cn/) for free and locations were produced using the software Adobe photoshop CS5.

http://en.nasg.gov.cn/
http://en.nasg.gov.cn/
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Comparison of DFDIST and BayeScan with Samβada analysis. As listed in Table  2, Samβ ada 
highlighted five outliers among the 16 outliers detected by DFDIST as being significantly associated 
with the environmental variables tested. However, Samβ ada identified 12 of the 15 outliers detected by 
BayeScan to be significantly associated with variables (Table 2). Only one locus (locus 224) highlighted 

No. Sampling site Lat Longitude Tmean(°C) Prec(mm) Sun(h) Hum N

1 Jinyunshan, Chongqing 29°50′ 14″ N 106°23′ 46″ E 18.76 1065.60 1023.96 77.8 25

2 Jianou, Fujian 27°02′ 08″ N 118°14′ 14″ E 20.38 1534.38 1444.33 72.3 14

3 Nanjing, Jiangsu 24°29′ 18″ N 117°21′ 01″ E 16.53 1107.38 1887.74 70.0 2

4 Guangning, Guangdong 23°36′ 17″ N 112°23′ 18″ E 21.80 1581.68 1643.26 un 34

5 Guilin, Guangxi 25°18′ 25″ N 110°23′ 40″ E 19.52 1786.08 1466.80 un 10

6 Quanzhou, Guangxi 25°55′ 43″ N 111°09′ 44″ E 19.52 1786.08 un un 20

7 Rongan, Guangxi 25°12′ 29″ N 109°23′ 45″ E 21.20 1439.48 un un 18

8 Jinping, Guizhou 26°43′ 04″ N 109°10′ 52″ E 16.00 1059.30 1350.40 74.5 6

9 Mayanghe, Guizhou 28°41′ 47″ N 108°16′ 16″ E 17.20 1121.95 927.00 71.5 2

10 Hengyang, Hunan 27°07′ 01″ N 112°41′ 36″ E 19.05 1219.08 1571.65 un 4

11 Huarong, Hunan 29°35′ 23″ N 112°32′ 17″ E 18.38 1159.52 1769.97 un 20

12 Shuangpai, Hunan 26°06′ 30″ N 111°49′ 28″ E 18.73 1295.62 1437.55 un 18

13 Taoyuan, Hunan 28°54′ 09″ N 111°29′ 20″ E 18.45 1253.45 1585.60 un 46

14 Changsha, Hunan 28°10′ 11″ N 112°40′ 06″ E 18.41 1302.86 1681.94 72.2 19

15 Shicheng, Jiangxi 26°19′ 35″ N 116°20′ 36″ E 20.00 1242.95 1768.38 68.8 19

16 Changning, Sichuan 28°29′ 57″ N 104°55′ 58″ E 18.70 877.58 921.74 76.0 19

17 Ziyang, Sichuan 30°07′ 45″ N 104°37′ 44″ E 17.66 821.26 1256.52 77.0 5

18 Mengla, Yunnan 21°29′ 18″ N 101°33′ 23″ E 22.20 1225.95 un un 5

19 Menglun, Yunnan 21°55′ 25″ N 101°15′ 56″ E 22.20 1225.95 un un 7

20 Quzhou, Zhejiang 30°19′ 03″ N 119°25′ 57″ E 17.83 1568.21 1839.59 un 14

21 Wuhan, Hubei 31°05′ 30″ N 114°21′ 01″ E 17.67 1188.63 1806.45 71.6 20

22 Pingxiang, Jiangxi 27°37′ 22″ N 113°51′ 15″ E 18.50 1629.18 1559.65 77.8 31

23 Guangde, Anhui 30°47′ 19″ N 119°28′ 51″ E un un un un 15

24 Shucheng, Anhui 31°22′ 05″ N 116°59′ 13″ E un un un un 15

Table 1. Sampling site, geographical coordinates, annual sunshine (Sun), latitude (Lat), mean annual 
relative humidity (Hum), annual precipitation (Prec), annual mean temperature (Tmean), and sample size 
of sampled C. kiangsu populations. un: unknown data.

Figure 2. Distribution of FST values as a function of heterozygosity for interpopulational comparisons. 
Each dot represent an AFLP marker. The red dots above the upper line are classified as outliers potentially 
under divergent selection.
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Figure 3. BayeScan 2.0 plot of 224 polymorphic amplified fragment length polymorphisms markers in 
global enhanced genome scan analysis of 393 individuals from the C. kiangsu populations from China. 
FST is plotted against the log10 of the posterior odds (PO). The vertical line shows the critical PO used for 
identifying outlier markers. The 15 markers on the right side of the vertical line are candidates for being 
under positive selection.

Figure 4. Venn diagrams illustrating the overlap of outliers in outlier detection for three different 
outlier detection methods. 
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by Samβ ada variables was simultaneously detected by DFDIST and BayeScan as an outlier. This locus 
was associated with three climate variables by Samβ ada analysis, most strongly with Sun, Prec and Hum.

Discussion
Our study suggests that loci under divergent selection are on various geographical scales in C. kiangsu 
through AFLP genome scan. In addition, Samβ ada highlighted a significant proportion of those loci with 
statistical significance.

Outlier detection. The proportion of outliers detected with DFDIST (7.6%) is close to the proportion 
of outliers obtained by BayeScan (6.7%), which is also similar to the proportion previously reported by 
Nosil et al. that AFLP genome scans using DFDIST generally identify a proportion of 5–10%21. However, 
these studies are not directly comparable because the study design and chosen confidence may vary, 
such as pairwise comparisons22, global analysis23 or both21. The number of loci detected by Samβ ada 
was significantly increased compared to the other two approaches, which suggests that Samβ ada is more 
sensitive.

Outlier
DFDIST 
P-value

BayeScan  
posterior probability Samβada

6 0.000 0.054 Hum, Sun

7 0.000 1.000

8 0.858 0.939 Prec, Sun, Lat

13 0.970 0.972

14 0.000 0.060

15 0.001 0.071

16 0.000 0.777

27 0.535 0.982 Hum, Sun, Lat

30 0.312 1.000 Hum, Sun, Tmean

35 0.000 0.057 Hum

55 0.000 0.057 Sun

59 0.810 1.000 Hum, Tmean, Sun

60 0.922 1.000 Tmean, Lat, Prec, 
Sun, Hum

63 0.781 0.953

73 0.000 0.785 Hum, Sun

80 0.559 0.082 Hum, Sun, Tmean, 
Prec

84 0.761 1.000 Hum Sun

91 0.784 1.000 Hum, Sun

93 0.000 0.104

109 0.966 1.000

110 0.875 1.000 Hum, Sun, Prec

123 0.005 0.642

126 0.989 0.992 Hum, Sun, Prec

161 0.000 0.138

162 0.000 0.059

179 0.000 0.665

205 0.002 0.784

220 0.001 0.510

224 0.002 1.000 Sun, Prec, Hum

Table 2. List of the 29 outliers detected by DFDIST and BayeScan. For each outlier, values of posterior 
probability above 0.99 in bold are indicated. Numers of marker underlined are both detected by Samβ ada 
as outlier loci. Then the outliers were detected by spatial analysis method (Samβ ada), the climatic variables 
most strongly associated with locus are indicated. Sun: annual sunshine, Lat: latitude, Hum: annual relative 
humidity, Prec: annual precipitation, Tmean: annual mean temperature.
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In our study, we used three approaches to detect outliers in the same data sets, but it is not comparable 
to the posterior probabilities from BayeScan and P-values obtained from DFDIST. However, the outliers 
detected by the three approaches were limited, possibly reflecting discrepancies in their methodologies. 
The main difference between DFDIST and BayeScan is that the FST within-populations is variable in 
BayeScan, but it is assumed to be the same across all populations in the former program4. However, the 
test performed by Beaumont concluded that gene flow between populations or isolation by distance did 
not have a strong effect. Nevertheless, previous studies have reported that neglecting population structure 
may produce high rates of false positives24. Some studies have adopted multiple pairwise comparisons 
among populations25 because such comparisons are more appropriate, which may diminish problems 
caused by unknown complexity and strengthen confidence for candidate loci.

Overall, DFDIST appears to be more sensitive than BayeScan (DFDIST: 7.6%, BayeScan: 6.7%). 
Previous studies have indicated that BayeScan usually detects a high percentage of true selective loci 
and less than 1% of outliers (false positives) under a fully neutral model. The percentage of outliers 
detected by this software always correlates with the true percentage of selective loci in the genome26. The 
Bayesian method assumes that gene frequencies under any neutrally structured population model can be 
approximated by a multinomial Dirichlet distribution10. However, Dirichlet distribution would not hold 
if different samples were drawn from the same population or if sampled populations shared more recent 
ancestry than others27. In addition, Lotterhos27 emphasized that the default settings in BayeScan may 
result in many false positives that suggest balancing selection. It suggests that some FST outliers may be 
false positives. Although Pérez-Figueroa et al. compared DFDIST, DETSELD and BayeScan and found 
that BayeScan was more efficient under a wide range of scenarios26, a recent simulation study compared 
FDIST2, BayeScan, and two recent methods (FLK and Bayenv2), and showed that the default settings in 
FDIST2 and BayeScan led to many false positives, suggesting balancing selection27.

Samβ ada is clearly more sensitive for detecting several times loci than DFDIST and BayeScan. 
However, the eleven loci consistently detected by both Samβ ada and BayeScan were highly supported 
by statistics.

Indeed, there are some limitations of genome scans, such as sensitivity to phylogeographic structure 
and bottlenecks28. Four loci had log10 values as high as 5, which was the value ascribed to posterior 
probabilities of 1 (Bayes factor is infinity). Accordingly, the majority of these outliers are likely affected 
by directional selection and not simply by random chance. Our evidence for selection is as strong as 
possibly achievable given the statistical method and the number of loci available. The number of outliers 
that we detected for the data set is below the range found in other studies29 (5–10%). The high proportion 
of outliers in previous studies likely represents a high rate of false positives. False positives are also pos-
sible among our candidate loci and could represent stochastic processes or linkage to other candidates30. 
Therefore, outliers in C. kiangsu require further study and detection by newly developed methods.

When applying Samβ ada analysis to the AFLP data set, some loci identified as outliers in Samβ ada 
associated with environmental variables were also detected by DFDIST or BayeScan (Table 2). Samβ ada 
is a useful method when simultaneously searching for linkages within many climate variables, which pro-
vides insight into which selective forces may be in play. Because many climate variables are inter-related, 
information on environmentally related requirements of a species is important to determine which envi-
ronmental variables are the most critical forces. Additionally, the variables tested must be ecologically 
relevant instead of random changes within the genetic data4. Samβ ada is a new analysis approach that 
can better identify associations with environmental variables.

Association with environmental variables. Local directional selection appears to be general and 
relatively widespread and can be found on a number of geographical scales, as the global or regional 
outliers were not exclusively dependent on one or a few particularly divergent populations. Although 
it is difficult to completely disentangle the effects of geographic and environmental distance, a higher 
proportion of identified outlier loci were associated with environmental parameters and geographic var-
iables. These data suggest that environmental factors are potentially responsible for adaptive divergence 
among populations31.

The results from Samβ ada analysis for C. kiangsu revealed possible evolutionary forces of outlier loci 
along the environmental gradient in China. The strongest associations selected for latitude (Lat). Notably, 
latitude is an easily accessible ecological factor, but it is also a compound factor because temperate 
regions, temperature, humidity, sunshine and precipitation all change with latitude.

All 31 associations were significantly correlated with annual sunlight. It is well known that sunlight 
is the primary energy source in ecosystems and a particularly important factor for insects. This locust 
generally prefers areas with relatively little sunlight because the intensity and duration of the sunlight 
affect its movement and feeding abilities and the local bamboo species’ development32.

Alternatively, because temperature is important for proper protein and physiological process func-
tion, we identified a total of 23 associations with annual mean temperature. Temperature differences 
among geographical locations could alone drive the evolutionary response for all genes in concert. Our 
landscape genetic analysis partially explains this hypothesis, as almost all outlier loci significantly asso-
ciated with temperature. For example, a phenomenon was previously observed that grasshoppers were 
negatively affected by fall temperatures in the winter, which may affect embryonic development before 
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hatching and diapause33. Furthermore, in the Sigaus australis grasshopper, temperature may affect water 
loss, body size and population dynamics34.

Altogether, we identified 19 associations with annual precipitation, which may be considered the 
least important variable. This variable probably does not influence locusts’ activity to the same extent 
as latitude and sunshine. However, due to precipitation decreases from south to north in China, annual 
precipitation can reach values as high as 1800 mm in Guilin, but only 800 mm in Ziyang. Precipitation 
influences grasshoppers in many aspects. For example, the population density is lower in regions with 
little precipitation35, and increased precipitation may affect the occurrence of the late-season grasshop-
per36. Franzke previously suggested that climate change events, such as drought and heavy rain, are likely 
to affect plants and influence the performance of population dynamics in herbivorous insects. Drought 
events may increase population performance (development time, body size, mortality, growth rate) in 
grasshopper and moisture may cause negative population trends37. Another study proposed that summer 
rainfall may positively affect plants, hence affecting the quantity and quality of forage production and 
grasshopper populations33.

We identified another 28 associations with annual relative humidity. C. kiangsu requires a large 
amount of moisture from the nymph stage to the adult stage, and a previous study has shown that 
humidity correlates to C. kiangsu movement and feeding abilities32. The combination of environmental 
variables may lead to a comprehensive influence on locusts. For example, Joachim et al. (2004) suggested 
that sunlight and temperature and some other ecologically factors may affect the number of juvenile 
instars and morality in nymphs38.

Future directions. Our study identified a list of loci potentially under the influence of selection in 
bamboo locust. The loci need to be isolated and sequenced, and sequenced fragments must be mapped 
to the outlier fragments within the genome. If the outlier’s sequence is not homologous with any known 
gene, it may be belong to an unknown regulatory region or a non-coding fragment linked with the 
selection target4. The determination of outlier function and characterization is necessary to identify 
their involvement in local adaptation of C. kiangsu and the effects of environmental variables onto the 
molecular mechanism. However, mapping of loci to known genomic sequences requires the availabil-
ity of detailed genomic information of closely related species. Combined studies on adaptive and neu-
tral molecular markers will largely contribute to our understanding of genetic differentiation among C. 
kiangsu populations and will allow us to investigate the ‘migration of adaptation’28. Our study also sheds 
light on the use of genome scan methods to identify evolutionary pressures on candidate loci in a local 
population. Although public databases offer a good source of sample coordinates and environmental 
information, more ecologically relevant and detailed information, such as the maximum and lowest 
temperature, host-plant species and abundance of food sources and genetic information, require further 
collection. Compiling information on phenotypic, ecological and genomic data may be fruitful to inves-
tigate species adaptation.

Methods
Sample collection, DNA extraction and AFLPs. A total of 393 C. kiangsu individuals were col-
lected in the field from 24 locations in China, which covered all of the species’ distributions over China 
ranging from 2007 to 2012 (Fig. 1; Table 1). A total of 24 populations were used for subsequently anal-
ysis. Locusts were collected using a sweep net and subsequently preserved in absolute ethanol. Genomic 
DNA was extracted from femurs using a Wizard® Genomic DNA Purification Kit (Promega, Madison, 
WI, USA) according to the manufacturer’s instructions and stored at − 30 °C until needed. All DNA 
extracts for AFLP were run on 1% agarose gels, and samples that did not have high concentrations of 
high molecular weight DNA or that appeared excessively sheared were excluded from AFLP analysis20. 
Sample sizes for AFLP analysis ranged from two to ten.

The original AFLP protocol of Vos et al. was applied with a few modifications39. Individuals with high 
consistency and purity quotients of genomic DNA were used. Because grasshopper species have a larger 
genome than many other insects, a longer enzyme digestion was performed to obtain more polymor-
phic fragments. A total of 400 ng genomic DNA was digested at 37 °C with 0.2 μ L EcoRI and 0.5 μ L MseI 
(both Fermentas, with 2 ×  Buffer R) for 3 h followed by 70 °C for 15 min to ensure enzyme inactivation. 
EcoRI/MseI adapters were ligated to the digested product using T4-DNA-Ligase (FERMENTAS) at 20 °C 
overnight. A total of 16 primer combinations containing one selective base were used. Preselective ampli-
fication was performed in a total volume of 30 μ L including 3 μ L diluted restriction-ligation DNA, 3 μ L 
10 ×  buffer, 2.4 μ L MgCl2, 1.6 μ L dNTPs, 0.4 μ L rTaq (TAKARA) and 1 μ L EcoRI +  N primer and 1 μ L 
MseI +  N primer. The thermal cycling parameters for preselective amplification were as follows: 2 min at 
94 °C, 30 cycles of 30 sec at 94 °C, 1 min at 56 °C, 1 min at 72 °C, followed by 10 min at 72 °C. Ligations 
were diluted 1:20, and 2 μ L of the diluted preselective amplification product was used in selective ampli-
fication. Selective amplification was performed in a total volume of 20 μ L with 2 μ L diluted preselective 
amplification product, 2 μ L 10 ×  buffer, 1.6 μ L MgCl2, 1.6 μ L dNTPs, 0.6 μ L rTaq (TAKARA) and 1 μ L 
EcoRI +  3 primer (labeled with FAM) and 1 μ L MseI primer. Four primer combinations (E–AGG/M–
CAG, E–AGG/M–CTT, E–AGC/M–CTC, E–AAG/M–CAG, where E is EcoRI, M is MseI) were used 
in this step. Selective amplification products were visually measured on an ABI 3700 DNA analyzer 
(Shanghai Sangon Biotech Co., Ltd.).
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Fragment data were analyzed with GeneMarker version 2.20 (Demo). Fragments of size 50–500 bp 
were scored as present or absent. Minimum fragment signal intensity was initially used for all fragments. 
The signal intensity was measured as relative fluorescent units (RFU) of 500 or 1000 depending on the 
primer set20.

Environmental data. To test the effect of environment on genetic diversity, environmental data 
were required at all sampling locations using the geographical coordinates where locusts were sampled. 
Climate data were obtained from a public website. The annual sunshine (Sun), annual relative humidity 
(Hum), annual precipitation (Prec), and annual mean temperature (Tmean) from 2000 to 2012 were pro-
vided by the statistical bureau (http://www.stats.gov.cn/). The data for latitude, longitude and elevation 
(Table 1) were obtained from Google Earth (http://www.google.com/earth/download/ge/agree.html).

Outlier detection. Fragmentized information was exported as 0/1 popmatrix by GeneMarker and 
transformed in format in the AFLPDAT program40. To identify candidate loci potentially influenced 
by selection among sites across China, two different FST outlier detection approaches were performed: 
DFDIST41 and BayeScan42. DFDIST (http://www.rubic.rdg.ac.uk/~mab/stuff/) is a modification of distrib-
uted FDIST41 and FDIST243, and an infile of DFDIST was created by the AFLP convert program. DFDIST 
calculates the simulated values for heterozygosity an FST using Zhivotovsky’s approach44. DFDIST esti-
mates the probability that a locus may be under selection by observed FST and HE compared to simulated 
neutral distributions. DFDIST calculated a “trimmed” mean FST value by removing 30% of the highest 
and lowest FST values using the null distribution, which is the neutral FST value. In the simulation loci, 
FST values above the upper 99% quantile were considered as being potentially under directional selection 
consistent with population difference.

The other method for detecting signatures of natural selection was implemented in BayeScan 2.0 (http://
www.cmpg.unibe.ch/software/bayescan/) using the Bayesian likelihood method via reversible-jump 
Monte Carlo Markov chain (MCMC). Generally, such Bayesian approaches42,43 assume that allele fre-
quencies within populations follow a Dirichlet distribution45–47. It directly estimates the probability 
that each locus is subject to selection using a Bayesian method. The method uses population-specific 
and locus-specific components of FST coefficients and assumes that allele frequencies follow a Dirichlet 
distribution. BayeScan considers all loci in its analysis and is robust when examining complex demo-
graphic scenarios for neutral genetic differentiation42. This enhanced Bayesian method directly infers 
the posterior probability of each locus to be under the effect of selection by defining and comparing 
two alternative models. One model includes the effect of selection (M1), while the other (M2) excludes 
it42. These posterior probabilities can then be used for model choice using posterior odds (PO), which is 
the ratio of posterior probabilities of the models and measures how much more likely model M1 (with 
selection) is compared to model M2 (without selection). When using the same prior for both models 
(M1 and M2), the posterior odds are reduced to the Bayes Factor. Jeffreys48 (1961) proposed a logarith-
mic scale for model choice defined as: >3 substantial (log10PO >  0.5); >  10 strong (log10PO >  1.0); >32 
very strong (log10PO >  1.5); and > 100 decisive evidence for accepting a model (log10PO >  2.0). In our 
genome scans, a threshold for PO >  10 (strong) was used as a marker to be considered under selection. 
This corresponds to a posterior probability greater than 0.91 for the model accounting for selection. For 
the Markov chain Monte Carlo algorithm implemented in BayeScan 2.0, 20 pilot runs of 2000 iterations 
were used to adjust the proposal distribution to have acceptance rates between 0.25 and 0.45 for the runs. 
Afterwards, a burn-in of 50,000 iterations followed by 50,000 iterations were used for estimation using 
a thinning interval of 10.

Thirdly, Samβ ada analysis was implemented, and this method was designed for amplified fragment 
length polymorphism (AFLP) data. The logistic regression model was performed such that individ-
uals are coded with the presence/absence of an allele. The model fit to be was considered significant 
when both the G and Wald tests were significant following Bonferroni correction at a 99% confidence 
level.

Association with environmental variables. Associations between markers and environmental var-
iables were directly tested using an individual-based analysis that estimates spatial coincidence imple-
mented in the Samβ ada program, available at lasig.epfl.ch/sambada. Here, individuals were coded with 
the presence/absence of an allele, and AFLP polymorphisms were visually scored as dominant markers, 
coded with 1 for the presence and with 0 for the absence of the band. Afterwards, associations between 
the allele and environmental parameters were tested across sites. The environmental variables imple-
mented were annual sunshine (Sun), latitude (lat), annual relative humidity (Hum), annual precipitation 
(Prec) and annual mean temperature (Tmean). The univariate output file consisted of each possible molec-
ular and environmental variable combination, so a p-value was calculated for the wald scores test, where 
wald scores were compared to a chi-square distribution with 1 degree of freedom, which is the regression 
coefficient divided by its standard error and hence a Chi-square distributed with 1 degree of freedom. 
Those corrected p-values <  0.5 were considered highly significant associations between the marker and 
environmental variable.

http://www.stats.gov.cn/
http://www.google.com/earth/download/ge/agree.html
http://www.rubic.rdg.ac.uk/~mab/stuff/
http://www.cmpg.unibe.ch/software/bayescan/
http://www.cmpg.unibe.ch/software/bayescan/
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