This is an open access article published under a Creative Commons Attribution (CC-BY) <u>License</u>, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

pubs.acs.org/OrgLett

Letter

Cobalt-Catalyzed Diastereoselective and Enantioselective Hydrosilylation of Achiral Cyclopropenes

Longyang Dian and Ilan Marek*

Draanic

etters

s three-membered carbocycle is a molecular backbone A that frequently appears in natural products and related biologically active compounds,1 the enantioselective preparation of polysubstituted cyclopropanes has extensively been investigated over the last few decades.² In addition, the inherent ring strain of three-membered rings promotes a series of easy transformations such as ring opening,³ ring expansion,⁴ cycloaddition,⁵ rearrangement⁶ toward the formation of more complex carbon skeletons. In the past few years, the catalytic diastereo- and enantioselective direct functionalization of achiral three-membered carbocycles,⁷ as an alternative approach to the cyclopropanation of olefins, $^{8-10}$ has attracted significant attention as a new source of enantioenriched polysubstituted cyclopropanes from a common and unique starting material. Using such a direct functionalization strategy, a large variety of nucleophiles—alkyl,¹¹ alkenyl,¹² aryl,¹³ alkynyl,¹⁴ boronyl,¹⁵ carbonyl,¹⁶ stannyl¹⁷ among others¹⁸ were selectively added on the three-membered ring (Scheme 1a). With the idea of extending the toolbox available to practitioners, we noticed that the catalytic and enantioselective preparation of silylcyclopropanes from unfunctionalized cyclopropenes was less developed until very recent reports from Oestreich¹⁹ and Xu.²⁰ From the pioneering studies on enantioselective Simmons-Smith reaction of γ -silicon-substituted allylic alcohols using diethyl tartrate as chiral auxiliary²¹ to the more recent directed Rh-catalyzed intramolecular enantioselective silvlation of cyclopropyl methanol,²² the pioneering report on Pt-catalyzed racemic hydrosilvlation of achiral cyclopropenes was reported by Gevorgyan.²³ Based on this transformation and knowledge acquired for the catalytic functionalization of achiral 3,3disubstituted cyclopropenes (Scheme 1a), recent enantioselective Rh-desymmetrization of cyclopropenyl ester (Scheme 1b)²⁰ and Cu-catalyzed enantioselective and diastereoselective addition of Si-nucleophiles to 3,3-disubstituted cyclopropenes (Scheme 1c)¹⁹ were reported illustrating the power of these approaches to prepare silyl-substituted cyclopropanes.

Scheme 1. Enantioselective Preparation of Cyclopropylsilanes

a) Metal catalyzed diastereo- and enantioselective functionalization of cyclopropenes

Nu: alkyl, alkenyl, aryl, alkynyl, boron, carbonyl, stannyl

b) Rh-catalyzed enantioselective hydrosilylation directed by a carboxyl group

$$\overset{\text{R}^{1} \text{CO}_{2}\text{R}^{2}}{\overset{(R)\text{-DTBM-Segphos (3.6 mol%)}}{\overset{(R)\text{-DTBM-Segphos (3.6 mol%)}}{\overset{(R)\text{-DTBM-Segphos (3.6 mol%)}}} \overset{\text{R}^{1} \text{-CO}_{2}\text{-R}^{2}}{\overset{er \text{ up to 99:01}}{\overset{\text{SiHAr}_{2}}}}$$

c) Cu-catalyzed enantioselective hydrosilylation of cyclopropenes

d) Co-catalyzed diastereo- and enantioselective hydrosilylation of cyclopropenes

$$\begin{array}{c} R^2 R^1 & \textit{Efficiency?} \\ \hline \\ ArSiH_3 \end{array} \begin{array}{c} R^2 R^1 & \textit{Efficiency?} \\ \hline \\ SiH_2 Ar \end{array} \begin{array}{c} Diastereoselectivity? \\ \hline \\ Enantioselectivity? \end{array}$$

In light of these last reports, we would like to disclose the Co-catalyzed diastereoselective and enantioselective hydrosilylation of achiral cyclopropenes (Scheme 1d). When our model substrate, cyclopropene 1a, was subjected to the

Received: May 31, 2020 **Published:** June 8, 2020

		Me Ph 1a	[M] Ligand Temp/time Toluene	SiPhH ₂ 2a	
entry ^b	[M]	ligand/additive	temperature, T (°C)	diastereomeric ratio, dr^c	enantiomeric ratio, er ^d
1	$L_1 \cdot CoCl_2$	NaBHEt ₃	-15	20:1	NA
2	L_2 ·CoCl ₂	NaBHEt ₃	-15	ND	NA
3	L_3 ·CoCl ₂	NaBHEt ₃	-15	10:1	86:14
4	L_4 ·CoCl ₂	NaBHEt ₃	-15	20:1	96:04
5	$L_5 \cdot CoCl_2$	NaBHEt ₃	-15	7.3:1	96:04
6 ^e	L_4 ·CoCl ₂	NaBHEt ₃	-15	20:1	96:04
7	L_4 ·CoCl ₂	-	-15	ND	NA
8	_	NaBHEt ₃	-15	ND	NA
			$L_2^*CoCl_2, R = Bn$ $L_3^*CoCl_2, R = Fn$ $L_3^*CoCl_2, R = Fn$	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	

Table 1. Co-catalyzed Diastereoselective and Enantioselective Hydrosilylation of Cyclopropene 1a^a

^{*a*}The reactions were run on a 0.10 mmol scale, [Co] (10 mol %), ligand or additive (20 mol %) in toluene (0.1 M) and the reaction mixture was stirred at the indicated temperature for 5 h. NA, not analyzed; ND, no detection of the desired product. ^{*b*}Entries 1, 3, 4, and 6: full conversion; entry 2: 10% conversion; entries 7 and 8: no conversion. ^{*c*}Determined by GC analysis of hydrolyzed aliquots. ^{*d*}Determined by chiral HPLC. ^{*e*}5 mol % cobalt complex (L_4 ·CoCl₂) and 10 mol % NaBHEt₃ were used in the reaction.

diastereoselective hydrosilylation reaction with commercially available phenylsilane as a silylating reagent in the presence of palladium or rhodium salts with chiral ligands, no or racemic desired cyclopropylsilane **2a** was detected (see the Supporting Information (SI) for all tested transition metals and conditions). However, inspired by the recent report on cobalt-catalyzed hydrosilylation reaction of double bonds,²⁴ we first tested the racemic Co-catalyzed hydrosilylation reaction of **1a** with the precatalyst L_1 ·CoCl₂, and we were delighted to observe a very diastereoselective hydrosilylation reaction of **1a** (diastereomeric ratio (dr) = 20:1; see Table 1, entry 1).

Having in hand this precatalyst that smoothly afforded silylcyclopropane as a single diastereoisomer, we concentrated our first efforts to underline the scope of this reaction by varying the nature of the cyclopropenes and the silane, as described in Scheme 2. Cyclopropenes bearing various different substituents on the aromatic ring smoothly undergo the hydrosilylation reaction with PhSiH₃ to produce the corresponding silyl-substituted cyclopropanes (2b-2f; see Scheme 2) in good yield and high diastereoselectivity. Different silanes could also be introduced on the three-membered ring possessing either substituents of different electronic properties on the aromatic ring (2g-2n in Scheme 2) or by using diphenylsilane Ph₂SiH₂ (2o-2r in Scheme 2).

Since the racemic L_1 ·CoCl₂ complex was the best combination for a diastereoselective hydrosilylation reaction, a series of cobalt complexes possessing similar structures but with different chiral backbones were prepared and submitted to the hydrosilylation reaction on our model substrate 1a (see Table 1, entries 2–6). Although the benzyl-substituted precatalyst L_2 ·CoCl₂ did not produce the hydrosilylated product 2a (see Table 1, entry 2), the cobalt complex L_3 · CoCl₂ containing an *iso*-propyl moiety smoothly led to 2a with decent diastereomeric ratio (dr = 10:1) and enantiomeric ratio (er = 86:14) values (see Table 1, entry 3). The best combination was found when the chiral cobalt complex L₄. CoCl₂ was engaged in our model reaction and afforded the corresponding product 2a with high diastereoselectivity and enantioselectivity (dr = 20:1, er = 96:04), demonstrating that the nature of the chiral ligand also significantly influences the diastereoselectivity of the reaction (Table 1, entry 4). To further confirm this steric effect of the chiral ligand on the diastereoselectivity of the hydrosilylation reaction, a more sterically hindered chiral complex (L₅·CoCl₂) was synthesized and tested under our standard conditions. In this case, the enantioselectivity was the same but the diastereoselectivity decreased to 7.3:1. Further study showed that the catalyst loading of the complex $(L_4 \cdot CoCl_2)$ could be decreased to 5 mol %, while preserving the efficiency of the transformation (see Table 1, entry 6). Control experiments indicate that both the cobalt complex and reducing agent (NaBHEt₃) were necessary for the enantioselective catalytic hydrosilylation reaction, as no desired product 2a was observed in their absence (see Table 1, entries 7 and 8, respectively). Having established the best experimental conditions for a mild cobaltcatalyzed diastereoselective and enantioselective hydrosilylation reaction of achiral cyclopropene 1a (5 mol% cobalt complex L₄·CoCl₂, 10 mol % NaBHEt₃ in toluene at -15 °C for 5 h), we then have investigated the scope of this transformation. Cyclopropenes having various aromatic substituents undergo similar enantioselective hydrosilylation reaction with phenylsilane to provide the corresponding enantiomerically enriched silvlcyclopropanes 2a-2e in good yields with excellent diastereoselectivities and enantioselectivities (see Scheme 3). Different substituted aryl silanes reagents were prepared and tested in our transformation. para-Methoxyphenylsilane and tolylsilane, as well as orthomethoxyphenylsilane, were added, with excellent selectivities to various cyclopropenes (2g-2x in Scheme 3).

Spirocyclopropene also undergoes the Co-catalyzed diastereoselective and enantioselective hydrosilylation reaction with

Letter

Scheme 2. Diastereoselective Co-catalyzed Hydrosilylation of Cyclopropenes

high efficiency (2u and 2w in Scheme 3). Note that increased steric hindrance around the reactive site of the silane decreases the enantioselectivities (compare 2g and 2m in Scheme 3), which was further confirmed when no hydrosilylation reaction was detected when more sterically hindered 1,3,5-trimethylphenylsilane or diphenylsilane was used as a silane reagent (not reported in Scheme 3). The absolute configuration of the cyclopropylsilanes was determined after oxidation of 2a to cyclopropanol²⁵ and comparison with literature data.^{15b} All other configurations were determined by analogy.

To gain further understanding on the nature of the hydrosilylation reaction, two deuterium labeling experiments were performed. As shown in Scheme 4, when deuterated cyclopropene $1a_{d_2}$ was used as a substrate, $2g_{d_2}$ was isolated. On the other hand, when cyclopropene $1a_{d_2}$ and deuterated silane were used, fully deuterated cyclopropane $2g_{d_5}$ was obtained, suggesting that the cyclopropylcobalt intermediate was protonated by the silane to regenerate the active catalytic species (see the Supporting Information for all analysis and NMR data).

Scheme 3. Co-catalyzed Diastereoselective and Enantioselective Hydrosilylation of Cyclopropenes

Scheme 4. Labelling Experiments

In summary, a mild diastereoselective and enantioselective cobalt-catalyzed hydrosilylation reaction of achiral cyclopropenes has been developed. In this protocol, various substituted cyclopropenes and arylsilanes were transformed, in the presence of readily available chiral cobalt complex, into silylcyclopropanes with high selectivities. This atom-economy approach to silylated saturated three-membered rings constitute an additional tool for the direct functionalization of three-membered carbocyclic skeleton.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c01833.

Experimental procedures, characterization data for all new compounds (PDF)

Corresponding Author

Ilan Marek – Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200009, Israel; • orcid.org/ 0000-0001-9154-2320; Email: chilanm@technion.ac.il

Author

Longyang Dian – Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200009, Israel

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c01833

Funding

I.M. is holder of the Sir Michael and Lady Sobell Academic Chair. This project has received funding from the Israel Science Foundation (Grant No. 330/17) and by the Ministry of Science and Technology (Grant No. 2023994).

Notes

The authors declare no competing financial interest.

REFERENCES

(1) For selected reviews, see: (a) Davies, H. M. L.; Denton, J. R. Application of Donor/Acceptor-Carbenoids to the Synthesis of Natural Products. *Chem. Soc. Rev.* 2009, 38, 3061–3071. (b) Carson, C. A.; Kerr, M. A. Heterocycles from Cyclopropanes: Applications in Natural Product Synthesis. *Chem. Soc. Rev.* 2009, 38, 3051–3060. (c) Zhang, D.; Song, H.; Qin, Y. Total Synthesis of Indoline Alkaloids: A Cyclopropanation Strategy. *Acc. Chem. Res.* 2011, 44, 447–457. (d) Chen, D. Y.-K.; Pouwer, R. H.; Richard, J.-A. Recent advances in the total synthesis of cyclopropane-containing natural products. *Chem. Soc. Rev.* 2012, 41, 4631–4642. (e) Marson, C. M. New and unusual scaffolds in medicinal chemistry. *Chem. Soc. Rev.* 2011, 40, 5514–5533. (f) Talele, T. T. The "Cyclopropyl Fragment" is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. *J. Med. Chem.* 2016, 59, 8712–8756.

(2) For selected reviews, see: (a) Salaun, J. Optically active cyclopropanes. *Chem. Rev.* **1989**, *89*, 1247–1270. (b) Marek, I.; Simaan, S.; Masarwa, A. Enantiomerically Enriched Cyclopropene Derivatives: Versatile Building Blocks in Asymmetric Synthesis. *Angew. Chem., Int. Ed.* **2007**, *46*, 7364–7376. (c) Pellissier, H. Recent Developments in Asymmetric Cyclopropanation. *Tetrahedron* **2008**, *64*, 7041–7095. (d) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Asymmetric Cyclopropanation Reactions. *Synthesis* **2014**, *46*, 979–1029.

(3) (a) Jun, C.-H. Transition metal-catalyzed carbon-carbon bond activation. *Chem. Soc. Rev.* **2004**, *33*, 610–618. (b) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Selective Carbon-Carbon Bond Cleavage for the Stereoselective Synthesis of Acyclic Systems. *Angew. Chem., Int. Ed.* **2015**, *54*, 414–429. (c) Vasseur, A.; Bruffaerts, J.; Marek, I. Remote functionalization through alkene isomerization. *Nat. Chem.* **2016**, *8*, 209–219. (d) Fumagalli, G.; Stanton, S.; Bower, J. F. Recent Methodologies That Exploit C-C Single-Bond Cleavage of Strained Ring Systems by Transition Metal Complexes. *Chem. Rev.* **2017**, *117*, 9404–9432. (e) Nairoukh, Z.; Cormier, M.; Marek, I. Merging C-H and C-C bond cleavage in organic synthesis. *Nat. Rev. Chem.* **2017**, *1*, 0035.

(4) (a) Bajtos, B.; Yu, M.; Zhao, H.; Pagenkopf, B. L. C-2/C-3 Annulation and C-2 Alkylation of Indoles with 2-Alkoxycyclopropanoate Esters. J. Am. Chem. Soc. 2007, 129, 9631–9634. (b) Aïssa, C.; Fürstner, A. A Rhodium-Catalyzed C-H Activation/Cycloisomerization Tandem. J. Am. Chem. Soc. 2007, 129, 14836–14837. (c) Masarwa, A.; Fürstner, A.; Marek, I. Metal-Catalyzed Rearrangement of Enantiomerically Pure Alkylidenecyclopropane Derivatives as a New Access to Cyclobutenes Possessing Quaternary Stereocenters. Chem. Commun. 2009, 5760–5762. (d) Zhang, F.-G.; Marek, I. Brook

pubs.acs.org/OrgLett

(5) (a) Pohlhaus, P. D.; Johnson, J. S. Enantiospecific Sn(II)- and Sn(IV)-Catalyzed Cycloadditions of Aldehydes and Donor-Acceptor Cyclopropanes. J. Am. Chem. Soc. 2005, 127, 16014–16015. (b) Jackson, S. K.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. Stereodivergent Methodology for the Synthesis of Complex Pyrrolidines. J. Am. Chem. Soc. 2008, 130, 4196–4201. (c) Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Ruthenium-triggered ring opening of ethynylcyclopropanes: [3 + 2] cycloaddition with aldehydes and aldimines involving metal allenylidene intermediates. Angew. Chem., Int. Ed. 2013, 52, 1758–1762.

(6) (a) Cloke, J. B. The Formation of Pyrrolines from Gamma-Chloropropyl and Cyclopropyl Ketimines. J. Am. Chem. Soc. **1929**, 51, 1174–1187. (b) Zuo, G.; Louie, J. Highly Active Nickel Catalysts for the Isomerization of Unactivated Vinyl Cyclopropanes to Cyclopentenes. Angew. Chem., Int. Ed. **2004**, 43, 2277–2279. (c) De Simone, F.; Gertsch, J.; Waser, J. Catalytic Selective Cyclizations of Aminocyclopropanes: Formal Synthesis of Aspidospermidine and Total Synthesis of Goniomitine. Angew. Chem., Int. Ed. **2010**, 49, 5767–5770. (d) Kaschel, J.; Schneider, T. F.; Kratzert, D.; Stalke, D.; Werz, D. B. Domino Reactions of Donor–Acceptor-Substituted Cyclopropanes for the Synthesis of 3,3'-Linked Oligopyrroles and Pyrrolo[3,2-e]indoles. Angew. Chem., Int. Ed. **2012**, 51, 11153–11156. (7) Dian, L.; Marek, I. Asymmetric Preparation of Polysubstituted Cyclopropanes Based on Direct Functionalization of Achiral Three-Membered Carbocycles. Chem. Rev. **2018**, 118, 8415–8434.

(8) For selected reviews, see: (a) Doyle, M. P.; Forbes, D. C. Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. *Chem. Rev.* **1998**, 98, 911–936. (b) Davies, H. M. L.; Antoulinakis, E. G. Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations. *Org. React.* **2001**, 57, 1. (c) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Stereoselective Cyclopropanation Reactions. *Chem. Rev.* **2003**, *103*, 977–1050.

(9) For selected examples, see: (a) Denmark, S. E.; O'Connor, S. P. Catalytic, Enantioselective Cyclopropanation of Allylic Alcohols. Substrate Generality. J. Org. Chem. 1997, 62, 584–594. (b) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. Enantioselective Cyclopropanation of Allylic Alcohols with Dioxaborolane Ligands: Scope and Synthetic Applications. J. Am. Chem. Soc. 1998, 120, 11943–11952. (c) Shitama, H.; Katsuki, T. Asymmetric Simmons–Smith Reaction of Allylic Alcohols with Al Lewis Acid/N Lewis Base Bifunctional Al(Salalen) Catalyst. Angew. Chem., Int. Ed. 2008, 47, 2450–2453.

(10) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Catalytic C-C Bond-Forming Multi-Component Cascade or Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric Organocatalysis. *Chem. Rev.* **2014**, *114*, 2390–2431.

(11) (a) Kubota, K.; Nakamura, M.; Isaka, M.; Nakamura, E. Ligand Control in the Stereoselective Allylzincation of Cyclopropenes. J. Am. Chem. Soc. 1993, 115, 5867-5868. (b) Liu, X.; Fox, J. M. Enantioselective, Facially Selective Carbomagnesation of Cyclopropenes. J. Am. Chem. Soc. 2006, 128, 5600-5601. (c) Kramer, K.; Leong, P.; Lautens, M. Enantioselective Palladium-Catalyzed Carbozincation of Cyclopropenes. Org. Lett. 2011, 13, 819-821. (d) Müller, D. S.; Marek, I. Asymmetric Copper-Catalyzed Carbozincation of Cyclopropenes en Route to the Formation of Diastereo- and Enantiomerically Enriched Polysubstituted Cyclopropanes. J. Am. Chem. Soc. 2015, 137, 15414-15417. (e) Dian, L.; Müller, D. S.; Marek, I. Asymmetric Copper-Catalyzed Carbomagnesiation of Cyclopropenes. Angew. Chem., Int. Ed. 2017, 56, 6783-6787. (f) Sommer, H.; Marek, I. Diastereo- and Enantioselective Copper Catalyzed Hydroallylation of Disubstituted Cyclopropenes. Chem. Sci. 2018, 9, 6503-6508.

(12) (a) Müller, D. S.; Werner, V.; Akyol, S.; Schmalz, H.-G.; Marek, I. Tandem Hydroalumination/Cu-Catalyzed Asymmetric Vinyl Metalation as a New Access to Enantioenriched Vinylcyclopropane Derivatives. *Org. Lett.* **2017**, *19*, 3970–3973. (b) Zhang, H.; Huang,

W.; Wang, T.; Meng, F. Cobalt-Catalyzed Diastereo- and Enantioselective Hydroalkenylation of Cyclopropenes with Alkenylboronic Acids. *Angew. Chem., Int. Ed.* **2019**, *58*, 11049.

(13) Dian, L.; Marek, I. Rhodium-Catalyzed Arylation of Cyclopropenes Based on Asymmetric Direct Functionalization of Three-Membered Carbocycles. *Angew. Chem., Int. Ed.* **2018**, *57*, 3682–3686.

(14) (a) Teng, H.-L.; Ma, Y.; Zhan, G.; Nishiura, M.; Hou, Z. Asymmetric C(sp)–H Addition of Terminal Alkynes to Cyclopropenes by a Chiral Gadolinium Catalyst. ACS Catal. 2018, 8, 4705–4709. (b) Dian, L.; Marek, I. Pd-Catalyzed Enantioselective Hydroalkynylation of Cyclopropenes. ACS Catal. 2020, 10, 1289– 1293.

(15) (a) Rubina, M.; Rubin, M.; Gevorgyan, V. Catalytic Enantioselective Hydroboration of Cyclopropenes. J. Am. Chem. Soc. 2003, 125, 7198–7199. (b) Parra, A.; Amenós, L.; Guisán-Ceinos, M.; López, A.; Garciá Ruano, J. L.; Tortosa, M. Copper-Catalyzed Diastereo- and Enantioselective Desymmetrization of Cyclopropenes: Synthesis of Cyclopropylboronates. J. Am. Chem. Soc. 2014, 136, 15833–15836. (c) Tian, B.; Liu, Q.; Tong, X.; Tian, P.; Lin, G. Q. Copper(I)-catalyzed enantioselective hydroboration of cyclopropenes: facile synthesis of optically active cyclopropylboronates. Org. Chem. Front. 2014, 1, 1116–1122. (d) Edwards, A.; Rubina, M.; Rubin, M. Directed Rh(I)-Catalyzed Asymmetric Hydroboration of Prochiral 1-Arylcycloprop-2-Ene-1-Carboxylic Acid Derivatives. Chem. - Eur. J. 2018, 24, 1394–1403.

(16) (a) Sherrill, W. M.; Rubin, M. Rhodium-Catalyzed Hydroformylation of Cyclopropenes. J. Am. Chem. Soc. 2008, 130, 13804– 13809. (b) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. Enantioselective Desymmetrization of Cyclopropenes by Hydroacylation. J. Am. Chem. Soc. 2010, 132, 16354–16355. (c) Liu, F.; Bugaut, X.; Schedler, M.; Fróhlich, R.; Glorius, F. Designing N-Heterocyclic Carbenes: Simultaneous Enhancement of Reactivity and Enantioselectivity in the Asymmetric Hydroacylation of Cyclopropenes. Angew. Chem., Int. Ed. 2011, 50, 12626–12630.

(17) Rubina, M.; Rubin, M.; Gevorgyan, V. Catalytic Enantioselective Hydrostannation of Cyclopropenes. J. Am. Chem. Soc. 2004, 126, 3688–3689.

(18) (a) Lauru, S.; Simpkins, N. S.; Gethin, D.; Wilson, C. Enantioselective Synthesis of Cyclopropylcarboxamides Using s-BuLi-Sparteine-Mediated Metallation. Chem. Commun. 2008, 5390-5392. (b) Li, Z.; Zhao, J.; Sun, B.; Zhou, T.; Liu, M.; Liu, S.; Zhang, M.; Zhang, Q. Asymmetric Nitrone Synthesis via Ligand-Enabled Copper-Catalyzed Cope-Type Hydroamination of Cyclopropene with Oxime. J. Am. Chem. Soc. 2017, 139, 11702-11705. (c) Teng, H.-L.; Luo, Y.; Wang, B.; Zhang, L.; Nishiura, M.; Hou, Z. Synthesis of Chiral Aminocyclopropanes by Rare-Earth-Metal-Catalyzed Cyclopropene Hydroamination. Angew. Chem., Int. Ed. 2016, 55, 15406-15410. (d) Teng, H.-L.; Luo, Y.; Nishiura, M.; Hou, Z. Diastereodivergent Asymmetric Carboamination/Annulation of Cyclopropenes with Aminoalkenes by Chiral Lanthanum Catalysts. J. Am. Chem. Soc. 2017, 139, 16506-16509. (e) Luo, Y.; Teng, H.-L.; Nishiura, M.; Hou, Z. Asymmetric Yttrium-Catalyzed C(sp3)-H Addition of 2-Methyl Azaarenes to Cyclopropenes. Angew. Chem., Int. Ed. 2017, 56, 9207-9210. (f) Simaan, M.; Marek, I. Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angew. Chem., Int. Ed. 2018, 57, 1543-1546.

(19) For Cu-catalyzed asymmetric addition of silicon nucleophiles with R₃SiBPin, see: (a) Zhang, L.; Oestreich, M. Copper-Catalyzed Enantio- and Diastereoselective Addition of Silicon Nucleophiles to 3,3-Disubstituted Cyclopropenes. *Chem. - Eur. J.* **2019**, *25*, 14304– 14307. For the Cu-catalyzed diastereoselectively hydrosilylation of cyclopropenes with ArSiH₃ (the asymmetric approach was 50% ee), see: (b) Wang, H.; Zhang, G.; Zhang, Q.; Wang, Y.; Li, Y.; Xiong, T.; Zhang, Q. Copper-Catalyzed Non-Directed Hydrosilylation of Cyclopropenes: Highly Diastereoselective Synthesis of Fully substituted cyclopropylsilanes. *Chem. Commun.* **2020**, *56*, 1819–1822.

(20) For the asymmetric ester directed Rh-catalyzed hydrosilylation of cyclopropenes with Ar₂SiH₂, see: Zhao, Z.-Y.; Nie, Y.-X.; Tang, R.-

H.; Yin, G.-W.; Cao, J.; Xu, Z.; Cui, Y.-M.; Zheng, Z.-J.; Xu, L.-W. ACS Catal. 2019, 9, 9110–9116.

(21) Ukaji, Y.; Sada, K.; Inomata, K. Synthesis of Silicon Substituted Cyclopropylmethyl Alcohols in Optically Active Form via Asymmetric Simmons-Smith Reaction of γ -Silicon Substituted Allylic Alcohols. *Chem. Lett.* **1993**, *22*, 1227–1230.

(22) Lee, T.; Hartwig, J. F. Rhodium-Catalyzed Enantioselective Silylation of Cyclopropyl C–H Bonds. *Angew. Chem., Int. Ed.* **2016**, 55, 8723–8727.

(23) Trofimov, A.; Rubina, M.; Rubin, M.; Gevorgyan, V. Highly Diastereo- and Regioselective Transition Metal-Catalyzed Additions of Metal Hydrides and Bimetallic Species to Cyclopropenes: Easy Access to Multisubstituted Cyclopropanes. *J. Org. Chem.* 2007, *72*, 8910–8920.

(24) (a) Atienza, C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation. J. Am. Chem. Soc. **2014**, 136, 12108–12118. (b) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. Highly Enantioselective Cobalt-Catalyzed Hydrosilylation of Alkenes. J. Am. Chem. Soc. **2017**, 139, 9439–9442. (c) Guo, J.; Shen, X.; Lu, Z. Regio- and Enantioselective Cobalt-Catalyzed Sequential Hydrosilylation/Hydrogenation of Terminal Alkynes. Angew. Chem., Int. Ed. **2017**, 56, 615–618. (d) Guo, J.; Wang, H.; Xing, S.; Hong, X.; Lu, Z. Cobalt-Catalyzed Asymmetric Synthesis of gem-Bis(silyl)alkanes by Double Hydrosilylation of Aliphatic Terminal Alkynes. Chem. **2019**, 5, 881–895.

(25) Wang, H.; Zhang, G.; Zhang, Q.; Wang, Y.; Li, Y.; Xiong, T.; Zhang, Q. Copper-Catalyzed Non-Directed Hydrosilylation of Cyclopropenes: Highly Diastereoselective Synthesis of Fully substituted cyclopropylsilanes. *Chem. Commun.* **2020**, *56*, 1819–1822.