
Circulation Reports Vol.1, November 2019

Circulation Reports
Circ Rep 2019; 1: 481 – 486
doi: 10.1253/circrep.CR-19-0096

and future directions of this technology in the current 
medical field.

AI in the Medical Field
AI is a broad term representing the replication of human 
“intelligence” with machines that include but are not limited 
to computers. In the current medical field, the term “AI” 
mainly refers to a complex machine-learning model that 
automatically extracts information from data and which is, 
in most cases, based on an NN. Therefore, in this article, 
the term “AI” will be used to refer to such statistical models 
and the methods to create them.

The use of AI is in rapid development in many areas 
such as image recognition,9 language recognition10 and 
automatic driving.11 In particular, in the image recognition 
field, AI has achieved results exceeding human ability in 
speed and accuracy. The technology has received attention 
from the medical field because it may extend the utilization 
of complex medical data beyond the limit of human brain 
function that is unable to handle high-dimension data.12,13 
As expected, the application of AI to medical still-images 
has been greatly successful,7,14,15 but AI has also produced 
striking results in other tasks such as electronic digitalized 
health record analysis,16,17 and prediction of clinical outcome 
from ECG.1,18–33 Of note, AI applied to the interpretation 

T he 12-lead electrocardiogram (ECG) is a non-invasive 
and easy to conduct, but potentially powerful tool 
for diagnosing cardiac disease or evaluating the 

risk of future cardiac events. Surface lead ECG was first 
developed by Willem Einthoven in 1901.1 It provides 
important diagnostic and treatment indications for condi-
tions such as arrhythmia,2 cardiac hypertrophy,3 and 
myocardial ischemia,4 and for those that require immediate 
attention, such as acute coronary syndrome (ACS).5

While ECG contains rich information regarding cardiac 
disorders such as myocardial ischemia, interpretation of 
the results is not easy. Intensive training for physicians is 
necessary and, even with this, there is still huge interobserver 
variability.

Artificial intelligence (AI) has emerged as a powerful 
tool to automatically interpret medical data. It has been 
applied to medical imaging modalities such as computed 
tomography (CT), magnetic resonance imaging (MRI),6 
and echocardiography,7 as well as to ECG. AI technology 
has been successful in multiple tasks of automatic inter-
pretation of ECG. These studies have further shown that 
ECG may contain more profound pathophysiological 
information that is not understood even by well-trained 
cardiologists.8 This article will review the current state of 
the application of neural network (NN) AI to the interpre-
tation of 12-lead ECG, and discuss the current problems 
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electrophysiological state of the heart through body mass, and thus contains important information on the electricity-dependent function 
of the human heart. Indeed, 12-lead ECG data are complex. Therefore, the clinical interpretation of 12-lead ECG requires intense 
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of 12-lead ECG has shown a potential beyond the ability 
of even a well-trained cardiologist, and will be the main 
focus of this article.

Ability and Limitations of NN
Before going into detailed specific discussion of NN 
application to 12-lead ECG, this section will explain the 
general strength and limitation of current NN model. NN 
is a network constructed by multiple units of statistical 
model called “neuron” that simulates the function of neuron 
cells (Figure 1). A single unit of neuron takes multiple 
inputs and calculate an output by multiplying the input 
with its internal parameters called “weights” and summing 
them up. In most cases, the output of the unit will go 
through a non-linear activation function and passed on to 
the next neuron unit. NN constructed from these units are 
capable of replicating a complex non-linear function if the 
network layers are deep enough. What makes this structure 
called an AI is the fact that these networks can be trained 
with pairs of multi-dimensional input and mono/multi-
dimensional outputs to produce a model that allows calcu-
lation/prediction of the output from the input without 
prior knowledge of the underlining mechanism or important 
features. This means that NN can automatically extract 
important features and automatically create classifiers or 
predictions models only from data. This characteristics of 
NN may allow tasks that could not be done by human. 
Human brains can hardly deal with data with more than 

Figure 1.  Schematic illustration of neuron units used in neural network models. The neuron unit simulates the function of a 
biological neuron by multiplying the input by weights and outputting the result through the activation layer.

Figure 2.  Schematic diagram of a 2-D convolutional neural 
network (CNN). A 2D-CNN unit calculates the output by 
applying a kernel to the input. The output is the sum of element-
by-element multiplication on the area where the kernel is 
placed. This calculation is repeated by moving the kernel 
across the space of input data, and the CNN adjusts the 
kernel to minimize the difference between outputs and labels.
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across the space of input data. The output is the sum of 
element-by-element multiplication on the area where the 
kernel is placed. Through training, the 2-D CNN unit then 
adjusts the kernel to minimize the difference between the 
outputs and the labels (ground truth). Kernels in the field 
of computer vision are used to extract specific features from 
images. Manually constructed kernels have been used for 
processes such as edge detection. CNN can automatically 
develop kernels that are suitable for extracting features 
that are important for the task it is used for. Thus, 2-D 
CNN emerged as a powerful tool to automatically extract 
features and classify images.

RNN, in contrast, returns the output of the neuron 
unit to an auxiliary input of the same unit. This can be 
understood as multiple units with a rectified data transfer 
between the units next to them (unrolling) as shown in 
Figure 3. This structure is sensitive to changes in data order 
in the input. Therefore, the neuron unit is useful in learning 
the order of data and can be used for time-series data and 
languages.

Application of AI to 12-Lead ECG
The early AI applied to 12-lead ECG used NN structures 
other than CNN or RNN (in most cases MLP with or 
without slight modification). They used manual methods 
or technologies other than NN to obtain the features to 
train the model. This approach was successful on lead 
reversal detection,23 incomplete right bundle bunch block 
pattern detection,28 classification of ST-T segment,35 classi-
fication of ECG into disease patterns (such as myocardial 
infarction and left ventricular hypertrophy) and detection 
of acute24,27,32 or healed25,33 myocardial infarction. These 
approaches, however, obviously did not fully use the ability 
of AI automatic feature extraction. The use of these 
approaches was limited by the selected features, which 
were usually based on human knowledge of ECG features. 
Thus, the applications were mainly focused on automating 
human tasks.

Improvements in computer and NN technology have 
allowed the development of deeper network patterns, 
which are capable of analyzing more complex data. These 

3-dimensions while NN can take an arbitrary dimensional 
input, which means that it can process extremely complex 
input and automatically produce meaningful models. 
Medical data contain large numbers of multiple-dimen-
sional data and is a field of interest on AI application.

However, the strength of NN that it doesn’t require 
human interpretation of data translates into its weakness. 
Although NN automatically extract important features 
and allows us to produce meaningful models, this does not 
mean that we can directly understand the features learned 
in the NN. In most cases, the features used by NN are 
difficult to extract in human understandable formats and 
it is also difficult to combine the human knowledge of 
mechanism into the model. Therefore, we are currently 
forced in the situation that we need to use the model without 
understanding what the AI are doing. This makes the AI 
model a black box and means that it is difficult to tell if the 
model is not suitable for the specific dataset that user wants 
to input. It is known that there are ways to engineer inputs 
that completely fakes AI models without being noticed by 
human.34 These results suggest that NN uses different 
features from human and that the human perception of 
difficulty may not be useful for selecting suitable dataset 
for a network. It is necessary to share this common sense 
regarding the limitation of AI.

Types of NN for Special Tasks
The basic structure of NN as described in the previous 
section is called a “fully connected neural network” or a 
“multilayer-perceptron” (MLP). This structure is capable 
of learning features from multi-dimensional data, but they 
are not good at explicitly handling the location of data 
such as spatial or temporal position. Therefore, various 
special neuron units were developed to handle this problem. 
Of these special units, convolutional NN (CNN) and 
recurrent NN (RNN) are the most commonly used neuron 
units in the medical field.

CNN calculates outputs by performing “convolutions” 
using kernels. The method of calculation is shown in 
Figure 2. Instead of multiplying each input element by a 
weight, the 2-D CNN unit applies a kernel that is moved 

Figure 3.  Schematic diagram of an unrolled 
recurrent neural network (RNN). Each neuron 
unit (yellow rectangle) has a rectified transfer 
of processed data to the neuron unit next to 
it. This structure allows learning of the order 
of data, which in most cases is time series 
data. Blue rectangles, elements of time-series 
input data.
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data. Thus, the RNN approach treats the ECG data as a 
time-series. The effect on model performance of selecting 
CNN or RNN, however, is unclear, and the choice is 
currently made empirically.

There is no consensus on what tasks are suitable for 
CNN and what tasks are suitable for RNN. One way of 
choosing which structure to use involves understanding the 
difference in computational resource requirements for these 
units, especially in the ECG field. Generally, CNN are 
computationally cheaper than RNN. ECG is a field of rapid 
development of carriable devices, including implantable 
ones.36–39 Some devices such as implantable cardioverter 
defibrillators require real-time classification of ECG data, 
which is a possible field of AI application.40 These devices 
usually possess limited computational resources. In these 
situations, CNN would be an attractive choice, and in 
some cases the only choice because of the limited resources, 
even when RNN can achieve better accuracy. If there is no 
limitation on computational resources, the networks should 
be compared head to head. If there is no merit in using 
RNN over CNN, CNN should be preferred. Theoretically, 
however, RNN can learn more precisely the time-series 
voltage data, which is the rawest form of ECG data. It is 
not unreasonable to assume that RNN can extract more 
data from ECG than CNN. Thus, some complex tasks may 
still require RNN. Identifying the tasks suitable for CNN 
and RNN is an interesting topic for future AI research in 
this field.

Current Problems and Future Directions
There are some limitations of AI usage that should be 
specifically noted with regard to the medical field. The first 
problem is the need for large-scale data with which to train 
NN. This is a general issue in NN usage but is especially 
important in the medical field, where we model diseases 

improvements, along with the improvement in neuron 
units themselves, such as the introduction of CNN, RNN 
and so on, have allowed direct input of ECG data into the 
network. This cleared the way for AI models to perform 
tasks that are beyond human ability.

Using 2D-CNN on raw ECG data, Attia et al have 
predicted age and sex,1 and detected cardiac contractile 
disfunction20 and atrial fibrillation from sinus rhythm 
ECG;18 Yang et al have detected the origin of premature 
ventricular contractions;21 and Tison et al have predicted 
the values of echocardiographic parameters and related 
heart diseases such as pulmonary artery hypertension, 
hypertrophic cardiomyopathy and cardiac amyloidosis.26 
Baloglu et al utilized a 1-D CNN network to extract lead 
features and combined all the features in the fully connected 
neuron. They successfully classified the location of myocar-
dial infarction from ECG.30 Our group used a combination 
of 1D-CNN with RNN and constructed a model that 
successfully identified patients who need urgent revascular-
ization in the emergency room only from the 12-lead 
ECG.8 These new approaches allowed tasks to be carried 
out that were beyond the ability of even a well-trained 
expert cardiologist.

CNN or RNN for 12-Lead ECG
When applying AI technology to 12-lead ECG, the use of 
CNN and RNN can be seen as reflecting differences in how 
the ECG data structure is recognized. Using CNN is similar 
to the physician’s way of dealing with ECG, treating the 
data as an image. Even though the input is structured as 
raw voltage data, this approach is similar to interpreting 
images because the CNN approach extracts features with 
kernels. CNN kernels are pattern recognizers and will be 
activated by specific wave patterns.

In contrast, RNN explicitly deals with the ordering of 

Figure 4.  Schematic diagram of data sharing.
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that are rare. Ways to reduce the required input are being 
actively developed such as reinforcement learning. From 
the medical side, however, we should develop a system for 
data sharing in order to maximize the utilization of available 
data. We have already created a way to digitize and share 
the information in the field of financial data. This infor-
mation is almost as important as health information and 
requires similar security. Thus, digitizing and sharing health 
information should also be able to be achieved (Figure 4).

The second problem is lack of human understanding of 
the ECG features. NN are capable of automatically 
extracting features from complex inputs such as raw ECG 
data. This is powerful when the objective is to create an 
automatic classifier or automatic prediction tool. The 
features identified by AI models, however, are difficult to 
extract in a human-understandable format. This makes the 
model a black box and limits the clinical use of these models 
because it is difficult to tell if the model works for a specific 
population or not. Another shortcoming is that the model 
is not able to enhance the understanding of the disease. 
Contemporary models such as logistic regression modeling 
provide information about which features are independently 
associated with outcomes and so on, which give mechanistic 
insights into the disease. There are ongoing efforts to 
extract human-understandable features from AI models 
and this is an important topic for future AI research.

Conclusions
AI models based on various NN complexes have a huge 
potential to assist in clinical decision making. Limitation 
in the understanding of the mechanism on how the AI 
model makes predictions, however, should also be noted.
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