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Extracting visual features for image retrieval by mimicking human cognition remains a challenge. Opponent color and HSV color
spaces canmimic human visual perception well. In this paper, we improve and extend the CDHmethod using a multi-stage model
to extract and represent an image in a way that mimics human perception. Our main contributions are as follows: (1) a visual
feature descriptor is proposed to represent an image. It has the advantages of a histogram-based method and is consistent with
visual perception factors such as spatial layout, intensity, edge orientation, and the opponent colors. (2) We improve the distance
formula of CDHs; it can effectively adjust the similarity between images according to two parameters. 0e proposed method
provides efficient performance in similar image retrieval rather than instance retrieval. Experiments with four benchmark datasets
demonstrate that the proposed method can describe color, texture, and spatial features and performs significantly better than the
color volume histogram, color difference histogram, local binary pattern histogram, andmulti-texton histogram, and some SURF-
based approaches.

1. Introduction

In the fields of image retrieval, pattern recognition, com-
puter vision, and digital image processing, mimicking hu-
man cognition remains a challenge. In the human visual
system, the perception of color begins with three types of
cones in the retina called the L, M, and S cones. 0ese
contain pigments with different spectral sensitivities that
produce trichromatic color sensations [1]. 0e LMS color
space represents the response of the three types of cone
photoreceptors in the human eye and can be translated into
other color spaces or models. 0is allows the opponent and
HSV color spaces to be calculated easily. 0en, the question
arises: how are opponent and HSV color spaces used to
extract visual features for image retrieval? A multi-stage
color model that combines the three-photoreceptors model
with the opponent theory has been suggested [1]. 0e neural
signals from the three cone photoreceptors of the eye are
combined into opponent color channels at the retinal level
and then transmitted to the brain. 0us, it is possible to
utilize a multi-stage colormodel to describe and represent an
image for image retrieval.

In previous work, we have proposed color difference
histograms (CDHs) [2] to image retrieval based on the CLE
L∗a∗b∗ color space [2]. However, the traditional CIE color
difference formula was originally designed for simple color
patches in controlled viewing conditions and is not ade-
quate for computing image differences for spatially com-
plex image stimuli [3]. In this paper, we improve and
extend the CDH method using a multi-stage model to
extract and represent an image in a way that mimics human
perception.

Our main contributions are as follows: (1) a novel visual
feature descriptor is proposed to represent an image. It has
the advantages of a histogram-based method and is con-
sistent with visual perception factors such as spatial layout,
intensity, edge orientation, and the opponent colors. (2) We
improve the distance formula of CDHs; it can effectively
adjust the similarity between images according to two pa-
rameters. 0e proposed method provided efficient perfor-
mance in similar image retrieval rather than object
searching.

0e rest of this paper is organized as follows. Section 2
reviews image retrieval techniques from literature published
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in recent decades, while Section 3 describes the fused per-
ceptual color histogram. We describe CBIR experiments in
Section 4; then Section 5 concludes the paper.

2. Related Work

0e widely used attributes used to represent image content
are color, texture, and shape features. In the MPEG-7
standard, different methods have been proposed to describe
these features and different descriptors have been applied
in CBIR. 0e color histogram is a widely used method to
describe color features. It is invariant to orientation and
scale and can give powerful image classification potential.
For this reason, and for its simplicity and effectiveness,
color descriptors were very popular in the early days of
CBIR. 0e color descriptors used in the MPEG-7 standard
include the dominant color descriptor, color layout de-
scriptor, color structure descriptor, and scalable color
descriptor [4]. 0ose color descriptors aim to provide a
compact color description, capture the spatial distribution
of color, and express the local color structure. Several other
color features have also been proposed. Color volume and
color difference have been utilized to extract color features
[2, 5] and for saliency detection [6]. Varior et al. proposed
the learning of invariant color features for person re-
identification [7].

Texture descriptors can be used to characterize repeated
geometric patterns or color regions. In the MPEG-7
standard, texture descriptors include the homogeneous
texture descriptor, texture browsing descriptor, and edge
histogram descriptor[4]. In recent decades, many texture
analysis methods have been proposed, including Haralick’s
gray co-occurrence matrix (GLCM) features [8], the
Markov random field (MRF) model [9], and local binary
patterns (LBP) [10]. In recent years, many algorithms have
been proposed for combining multiple visual cues to im-
prove discriminative power. Liu et al. proposed the texton-
based methods for image retrieval [11–13]. Singh et al.
proposed a color texture descriptor based on local binary
patterns for color image retrieval [14]. In order to capture
the evolution of repeated geometric patterns, 0ompson
et al. proposed the edge-local binary pattern (edgeLBP)
technique for 3D object retrieval and classification [15].
Dubey et al. proposed a multichannel decoded LBP method
and utilized it for CBIR [16]. Roberto et al. proposed the
orthogonal moments for texture classification [17]. A set of
Gabor filters with different frequencies and orientations
can mimic the perception of the human visual system
(HVS). It is helpful for extracting useful visual features
from an image for various applications. Based on saliency
cues, bar-shaped structures, and Gabor filters, Liu et al.
proposed the salient-structure histograms to image re-
trieval and achieved excellent performance [18].

Shape plays an important role in understanding and
identifying objects; however, it is difficult to extract shape
features. In many cases, shape feature extraction is often
performed via accurate segmentation, which is a very
difficult issue in image processing. In the MPEG-7 stan-
dard, the region-based shape descriptor, contour-based

shape descriptor, and 3D shape descriptor are considered
to provide good approximations of segmentation. 0ese
descriptors can describe the regions, contours, and shapes
of 2D images and 3D volumes. In order to avoid accurate
segmentation, some local feature descriptors, including
scale-invariant feature transform (SIFT) descriptors [19],
and the histograms of oriented gradients (HOG) [20], are
also used in shape matching and recognition. Hong et al.
proposed a novel shape descriptor that characterizes the
local shape geometry based on integral kernels with respect
to the size of the shape at a range of feature scales [21].
Clement et al. proposed a structural object description by
learning spatial relations and shapes and utilized it for
object recognition [22]. Žunić et al. introduced a discon-
nectedness measure for multi-component shapes [23]. Liu
et al. proposed a novel structured optimal graph based
sparse feature extraction method for learning the local
discriminative information [24]. Malu et al. proposed a
dynamic circular mesh-based shape and margin descriptor
to combine the functions of structural and global contour-
based descriptors and utilized it for object detection [25].
Mehmood et al. have extended the local feature descriptors
for image retrieval by using the visual words model
[26–29].

In the last decade, deep learning, especially by con-
volutional neural networks (CNNs), has been successfully
applied to a variety of domains [30–38]. It requires a mass of
data for training and provides useful information for various
applications, including image retrieval and pattern recog-
nition. CNN-based methods use a pre-trained or fine-tuned
CNN to extract features for image retrieval and classifica-
tion, for instance, by extraction of global features from its
fully connected layer and extraction of local features from its
intermediate layer [30–34]. Discovering how to combine
deep learning with large amounts of data could provide
computers with human-like image recognition capabilities.
However, this field is immature and many challenges
remain.

In this paper, we propose a simple yet efficient image
retrieval method that simulates the dual-stage model of color
vision to mimic human color perception.

3. The Fused Perceptual Color Histogram

Feature extraction has a close relationship to color space. In
digital image processing, the RGB color space is very popular
for representing color but has two obvious shortcomings: (1)
it is not directly based on the cones in the human eye and (2)
it is not uniform with respect to human color perception. In
previous work, we proposed using color difference histo-
grams (CDHs) [2] in image retrieval. 0e unique charac-
teristic of CDHs is the way they count the perceptually
uniform color differences between two points with different
backgrounds with regard to colors and edge orientations in
the CLE L∗a∗b∗ color space [2]. However, the traditional
CIE color difference formula was originally designed for
simple color patches in controlled viewing conditions and is
not adequate for computing image differences for spatially
complex image stimuli [3].
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In this paper, we improve and extend the CDH method
by utilizing a dual-stage model to extract and represent an
image in a way that mimics human perception. We propose
a novel visual descriptor based on fused perceptual color
information by using the attributes of the opponent color
and HSV color spaces. It aims to represent image content
using intensity, color, and edge orientation features in the
opponent color and HSV color spaces, giving it the power to
describe color, texture, edge, and spatial features. Figure 1
illustrates the proposed feature extraction and discrimina-
tive representation system within the CBIR framework,
which is composed of three parts: (1) RGB color space
conversion into other color spaces, including XYZ, LMS,
and HSV, (2) primary visual feature calculations from the
HSV color space, and (3) image representation and image
retrieval.

3.1. LMS and Opponent Color Spaces. In the trichromatic
theory of human color vision, it is suggested that there are
three kinds of cone cells (also called photoreceptors) with
different spectral sensitivities. Signals produced by the three
photoreceptors are sent to the central nervous system and
perceived as color sensations [1]. In normal human tri-
chromacy, the three kinds of photoreceptors having peak
sensitivities in the large-, medium-, and short-wavelength
portions of the visible spectrum are called the L, M, and S
cones, respectively [3].

In order to make good use of perceptual color infor-
mation, we first convert the original color image from the
RGB color space to the LMS space in two steps. 0e first is a
conversion from RGB to XYZ tristimulus values, which is a
device-independent color space. 0is conversion can be
calculated as follows [3]:
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In the device-independent XYZ space, we can convert
the original image from the XYZ to LMS color space using
the following conversion [3]:
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In the LMS color space, a great deal of skew is shown in
the data. In order to largely eliminate this skew, we can
convert the data to a logarithmic space [3]:

L � logL,

M � logM,

S � log S.

⎧⎪⎪⎨

⎪⎪⎩
(3)

0e large-, medium-, and short-wavelength cone signals
(LMS) are combined to form a variant of the opponent color
model called the AC1C2 opponent color space [39], which is
calculated as follows:
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After the above calculations or conversions, we utilize
the LMS and AC1C2 opponent color spaces to extract visual
features by using filters that approximate the contrast
sensitivity functions (CSFs) of the human visual system [40].

3.2. HSV Color Space. 0e HSV color space can be repre-
sented as a cylindrical coordinate system in which H, S, and V
are its three coordinate variables. Variable H signifies the hue,
which represents the perceived colors red, yellow, green, and
blue, or a combination of two of them [41]. Saturation (S)
refers to the relative purity or degree to which the color is
combined with white, and Value (V) indicates the brightness
relative to a similarly illuminated white color [41, 42].

In the HSV cylindrical coordinate system [42], H repre-
sents the angle of rotation and ranges from 0 to 360 degrees; S
represents the size of the radius (range� 0-1); and V indicates
the height of the cylinder (range� 0-1), as shown in Figure 2.

3.3. Feature Quantization. In this section, color, edge ori-
entation, and intensity maps are utilized to extract visual
features via the feature quantization technique. 0e HSV color
space is widely utilized in the field of image retrieval, is con-
sistent with human visual perception, and can better describe
the content of an image. 0erefore, the color, edge orientation,
and intensity features are extracted in HSV color space.

0e quantized color comes from various combinations of
the H, S, and V components. In our method, the H component
is uniformly quantized into 6 bins, and both S and V com-
ponents are uniformly quantized into 3 bins, resulting in the
color map C(x, y) � ω,ω ∈ 0, 1, . . . , NC − 1􏼈 􏼉 and NC � 54.

Compared with the color and edge orientation extraction
method utilized inCDHs [2], the Sobel operator is a convenient
and simple edge detector. Edge orientation is first extracted
from the V component using the Sobel operator and then
uniformly quantized into NO � 36 bins. We denote the edge
orientation map as O(x, y) � ε, ε ∈ 0, 1, . . . , NO − 1􏼈 􏼉.

Here, the intensity map I(x, y) is obtained directly by
uniformly quantizing the V component, where I(x, y) �

τ, τ ∈ 0, 1, . . . , NI − 1􏼈 􏼉 and NI � 16 .

3.4. Approximating the Contrast Sensitivity Functions (CSFs).
0e human visual system is much less sensitive to colors at
high frequencies than at low ones. Hence, using contrast
sensitivity functions (CSFs) to modulate frequencies that are
less perceptible can better simulate the human visual system
[39, 40]. In this paper, the CSFs are first used to remove
information that is invisible to the human visual system in
the opponent color space AC1C2.

0e AC1C2 color space is spatially filtered using the CSFs
by computing the difference between two points under
various backgrounds in terms of colors, edge orientations,
and intensity. Each channel in AC1C2 is spatially filtered by
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using the CSFs to approximate the human visual system, as
expressed in formulas (5) and (6) [39].

Ei � e
− x2+y2( )/σ2i , (5)

A′ �
􏽐i∈[1,2,3]wi A⊗Ei( 􏼁

3
,

C1′ �
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2
,
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2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

0e weights (wi) and spreads (σi) of the CSFs are listed in
Table 1. 0e filtered opponent color space is denoted as
A′C1′C2′. Here, we utilize A′C1′C2′ to represent features, to-
gether with color, edge orientation, and intensity maps.

3.5. Feature Representation. Let there be two-pixel locations
(x, y) and (x′, y′) with d as the spacing distance. 0en, the
feature representation of C(x, y), O(x, y) , and I(x, y) can
be expressed as follows:
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In the above formulas, M andN are the width and height
of the image, respectively, ΔA � A′(x, y) − A′(x′, y′),
ΔC1 � C1′(x, y) − C1′(x′, y′), and ΔC2 � C2′(x, y) − C2′

(x′, y′). According to the above representations, the fused
perceptual color histogram H can be obtained by concatenation
of Hc[C(x, y)], Ho[O(x, y)], and HI[I(x, y)] as follows:

H � CONCA Hc, Ho, HI􏼈 􏼉, (8)

where CONCA ·{ } denotes the concatenation of Hc, Ho, and
HI. 0e fused perceptual color histogram H contains the
perceived color information related to the color, edge ori-
entation, and intensity maps.

4. Experimental Results

In this section, we verify the effectiveness of the proposed
method on four benchmark datasets containing more than
20,000 natural images, including Corel-5K, Corel-10K,
Oxford buildings, and INRIA Holidays datasets. Image
matching is adopted based on an improved distance formula
of CDHs. For fair comparison, the proposed method will be
compared with the current image retrieval methods, HOG
[20], LBP [10], MTH [12], CDHs [2], CVH [5], BOW [38],
and other methods [43, 44]. Most of these methods were
developed for image retrieval. 0e details of the comparison
methods are shown as follows:

(1) 0e codebook size for Bow was set as K= 1000 using
the standard K-means clustering, and the cosine metric was

Input image

HSV color space Color Orientation

Intensity

Image
representation Image retrieval

LMS color space AC1C2 color space CSFs

The primary visual features

Figure 1: Flow diagram of the proposed feature extraction and discriminative representation system within the CBIR framework.

Hue

Value

Saturation1

1

0

0

Figure 2: Illustration of the HSV color space [43].
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used as the baseline of the Bowmethod; the local features are
represented by the SIFTdescriptors [20]. An LBP histogram
with a dimensional feature vector of 256 bins and using the
average values for the three-channel LBP histogram. 0e
histogram of oriented gradients (HOG) feature descriptor is
not a global image representation method; there are nine
bins with a block size of three and a cell size of six. 0e L1
distance was adopted as the similarity measure of LBP
histogram and HOG method. (2) CDHs [2], MTH [12], and
CVH [5] follow the original setting of image representation
and similarity measures. (3) 0e results of other methods
[43,44] come from their conference reports.

4.1. Datasets. In the field of image retrieval, Corel datasets
are the most widely utilized. Many algorithms have been
used in CBIR experiments on Corel datasets for comparison.
In this paper, we implemented a CBIR experiment with two
Corel datasets: Corel-5K and Corel-10K. 0e Corel-5K
dataset is a subset of the Corel-10K dataset and contains 50
classes. Each category includes 100 images sized 192×128 or
128×192 pixels in JPEG format. 0e Corel-10K dataset
contains richer image content in 100 categories with 100
images in each category.

For comparisons of instance retrieval methods, we
also evaluate our method on the Oxford5k and Holidays
datasets. 0e Oxford5k contains 5,062 images which have
11 different Oxford landmarks. Each landmark is repre-
sented by 5 possible queries, and it leads to a set of 55
queries, over which an object retrieval system can be
evaluated. 0e Holidays dataset has 1,491 images which
contains 500 queries and 991 corresponding relevant
images.

4.2. DistanceMetrics. After feature extraction, the matching
of images using distance metrics is a very important part of
image retrieval. In previous work with CDHs [2], a new
distance formula was proposed by expanding the Canberra
distance. In this paper, we improve the distance formula of
CDHs. Let T � Ti􏼈 􏼉

K

1 and Q � Qi􏼈 􏼉
K

1 be the K-dimensional
feature vectors of a template image and query image, re-
spectively.0e distance between them is simply calculated as
follows:

D(T, Q) � 􏽘
K

i�1

Qi − Ti

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Qi + w1 · Ti + w2 · μT

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, (9)

where μT is the mean of T and w1 and w2 are weight pa-
rameters used to enhance the difference between small bins
and reduce the difference between large bins. In this paper,
K is set to 106 bins, w1 � 1.4, and w2 � 0.2.

4.3. PerformanceMeasures. All images were sampled for use
as query images in each Corel dataset. Performance was
evaluated using the average results of each query in terms of
precision and recall. 0ey are the most common perfor-
mance evaluation criteria used in CBIR. 0ey are defined as
follows [2, 12, 13, 18]:

Precision �
IN

N
,

Recall �
IN

M
,

(10)

where IN is the number of images retrieved in the top N

positions that are similar to the query image, N is the total
number of images retrieved, and M is the total number of
images in the dataset that are similar to the query image.
Here, we set N � 12 and M � 100.

On the Oxford5k and Holidays datasets, mean average
precision (mAP) is utilized to evaluate the performance of
FPCH and other compared algorithms [43, 44]. We are
following the original setting of query images and the
corresponding relevant images.

4.4. Retrieval Performance and Discussion. In the proposed
method, color, edge orientation, and intensity are utilized in
representation, and their quantization number determines
the vector dimensionality. Lower vector dimensionality not
only is beneficial to rapid image retrieval but also requires
less computation. 0erefore, in the experiments, the
quantization number of the above visual features needs to be
determined and evaluated. We then investigate the influence
of the feature quantization number.

0e color quantization number consists of H, S, and V
values. We set H to 6, 8, and 12, while S and V are fixed to
3. Hence, the color quantization number has 54 bins, 72
bins, and 108 bins. Furthermore, the quantization number
of edge orientation has 6 bins, 12 bins, 18 bins, 24 bins, 30
bins, 36 bins, and 45 bins. 0e quantization number of
intensity has 16 bins, 32 bins, and 64 bins. 0e experi-
mental results for the Corel-10K dataset are shown in
Figures 3–5. 0ere is an evident phenomenon where the
precision always increases as the edge orientation quan-
tization number increases. When the intensity quanti-
zation number is 16 bins, the precision is inversely
proportional to the color quantization number. However,
the precision is proportional to the color quantization
number when the intensity quantization numbers are 32
bins and 64 bins. In total, the precision decreases as the
intensity quantization number increases. In order to
balance the performance of the proposed algorithm with
the number of feature vector dimensions, we ultimately
choose a color quantization number of 54 bins, an edge
orientation quantization number of 36 bins, and an

Table 1: Parameters of the CSFs [39].

Filters Weight (wi) Spread (σi)

A(Achromatic)
i� 1 1.00327 0.0500
i� 2 0.11442 0.2250
i� 3 −0.11769 7.0000

C 1(Red-green)
i� 1 0.61673 0.0685
i� 2 0.38328 0.8260

C 2(Blue-yellow)
i� 1 0.56789 0.0920
i� 2 0.43212 0.6451
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intensity quantization number of 16 bins, resulting in a
feature vector with a total of 106 dimensions.

In order to illustrate the validity of the distance for-
mula proposed in this paper, we compare its performance
with the typical L1, L2, Canberra, and CDHs distance
formulas in experiments on the Corel-10K dataset. 0e
experimental results are shown in Figure 6, which shows
that the proposed distance formula has the best perfor-
mance. 0e Canberra, CDHs, and proposed distance
formulas can all be regarded as weighted L1 distances with
different weights. 0is weight can reduce the influence of
differences between large bins in the histograms. 0e
Canberra distance simply utilizes the reciprocal of the bin
of the template and query images as the weight. 0e CDHs
distance formula adds the mean of the template and query
images based on the Canberra distance, while the pro-
posed distance formula utilizes two parameters to adjust
the weight accurately. 0us, the proposed distance for-
mula can achieve better results.

In order to validate the performance of the proposed
FPCH method, we compare it with CDHs [2], LBP [10],
MTH [12], CVH [5], HOG [20], and BOW [38]. 0e
experimental results are shown in Table 2. It can be seen
that the precision of the proposed FPCH method is higher
than those of LBP, MTH, CDHs, and CVH by 19.68%,
13.52%, 6.27%, and 3.37% on the Corel-5K dataset,
respectively.

On the Corel-10K dataset, the precision of the proposed
FPCH method is higher than BOW, HOG, LBP, MTH,
CDHs, and CVH by 22.83%, 25.24%, 15.96%, 12.32%, 7.95%,
and 4.61%, respectively. 0e recall of the proposed FPCH
method is higher than those of the above methods on both
datasets.

BOW and HOG are two typical methods of image
retrieval based on object recognition; LBP and MTH are
two different types of texture analysis methods, while LBP
focuses on describing the spatial structure of texture.
MTH represents the texton attributes of images through a
series of fixed-size blocks with a certain number of
identical pixels. Both CDHs and CVH can simulate
human color perception. 0e proposed FPCH method
can fuse the perceptual color information of the opponent
color and HSV color spaces and can represent an image
through edges, spatial structure, and texture information.
Experiments on the Corel-5K and Corel-10K datasets
show that the proposed FPCH method is superior to the
above methods.

On the Holidays and Oxford5K datasets, we compared
the FPCH method with some key-point-based or local-
feature-based methods, including the extension or combi-
nation of SURF, VLAD, SOP, and RootHSV [44], and the
HeW method using deep Conv layer of VGG16 [43].

As can be seen from Table 3, the proposed FPCHmethod
is superior to the 8-SURF, 64-SURF, 4-RootHSV-L1, and 4-
RootHSV-L2 methods [44]. However, the mAP of the
proposed FPCH method is lower than that of HeW using

deep Conv layer of VGG16 [43]. According to the results of
Table 4, the proposed FPCH method is completely un-
suitable for object searching.

In order to visualize the retrieval effect of the proposed
FPCH method, two images from the Corel-5K and Corel-
10K datasets were selected as query images. 0e retrieval
results are shown in Figures 7(a) and 7(b), where the top-left
image is the query and 12 images were retrieved. It is worth
noting that images of graffiti have rich color changes and
images of furniture have significant differences on both sides
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Figure 3: CBIR precision according to quantization numbers of
color and edge orientation (intensity quantization number� 16).
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Figure 4: CBIR precision according to quantization numbers of
color and edge orientation (intensity quantization number� 32).
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of the objects’ edges. It is clear that the proposed FPCH
method can mimic human color perception and considers
the differences between color, edge, and achromatic features.
0erefore, 12 images similar to the query image can be
correctly retrieved. Two retrieval examples are used to show
the visual effects of low-level features rather than whether or
not the performance is good since not all images can provide
such a good effect.

4.5. Limitations of the Proposed Method. Although the
proposed method not only approximates the contrast sen-
sitivity functions (CSFs) of the human visual system to filter
out information that is invisible to humans but also utilizes
color, edge orientation, and intensity to represent and de-
scribe image features, the major limitation of the proposed
method is that it cannot extract the local features and the
high-level features. It is clear that the proposed FPCH
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Figure 6: Performance comparison of distance formulas in (a) precision and (b) recall.

Table 2: Performance comparison of various CBIR methods.

Dataset Performance
Method

BOW HOG LBP histogram MTH CDHs CVH FPCH

Corel-5K Precision (%) — — 43.82 49.98 57.23 60.13 63.50
Recall (%) — — 5.26 6.00 6.87 7.21 7.62

Corel-10K Precision (%) 30.36 27.95 37.23 40.87 45.24 48.58 53.19
Recall (%) 3.64 3.35 4.47 4.91 5.43 5.83 6.38

Computational Intelligence and Neuroscience 7



method is entirely unsuitable for object searching according
to the results of Table 4. Combining the high-level features
with low-level features based on deep learning techniques
will be studied in the future.

5. Conclusions

In this paper, we improve and extend the CDH method by
utilizing a multi-stage model to extract and represent an image
in a way that mimics human perception. We have proposed an
image retrieval method that combines the attributes of the
opponent color and HSV color spaces, namely, the fused
perceptual color histogram. It aims to represent image content
using intensity, color, and edge orientation features in the
opponent color and HSV color spaces, allowing it to describe
color, texture, edge, and spatial features.

In this process, we not only approximate the contrast
sensitivity functions (CSFs) of the human visual system to filter
out information that is invisible to humans but also utilize
color, edge orientation, and intensity to represent and describe
image features. 0e results of the experiments have shown that
the proposedmethod can effectively describe the color, texture,
and spatial structure of images and achieves better performance
than existing techniques such as LBP, CDHs, CVH, 8-SURF,
and 64-SURF methods on Holidays dataset.

0e proposed method provides efficient performance in
similar image retrieval rather than object searching.
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