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Cellular and circuit diversity
determines the impact of
endogenous opioids in the
descending pain modulatory
pathway
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The descending pain modulatory pathway exerts important bidirectional

control of nociceptive inputs to dampen and/or facilitate the perception of

pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from

many regions associated with the processing of nociceptive, cognitive,

and affective components of pain perception, and is a key brain area

for opioid action. Opioid receptors are expressed on a subset of vlPAG

neurons, as well as on both GABAergic and glutamatergic presynaptic

terminals that impinge on vlPAG neurons. Microinjection of opioids into

the vlPAG produces analgesia and microinjection of the opioid receptor

antagonist naloxone blocks stimulation-mediated analgesia, highlighting the

role of endogenous opioid release within this region in the modulation of

nociception. Endogenous opioid effects within the vlPAG are complex and

likely dependent on specific neuronal circuits activated by acute and chronic

pain stimuli. This review is focused on the cellular heterogeneity within vlPAG

circuits and highlights gaps in our understanding of endogenous opioid

regulation of the descending pain modulatory circuits.
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Descending pain modulation

Noxious stimuli evoke a sensory experience perceived
as pain. Noxious signals initiated in the periphery are
transmitted to many supraspinal structures that process
the sensory, cognitive, affective, and motivational components
that concurrently shape pain perception. These higher-
order brain regions collectively project to the descending
pain modulatory pathway, consisting of the ventrolateral
column of the periaqueductal grey (vlPAG; Bandler et al.,

1991; Bandler and Shipley, 1994) and the rostroventromedial
medulla (RVM). RVM efferents to the dorsal horn of the
spinal cord facilitate or inhibit incoming nociceptive inputs
from the periphery (Basbaum and Fields, 1979; Mantyh
and Peschanski, 1982; Vanegas et al., 1984b). The net
output of this circuit under various acute and chronic pain
conditions has been well-studied, especially the role of the
RVM in bidirectional pain modulation (Basbaum and Fields,
1984; Lau and Vaughan, 2014; Heinricher and Ingram,
2020).
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Bidirectional pain modulation by the RVM has been
demonstrated through many studies using stimulation,
pharmacology, in vivo electrophysiology, and various pain
models. Neurons in the RVM have been characterized with
respect to their role in modulating pain, identifying three
distinct types of neurons: ON-, OFF-, and NEUTRAL-cells.
These neuron types were initially characterized by their unique
responses (in vivo) to acute noxious stimuli (Fields et al., 1983a;
Vanegas et al., 1984b). ON-cells increase firing just prior to the
tail-flick or paw withdrawal behavioral response to an acute
noxious stimulus, OFF-cells pause just before the ON-cell burst
and withdrawal response, and NEUTRAL-cells show no changes
in firing. Some of each cell type project down to the dorsal horn
(Vanegas et al., 1984b; Fields et al., 1995). Increased OFF-cell
firing suppresses nociceptive reflexes (Fields and Heinricher,
1985) producing descending inhibition of pain, which can be
seen most clearly in response to morphine or other opioids.
Conversely, ON-cell firing contributes to descending facilitation
of pain, which can be produced by many different pain models
(Morgan and Fields, 1994; Porreca et al., 2002; Edelmayer et al.,
2009) or pharmacological manipulations. Further, hyperalgesia
and allodynia can result from either a reduction in OFF-cell
firing or enhanced ON-cell firing (Martenson et al., 2009; Cleary
and Heinricher, 2013). Importantly, although hyperexcited
ON-cells promote descending facilitation, increased OFF-cell
activation overrides the facilitation, yielding a net inhibitory
output for the descending circuit (Satoh et al., 1983; Hentall
et al., 1984; Fields and Heinricher, 1985; Jensen and Yaksh, 1989;
Heinricher and Ingram, 2020).

In contrast to the bidirectional modulation of pain by the
RVM, the upstream vlPAG has been primarily implicated in
producing descending inhibition, due to the analgesic effect
of both vlPAG stimulation (electrical or chemical) and locally
applied opioid agonists (Reynolds, 1969; Mayer et al., 1971;
Mayer and Liebeskind, 1974; Akil and Liebeskind, 1975; Soper
and Melzack, 1982; Vanegas et al., 1984a; Jensen and Yaksh, 1989;
Bandler et al., 1991; Bandler and Shipley, 1994; Tortorici and
Morgan, 2002). vlPAG stimulation-mediated analgesia occurs
predominantly via the dense projection to the RVM (Behbehani
and Fields, 1979; Gebhart et al., 1983; Prieto et al., 1983), as
the vlPAG sends sparse efferents directly to the dorsal horn
(Basbaum and Fields, 1979). In particular, vlPAG stimulation
activates an excitatory connection between the vlPAG and
RVM OFF-cells (Behbehani and Fields, 1979; Basbaum and
Fields, 1984; Vanegas et al., 1984a). More recent studies have
reinforced the antinociceptive role of vlPAG glutamate neurons
using selective, chemogenetic activation and have demonstrated
that selective activation of vlPAG GABAergic neurons can
produce hyperalgesia (Samineni et al., 2017a)—suggesting the
capacity for the vlPAG to be an additional locus of bidirectional
pain modulation. Interestingly in opposition to the role vlPAG
glutamate neurons play in descending inhibition, a recent
study has identified a subpopulation of dynorphin-expressing

v/lPAG glutamate neurons, which when chemogenetically
activated facilitate nociception (Nguyen et al., 2022). The
key question remains whether distinct vlPAG populations,
such as RVM-projecting glutamatergic or GABAergic neurons
or more specific subpopulations within these groups, are
activated by acute noxious stimuli or in persistent and
chronic pain conditions mirroring these different experimental
manipulations that produce descending inhibition or facilitation.

The vlPAG is a key site of opioid-induced analgesia
mediated by mu-opioid receptors (MOR; Heinricher and
Morgan, 1999). Activation of postsynaptic MORs, expressed on
a subpopulation of vlPAG neurons, produces a hyperpolarizing
current; whereas, activation of MORs in presynaptic terminals
within the vlPAG inhibits neurotransmitter release. Pre-
and postsynaptic MORs coupled to different signaling
pathways work in concert to promote descending inhibition.
However, other forms of global inhibition of the vlPAG
(e.g., muscimol or baclofen) result in descending facilitation
of pain, not the inhibition (analgesia) produced by opioid
infusion. These contradictory findings were explained by
a circuit mechanism referred to as the opioid-mediated
disinhibition of pain hypothesis (Basbaum and Fields, 1984).
This mechanism hypothesizes that opioids inhibit GABA release
onto vlPAG neurons, either through selective postsynaptic
MOR expression on inhibitory interneurons or at the level of
the presynaptic GABAergic afferent terminals, disinhibiting
excitatory RVM-projecting neurons that promote descending
inhibition of pain. In subsequent sections, we consider
critical studies that identify additional complexity in MOR
expression, signaling, and regulation, that provide many loci
for pain-mediated alterations to influence opioid-mediated
pain modulation.

The descending pain modulatory circuit also exhibits sexual
dimorphism (Fullerton et al., 2018). Females have ∼33%
more RVM-projecting neurons than males, however, persistent
inflammation activates significantly more RVM-projecting
neurons in males than females (Loyd and Murphy, 2006,
2014). In addition, the antinociceptive potency of bicuculline, a
GABAA receptor antagonist, injected into the vlPAG is greater in
male rats compared to females (Bobeck et al., 2009), indicating
differences in GABA tone within the vlPAG between males
and females (Tonsfeldt et al., 2016). This same study showed
that the antinociceptive potency of kainic acid, which activates
glutamate receptors, is the same for males and females. This
indicates that direct activation of the vlPAG activates a sufficient
number of RVM OFF-cells needed to suppress nociception,
which has been estimated to require relatively few neurons
(<100; Hentall et al., 1984). Furthermore, RVM-projecting
vlPAG neurons are more strongly disinhibited by systemic
morphine in male rats compared to females (Loyd et al., 2007),
emphasizing the need to continue to improve our understanding
of how descending modulation of pain varies between males
and females.
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To date, studies have focused on defining the net output
of the vlPAG and RVM in response to nociceptive stimuli and
different pain states. However, many features of cellular- and
circuit-based diversity suggest additional layers of complexity
relevant to increasing our understanding of the role of
the vlPAG in descending pain modulation in uninjured
and pain states. Specifically, features including cortical and
subcortical afferent inputs, efferent targets, neurotransmitter
content, receptor and channel expression, morphology, intrinsic
membrane properties, and responses to stimuli, can be used to
discern between subpopulations of vlPAG neurons (Hamilton,
1973; Heinricher et al., 1987; Barbaresi and Manfrini, 1988;
Chieng and Christie, 1994a; Park et al., 2010; Heinricher
and Ingram, 2020; McPherson et al., 2021). The vlPAG is
involved in many behavioral circuits associated with survival
(i.e., threat, fear, pain) as well as vital autonomic functions
like breathing, feeding, and respiration (Bandler et al., 2000;
George et al., 2019; Silva and McNaughton, 2019). Thus, it is a
prime brain area for using genetically encoded circuit-mapping
tools to understand how specific PAG afferents participate
in different behaviors. The broad categorization of excitatory
and inhibitory neurons defined by these genetic methods is
a useful starting point, however, does not account for the
diversity that further distinguishes subpopulations of vlPAG
neurons. In addition, methods dependent on gene expression
(such as neurotransmitter content or MOR expression) assume
that large populations defined by one key descriptive feature
activate or inactivate in unison in response to stimuli, whereas
studies are increasingly showing that this interpretation does
not hold (Vaaga et al., 2020; McPherson et al., 2021). This
review is focused on what is known about different aspects of
heterogeneity within the vlPAG in relation to the descending
pain modulatory system.

Opioids in the descending pain
modulatory pathway

Endogenous opioids

Stimulation of the vlPAG produces analgesia in humans and
antinociception in rats that is blocked by the MOR antagonist
naloxone (Adams, 1976; Akil et al., 1976; Hosobuchi et al., 1977;
Behbehani and Fields, 1979; Barbaro, 1988; Bach and Yaksh,
1995), providing evidence for the release of endogenous opioids
in the vlPAG (Bagley and Ingram, 2020). Stimulation of the PAG
produces an increase in the release of met-enkephalin (ME; Bach
and Yaksh, 1995), a full MOR agonist, that is typically below
detection limits under basal conditions (Del Rio et al., 1983).
It is not clear where the ME originates as a subset of neurons
distributed throughout the vlPAG express enkephalin and
enkephalin-containing afferent terminals from other brain areas

(Moss et al., 1983; Williams and Dockray, 1983). Enkephalin-
containing vlPAG neurons send projections to the amygdala and
the nucleus accumbens (Li et al., 1990a,b) but they may also
send local collaterals. Both of these areas send inputs to vlPAG
indicating multiple reciprocal circuits exist between the vlPAG
and supraspinal brain areas where endogenous opioids may
influence descending modulation. This is further supported by
studies showing activation of enkephalin-expressing inhibitory
interneurons in the central nucleus of the amygdala (CeA)
increases Fos expression in non-serotonergic vlPAG neurons,
inducing analgesia (Poulin et al., 2008; Paretkar and Dimitrov,
2019).

The vlPAG also receives β-endorphin-containing fibers from
the arcuate nucleus of the hypothalamus (Finley et al., 1981; Ibata
et al., 1985; Sim and Joseph, 1991), with confirmed β-endorphin
release in the vlPAG following stimulation of the arcuate
nucleus (Bach and Yaksh, 1995). The hypothalamus sends
endomorphin-2 containing projections to the PAG (Chen et al.,
2008) and high levels of endomorphin-2 are observed within the
PAG (Martin-Schild et al., 1999). β-endorphin is a full agonist
while endomorphin-2 is a partial agonist of the MOR (Narita
et al., 2000) suggesting that these two agonists will activate
MORs differently. In addition to endogenous MOR agonists,
electrical stimulation of the CeA increases levels of the kappa-
opioid receptor (KOR) agonist dynorphin A in the lateral PAG
(Nakamura et al., 2013), however, dynorphin microinjection
within the PAG is not analgesic (Fang et al., 1989). A recent study
discovered a subpopulation of dynorphin-expressing vlPAG
glutamate neurons that can facilitate nociception through KOR
signaling within the RVM (Nguyen et al., 2022).

As one would anticipate, the release of endogenous opioid
peptides in response to pain states and exogenous opioids
varies significantly. Substance P induces ME release in the
PAG that is correlated with antinociception (Del Rio et al.,
1983; Rosén et al., 2004). The CFA-induced inflammatory pain
model increases neuropeptide release (neurotensin increased
133% and ME increased 353%), with differential time courses
for recovery (Williams et al., 1995). After 7 d of inflammation,
neurotensin returns to baseline but ME remains elevated.
Further, the enhancement in ME release in the vlPAG
with inflammation is seen uniformly across the rostral-
caudal axis and is maintained between 4 h, 4 d, and 14 d
post-CFA in male rats (Hurley and Hammond, 2001). Other
opioid peptides are also increased with other pain models.
Formalin-induced inflammation increases the release of β-
endorphin and endomorphin-2 within the PAG (Sun et al.,
2001; Nakamura et al., 2013) and β-endorphin is released
within the vlPAG during stress-induced analgesia (Külling
et al., 1989). Interestingly, endogenous ME release is increased
∼50% by systemic morphine injection (Williams et al., 1995).
Similarly, antinociception produced by DAMGO injections
into the basolateral amygdala (BLA) is occluded by blocking
endogenous MOR activation with MOR antagonists in the
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vlPAG (Tershner and Helmstetter, 2000), demonstrating synergy
between exogenous and endogenous opioid effects. The extent
of the endogenous opioid release and efficacy during naïve and
pain states with and without exogenous opioid use are key points
of an ongoing investigation.

Importantly, extensive work is still required to understand
endogenous opioid peptides in descending modulation in
females, as most of the early studies were conducted in male
rats. This is of particular importance given the sex differences
observed in pain states both in animal models and the clinical
population (Fullerton et al., 2018; Shansky and Murphy, 2021).
Similarly, these studies are largely carried out in adult rats,
overlooking the possible differences in the development of the
descending pain modulatory circuit. One prime example of
this is that activation of opioid receptors in the PAG produces
opposite effects in young rats compared to adults (Kwok et al.,
2014). This is a significant area of research considering 37%
of children in the clinical population experience chronic pain
(King et al., 2011). Our understanding of the mechanisms by
which endogenous opioids produce analgesia during pain states
is further complicated by the role of endogenous opioids in other
circumstances (i.e., stress-induced analgesia; Ferdousi and Finn,
2018).

Endogenous opioids must be released with the spatial and
temporal precision necessary to activate the circuit without
directly inhibiting excitatory PAG efferents that target RVM
OFF-cells involved in descending pain inhibition. Furthermore,
how the release and efficacy of endogenous opioids are
impacted by acute or ongoing pain states is not understood.
Complementary to release, it is crucial to understand the
specificity of opioid receptor expression and signaling across
diverse neuron populations and cellular compartments with
distinct mechanisms of action. Next, we consider many
important studies that shape our understanding of MOR action
in the vlPAG.

MOR expression and signaling

The PAG contains a high density of MOR expressing
neurons (Mansour et al., 1986; Kalyuzhny et al., 1996; Gutstein
et al., 1998; Commons et al., 1999, 2000; Wang and Wessendorf,
2002). As previously discussed, the disinhibition of pain
hypothesis provides a possible circuit mechanism for opioid-
mediated analgesia at the level of the vlPAG. Specifically, this
mechanism proposes selective MOR expression on the cell
bodies of vlPAG inhibitory interneurons within the vlPAG
(Basbaum and Fields, 1984) and was later updated to include
expression on GABAergic presynaptic terminals within the
vlPAG (Chieng and Christie, 1994b; Lau and Vaughan, 2014).

MORs are Gi/o-coupled G protein-coupled receptors
(GPCRs) expressed on postsynaptic cell bodies within the
vlPAG. Agonist-bound MORs initiate a cascade of many signal

transduction processes, including the activation of G protein-
coupled inwardly-rectifying potassium channels (GIRKs) by
βγ-subunits of activated Gi/o G proteins (Logothetis et al., 1987)
that produces a K+ efflux and subsequent hyperpolarization of
the neuron, inhibiting firing (North et al., 1987). MOR agonists
exhibit functional selectivity differences in Gi/o recruitment in
MOR-GIRK signaling. In particular, maximal GIRK currents
induced by DAMGO and fentanyl require Go G proteins,
compared to ME, which requires Gi (McPherson et al., 2018).

MORs are also expressed on presynaptic terminals within
the vlPAG where they inhibit the release of the neurotransmitter
(Chieng and Christie, 1994b; Vaughan et al., 1997). In
GABAergic terminals, MORs couple to voltage-gated potassium
channels through the phospholipase A2→ arachidonic acid→
12-lipoxygenase cascade (Vaughan et al., 1997). This signaling
pathway is not necessary for MOR inhibition of glutamate release
in the vlPAG and is distinct from that used by other presynaptic
GPCRs that inhibit GABA release (i.e., GABAB; Vaughan et al.,
1997; Bouchet and Ingram, 2020). Agonist-specific functional
selectivity in the recruitment of Gi or Go G proteins also occurs
during the inhibition of presynaptic GABA release. Specifically,
in order to achieve maximal efficacy for inhibiting spontaneous
GABA release DAMGO requires Go, fentanyl requires both Go

and Gi, and ME sufficiently inhibits release with either (Bouchet
et al., 2021). Comparatively, for maximal inhibition of evoked
GABA release, DAMGO requires both Go and Gi, and fentanyl
and ME require Gi.

Postsynaptic MOR expression has been found on
∼30%–60% of vlPAG neurons where MOR agonist application
produces a GIRK current response reversible by a MOR
antagonist (Chieng and Christie, 1994a; McPherson et al.,
2018). Many studies have concluded that this subset of
MOR-expressing neurons is GABAergic interneurons that
tonically inhibit glutamatergic projection neurons (Yaksh
et al., 1976; Basbaum and Fields, 1984; Reichling et al., 1988;
Park et al., 2010; Lau and Vaughan, 2014). This selective
neuron-type expression has been challenged by several studies
showing evidence of postsynaptic MORs on neurons with
varied neurotransmitter content, intrinsic firing properties, and
morphology (Chieng and Christie, 1994a; Osborne et al., 1996;
Commons et al., 2000; Morgan et al., 2008; Zhang et al., 2020;
McPherson et al., 2021). Furthermore, MOR activation has been
shown to directly inhibit a subset (∼14%) of RVM-projecting
vlPAG neurons (Osborne et al., 1996). However, this does
not rule out the possibility that MORs can be expressed on
GABAergic projection neurons that send local collaterals within
the vlPAG. Thus, it is clear that the actions of opioids in vlPAG
are more complex than their ability to disinhibit excitatory
RVM-projecting vlPAG neurons.

The analgesic effect of morphine microinjected into the
PAG is reversed by muscimol also microinjected into the PAG
(Moreau and Fields, 1986), underscoring the overall role of
opioids in alleviating inhibitory tone to produce analgesia.
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As a result of both pre- and postsynaptic mechanisms, MOR
activation disinhibits excitatory RVM-projecting vlPAG neurons
(Lau et al., 2020), which can activate downstream nociception-
inhibiting OFF-cells within the RVM (Fields et al., 1983b;
Basbaum and Fields, 1984; Cheng et al., 1986). The non-selective
excitatory amino acid (EAA) receptor antagonist kynurenate
in the RVM abolishes systemic opioid-mediated activation
of OFF-cells and antinociception (Heinricher et al., 1999),
confirming the antinociceptive role of glutamate release from
afferents within the RVM. However, both GABAergic and
non-GABAergic vlPAG neurons have also been found to project
to ON- and OFF-cells within the RVM, with varied MOR
expression on their cell bodies and axon terminals within the
RVM (Commons et al., 2000; Zhang et al., 2020). Parallel
descending circuits, both excitatory and inhibitory vlPAG
afferents within the RVM, have been discussed to encompass
these findings (Lau and Vaughan, 2014).

Although MORs are most effective in inhibiting presynaptic
GABA release in the vlPAG, they also inhibit release to a
lesser extent from glutamatergic afferents (Lau et al., 2020).
This suggests that in the presence of opioids, there is a
net excitatory effect (increased E/I balance). Additionally, the
EC50 for DAMGO-mediated inhibition of presynaptic release
is roughly four times lower than that for postsynaptic K+

current (Pennock and Hentges, 2011). This creates the possibility
for a MOR-expressing neuron to be either disinhibited by
a low dose of opioids (removing inhibitory afferent tone)
or inhibited by a higher dose (triggering a hyperpolarizing
GIRK-mediated K+ current). Interestingly, there is functional
selectivity between opioid agonists for pre- vs. postsynaptic
signaling. To achieve maximal antinociceptive efficacy morphine
requires presynaptic MOR activation and fentanyl requires
postsynaptic MOR activation (Morgan et al., 2020). Overall,
the activation of presynaptic MORs alone sufficiently produces
analgesia. These findings present interesting questions about
how smaller concentrations of targeted endogenous opioid
release may alter vlPAG neuron activity differently than
larger concentrations of globally delivered exogenous opioids.
These compartment-specific differences in opioid potency also
demonstrate the ability for opioids to have many different effects
on vlPAG neurons and the subsequent signaling they trigger at
efferent targets depending on E/I balance and postsynaptic MOR
expression.

Interestingly, KOR, and not DOR, activation inhibits evoked
inhibitory synaptic release from afferent terminals comparably
to MOR activation (Lau et al., 2020). Despite this overlap in
presynaptic function, vlPAG KOR activation does not produce
analgesia in rats (Bodnar et al., 1988; Smith et al., 1988; Fang
et al., 1989; Ossipov et al., 1995). Optogenetic studies examining
KOR and MOR sensitivity of specific afferents may be able to
solve this contradictory observation. It is likely that KORs are
expressed on different afferent terminals from brain areas that
do not have a strong role in opioid analgesia, further reinforcing

the importance of identifying whether inhibiting selective vlPAG
afferent inputs are necessary to produce analgesia, how these
inputs are altered by pain states, and whether these alterations
impact the ability for endogenous opioids to sufficiently dampen
their signal.

Pain-state-mediated alterations to these parallel circuits,
such as the E/I balance onto RVM-projecting vlPAG neurons
or vlPAG afferent inputs onto specific neuron types in the
RVM, have yet to be defined but seem likely due to known
changes in opioid efficacy in these regions during pain states.
Persistent inflammation (24 h) prior to systemic morphine
administration significantly increases the analgesic response
compared to uninjured animals (Eidson and Murphy, 2013). A
study completed in male rats showed greater analgesic efficacy
by DAMGO locally infused downstream in the RVM 14 d after
CFA-induced inflammatory pain (Hurley and Hammond, 2001).
The attenuation of morphine tolerance by persistent peripheral
inflammation aligns with clinical literature, where chronic
pain patients do not readily demonstrate opioid tolerance
(Collett, 1998; Dworkin et al., 2005). Altogether, the effect of
opioids within the vlPAG is much more complex than selective
postsynaptic MOR expression inhibiting GABA interneurons.
The next critical questions include whether the E/I balance is
distributed uniquely across distinct subpopulations of vlPAG
neurons, how opioid modulation of neuronal activity is impacted
by alterations induced by pain states (i.e., altered intrinsic
activity neuronal activity or presynaptic inputs), and how this
influences vlPAG efferent engagement with functionally distinct
ON- and OFF-cells within the RVM. In the next section,
we consider different MOR signaling regulation mechanisms
that reveal additional compartmental specificity in MOR
signaling.

Regulation of MOR signaling

Multiple mechanisms exist to regulate ongoing MOR
signaling. Continuous MOR activation triggers the
phosphorylation of the intracellular C-terminal tail of the
receptor by several different protein kinases, including
protein kinase A, protein kinase C (PKC), and G protein
receptor kinases (Williams et al., 2013). Phosphorylation of
the C-terminus triggers desensitization and recruitment of
β-arrestin (βarr), resulting in the internalization of the receptor.
MOR signaling is recovered around 60 m following maximal
desensitization, indicating the time course for receptor recycling
back to the membrane. Postsynaptic MOR-mediated GIRK
currents within the vlPAG are relatively small, however, they
do desensitize during prolonged MOR agonist exposure, and
this desensitization is even greater in morphine-tolerant rats
(Ingram et al., 2008). Desensitized MOR-GIRK signaling,
enhanced by morphine tolerance, reduces the ability for opioids
to hyperpolarize vlPAG neurons, suppressing their firing rates.
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Although postsynaptic MORs in the vlPAG desensitize, the
inhibition of GABA release by presynaptic MORs within the
vlPAG does not desensitize during prolonged exposure to an
agonist in drug naïve or chronic morphine treated rats (Fyfe
et al., 2010). Additional evidence from the arcuate nucleus of
the hypothalamus confirms presynaptic MORs, as well as other
presynaptic GPCRs, are resistant to desensitization (Pennock
et al., 2012). Interestingly, presynaptic MORs have been shown to
undergo internalization in the continued presence of ligand, but
are quickly replaced by lateral diffusion along the axon surface
(Jullié et al., 2020). Thus, despite the dynamic movement of
MORs in the presynaptic compartment, signaling is maintained.

In addition to βarr-mediated desensitization, activated G
proteins that bind and activate effector targets are also regulated
by the regulator of G protein signaling (RGS) proteins. RGS
proteins bind to active α-subunits driving GTP-hydrolysis to
GDP, boosting the affinity between the α- and βγ-subunits
resulting in the reformation of the inactive heterotrimer. Many
RGS proteins are involved in the regulation of MORs, including
RGS4 (Garzón et al., 2005a; Roman et al., 2007; Leontiadis et al.,
2009; Santhappan et al., 2015), RGS9-2 (Psifogeorgou et al.,
2007; Papachatzaki et al., 2011; Gaspari et al., 2017), RGS19
(Wang and Traynor, 2013), and RGSz (Garzón et al., 2005b;
Gaspari et al., 2018; Sakloth et al., 2019). Within the vlPAG, a
mouse model with RGS-insensitive G proteins exhibits increased
opioid-mediated inhibition of presynaptic GABA release and
increased morphine antinociception (Lamberts et al., 2011).
These findings support the idea that RGS proteins negatively
modulate MOR inhibition of evoked GABA release (eIPSCs),
influencing supraspinal nociception. Antagonizing hydrolysis by
RGS4 in the vlPAG enhances morphine-mediated analgesia, but
not fentanyl, which may be a function of their different signaling
pathways (Morgan et al., 2020).

In contrast, RGS proteins positively modulate postsynaptic
MOR-mediated GIRK activation in the vlPAG (McPherson et al.,
2018). RGS proteins playing a facilitatory role in MOR-GIRK
signaling is counterintuitive, as RGS proteins inactivate G
proteins which activate GIRK channels. However, a “kinetic
scaffolding” model outlines the necessity of rapid turnover of G
proteins to replenish the inactive G protein substrate pool for
quick re-activation by the receptor (Clark et al., 2003; Zhong
et al., 2003). The proximity of substrates and binding partners,
here MORs and GIRKs, allows for expedient activation→
channel gating → inactivation. As a result, when the RGS
binding is disrupted in the RGS-insensitive mouse model, the
efficiency in coupling is lost and the substrate pool turnover
is hindered, reducing the overall K+ conductance through the
GIRK channel. Thus, this model suggests that RGS proteins
serve as key components in receptor and effector coupling,
enhancing the efficiency of the signal transduction pathway.
Distinct actions of RGS proteins and agonist-specific G protein
recruitment, in pre- and postsynaptic MOR signaling provide
another avenue for compartment-specific MOR signaling that

can affect the analgesic circuit. Future studies on how acute
and persistent pain states may influence RGS actions in pre-
and postsynaptic MOR signaling will further our understanding
of how RGS-mediated positive and negative modulation
of compartment-specific MOR signaling within the vlPAG
influence pain states. Furthermore, the duration of opioid (i.e.,
morphine) exposure impacts the association between MORs
and specific RGS proteins in the PAG (Garzón et al., 2005a),
highlighting one mechanism by which treating pain states with
exogenous opioids can influence MOR regulation.

Sustained MOR activation can also produce heterologous
desensitization at adjacent receptors that use the same
intracellular signaling components (Leff et al., 2020; Adhikary
et al., 2022). As a result, these mechanisms associated with
MOR desensitization could be adapting the signaling of other
receptors, which then influence tolerance and withdrawal.
Additional receptors within the vlPAG have been hypothesized
to contribute to the analgesic tolerance of opioids, such
as the nociceptin receptor (NOP), which is another GPCR
that is densely expressed within the vlPAG with similar
homology to MOR/DOR/KOR but low affinity for opioid
agonists and antagonists (Anton et al., 1996). Activation of
NOP blocks analgesia and NOP antagonists microinjected into
the vlPAG stop the development and expression of analgesic
tolerance to systemic morphine administration (Parenti and
Scoto, 2010; Scoto et al., 2010). Ongoing activation of NOP
produces PKC-mediated heterologous desensitization of MORs
in cultured cells (Mandyam et al., 2002), providing an example
of how cross-talk between these receptor signaling systems can
influence analgesic efficacy.

Cellular diversity

Many methods have been used to characterize different
neuronal populations within brain regions. Tools that utilize
genetic approaches to selectively alter neuronal activation,
such as optogenetics or DREADDs, have reinforced our
understanding of how the activation of excitatory and inhibitory
vlPAG neurons influences the net output of the descending pain
modulatory pathway. However, these studies do not address the
question of which vlPAG neurons are recruited during acute
and persistent pain states to influence ongoing nociception.
Additional features such as intrinsic firing and membrane
properties, receptor and channel expression, endogenous opioid
peptide production, afferent inputs, and efferent targets can
collectively define vlPAG neurons engaged by acute nociceptive
stimuli, ongoing pain states, and endogenous or exogenous
opioids. Other cell types within the vlPAG, such as microglia,
also play important and extensive roles in the pain response and
analgesia (Loyd and Murphy, 2006; Fullerton et al., 2018; Averitt
et al., 2019).
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Neurotransmitter content

Early work using GAD-immunoreactivity, labeled a subset
of ∼33% of vlPAG cell bodies (Barbaresi and Manfrini, 1988;
Reichling and Basbaum, 1990). The GABAergic subpopulation
combined with the identification of a direct, excitatory
connection between the vlPAG and the RVM that contributes
to stimulation-mediated analgesia (Behbehani and Fields, 1979),
leads to the proposed circuit where inhibitory neurons in
the vlPAG serve as an interneuron population that control
the intensity of the output signal to the RVM (Basbaum and
Fields, 1984). To determine the effect of GABA on vlPAG
output, GABA receptor antagonists were locally infused into the
vlPAG increasing vlPAG firing and the firing of downstream
RVM OFF-cells, producing analgesia (Moreau and Fields,
1986; Behbehani et al., 1990; Knight et al., 2002). These
studies do not determine the source of GABA, which can
come from GABAergic interneurons or GABAergic afferents
originating from many different brain regions. Direct evidence
for GABAergic interneurons within the vlPAG has not been
provided to date.

Selective activation of vlPAG GABA neurons using
DREADDs produces hyperalgesia and confirms the
pronociceptive role of vlPAG GABA neurons independent
of GABA afferents from other regions (Samineni et al., 2017a).
However, this experiment does not rule out that this behavioral
outcome could be the result of GABAergic neurons that project
to the RVM that directly inhibit spontaneous OFF-cell firing
(Heinricher et al., 1991). Histological studies confirm that
GABAergic afferents in the RVM coming from the vlPAG come
in contact with both OFF- and ON-cell populations (Morgan
et al., 2008). Additionally, DREADD-mediated activation of
GABAergic neurons does not address whether acute or ongoing
nociceptive stimuli activate the same neurons within the vlPAG,
demonstrating the physiological relevance of the impact of
selectively activating this population or if neuronal activation
is more heterogeneous, and if so, what resulting output that
produces. Additionally, it is important to identify whether there
are other circuit consequences of increased activity of vlPAG
GABAergic neurons, such as increasing GABA release onto
RVM OFF-cells, which would also produce hyperalgesia.

The proinflammatory cytokine Tumor Necrosis Factor-
α (TNF-α) has been recently shown to selectively activate
GABAergic neurons within the vlPAG (Pati and Kash, 2021),
suggesting a possible mechanism by which a pain state can
produce the targeted activation of vlPAG GABA neurons.
TNF-α is one of many proinflammatory cytokines released
by activated microglia, which are activated by inflammatory
pain states (Fullerton et al., 2018). Interestingly, the enhanced
activity of vlPAG GABA neurons by TNF-α did not increase
GABAergic synaptic inputs onto neighboring vlPAG dopamine
(DA) neurons—suggesting that if these GABAergic neurons
send local collaterals within the vlPAG, they do not target

DA neurons. Altogether, it is possible that pain states activate
microglia, which release TNF-α, activating GABA neurons to
enhance local GABA tone—resulting in descending facilitation
through a specific subpopulation of vlPAG neurons. However,
this possible mechanism would need to be confirmed in a pain
model to implicate selective activation of vlPAG GABA neurons
in altered pain modulation during pain states.

Selective activation of glutamatergic neurons in the vlPAG
with DREADDs promotes analgesia (Samineni et al., 2017a).
This reinforces the conclusion from many early studies that
stimulation-mediated analgesia is driven by the activation of
glutamatergic neurons (Reynolds, 1969; Mayer et al., 1971;
Mayer and Liebeskind, 1974; Akil and Liebeskind, 1975;
Behbehani and Fields, 1979; Soper and Melzack, 1982; Jensen
and Yaksh, 1989). However, selective activation of glutamatergic
vlPAG neurons also enhances anxiety (Taylor et al., 2019), one of
the many off-target effects precluding this stimulation target as
a therapeutic option for clinical pain management. Deep brain
stimulation targeting the vlPAG has been applied therapeutically
for treatment-resistant hypertension (Patel et al., 2011;
O’Callaghan et al., 2014), emphasizing the many subcircuits that
utilize this region and the importance of understanding whether
specific stimuli engage different neuronal subpopulations within
the vlPAG. Furthermore, a recent study using single nucleus
RNA-sequencing and Multiplexed Error-Robust Fluorescence
in situ Hybridization (MERFISH) identified over 100 excitatory
and inhibitory neuronal populations (Vaughn et al., 2022). In
addition to unique transcriptional profiles, these neurons were
found to be spatially distributed uniquely along the rostral-
caudal axis, and multiple populations were activated in unison
by different instinctive behaviors (i.e., mating, aggression,
etc.)—underscoring the complexity in subpopulations of
excitatory and inhibitory vlPAG neurons.

An increasing number of studies are providing evidence
that glutamate neurons do not represent a functionally
homogeneous population of vlPAG neurons. One example
is a Chx10-expressing subpopulation of glutamate neurons
that are specifically involved in mediating freezing behaviors
(Vaaga et al., 2020). Activation of another subpopulation vlPAG
glutamate neurons that express dynorphin produces dynorphin-
mediated facilitation of nociception through signaling at
terminals in the RVM (Nguyen et al., 2022). Findings
such as these emphasize the caution we should take when
using neurotransmitter content as the only genetic marker
in behavioral studies. Although it is interesting to know
that the net output of activating all glutamate neurons is
analgesia, important questions remain. First, how many vlPAG
glutamate neurons are necessary to produce analgesia? Second,
do glutamate neurons that promote descending inhibition
overlap with glutamate populations involved in other outputs
(i.e., freezing)? Lastly, are there markers for subpopulations
of glutamate neurons that are activated by nociceptive stimuli
or necessary for producing analgesia that can be harnessed to
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develop targeted drug delivery methods? Together, the answers
to these questions will equip us with the information needed
to develop therapeutic manipulations that produce the smallest
intervention possible that drives descending inhibition from the
level of the vlPAG.

Additional neuron populations within the vlPAG with
different neurotransmitter content engage with descending
modulation differently. Most notably, DA neurons have been
implicated in the broader supraspinal pain circuitry and
analgesia (Hökfelt et al., 1976; Meyer et al., 2009; Taylor et al.,
2019; Yu et al., 2021) despite not projecting directly to the RVM
(Suckow et al., 2013). Interestingly, these DA neurons co-release
both DA and glutamate at terminals in the bed nucleus of the
stria terminalis (BNST; Li et al., 2016). Selective activation of
these vlPAG DA neurons produces antinociception in male rats
(Yu et al., 2021). Serotonergic neurons that are densely populated
in the dorsal raphe and extend diffusely up into the most ventral
portion of the vlPAG (Crawford et al., 2010), have also been
implicated in opioid-mediated analgesia (Samanin et al., 1970).

Altering the activity of vlPAG neuron populations
with distinct neurotransmitter content can influence
pain modulation, however, this alone does not answer
important questions: (1) are these molecularly defined
subpopulations selectively engaged by pain states, mirroring
these activation/inhibition studies in a physiological condition;
(2) how does this change over the course of acute, persistent,
and chronic stages; and (3) how do endogenous and exogenous
opioids influence how these neurons participate in descending
circuitry in naïve and pain states?

Receptor or channel expression

In addition to neurotransmitter content, the expression
of receptors and channels amongst vlPAG neurons can
differentiate distinct populations and potentially define any
selective, population-specific engagement by pain states or
opioids (Chieng and Christie, 1994a; Park et al., 2010; Liao
et al., 2011; Du et al., 2013; Lau and Vaughan, 2014; McDermott
et al., 2019). Although MORs mediate morphine antinociception
(Matthes et al., 1996) all three opioid receptors (MOR, DOR
and KOR) are expressed in vlPAG. DOR and KOR are densely
expressed within the vlPAG, both on cell bodies (including
RVM-projecting neurons) and on afferent terminals (Mansour
et al., 1986; Kalyuzhny et al., 1996; Gutstein et al., 1998;
Kalyuzhny and Wessendorf, 1998; Wang and Wessendorf, 2002).
Neither DOR nor KOR activation elicits GIRK currents from
vlPAG neurons in rats (Chieng and Christie, 1994a), although
both activate GIRK currents in mouse vlPAG (Vaughan et al.,
2003). Interestingly, DOR activation alone does not produce
analgesia but potentiates MOR-mediated analgesia (Rossi et al.,
1994). This effect is observed when MOR agonist DAMGO
is microinjected into the vlPAG or RVM and DOR agonist

deltorphin is microinjected into the other region and not when
they are microinjected into the same region—suggesting synergy
is occurring at the circuit and not cellular level.

Several studies have tried to use MOR as a marker for
a specific functional subpopulation of vlPAG neurons. One
interesting possibility identified in mice showed that MOR
expressing, tonic firing GABAergic neurons also expressed
T-type calcium channel, indicated by low-threshold spiking
(LTS; Park et al., 2010). Using MOR-mediated GIRK currents,
they observed that T-type channel expressing GABAergic
neurons were opioid-sensitive (five neurons) and the remaining
GABAergic (four neurons) and phasic firing, non-GABAergic
neurons were opioid-insensitive. However, in a larger data set in
the vlPAG of rats, LTS was not a predictor of opioid sensitivity
(McPherson et al., 2021). Furthermore, LTS was observed in
phasic firing neuronal populations in rats in addition to the tonic
firing populations that exclusively had LTS in the mouse study.
Together these discrepancies suggest either T-type channels are
more broadly expressed in rats than in mice or the mouse data set
did not capture a large enough sample to observe phasic firing,
non-GABAergic, opioid-sensitive neurons.

Other receptors expressed in the vlPAG can also modulate
the effects of opioids. For example, activating NOP with
the endogenous ligand nociception/orphanin FQ reduces the
analgesic efficacy of endogenous opioids and systemic morphine
(Mogil et al., 1996). Conversely, NOP antagonists potentiate
DAMGO efficacy, whether the animal is pretreated or given
the antagonist after DAMGO administration (all microinjected
within the vlPAG; Scoto et al., 2007). NOP activation also
appears to be contributing to the development and expression of
allodynia in acute inflammatory pain and chronic neuropathic
pain (Scoto et al., 2009), making it a potential therapeutic target
to both modulate opioid efficacy and nociceptive thresholds in
the absence of opioid use.

Additionally, recent studies found that GPR171, a recently
deorphanized GPCR, is expressed on GABAergic vlPAG
neurons where it regulates opioid-mediated antinociception
(McDermott et al., 2019). GPR171 agonists enhance morphine
efficacy while antagonists do the opposite, with the most
substantial effect seen with the supraspinal antinociceptive test
(hotplate). The GPR171 agonist MS15203 administered daily
after injury alleviated thermal hypersensitivity (after CFA) and
allodynia (after neuropathic pain) in males only (Ram et al.,
2021). Of note, the neuropathic pain model reduced PAG
GPR171 expression in male mice only, which was recovered by
the agonist treatment.

The DA and opioid receptor systems provide examples of
signaling interactions that influence pain modulation at the level
of the vlPAG. Activation of vlPAG DA receptors directly with
agonist (-) apomorphine or indirectly with D-amphetamine,
produces robust antinociception via the descending circuit
with the RVM, and is attenuated by D2 receptor blockade
(Flores et al., 2006; Meyer et al., 2009; Ferrari et al., 2021). In
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addition to DA-mediated antinociception, blocking either D1

or D2 DA receptors inhibits opioid-mediated antinociception
in a dose-dependent manner (Flores et al., 2004; Meyer et al.,
2009; Tobaldini et al., 2018). These results are consistent with
previous findings that show a significant reduction in the
antinociceptive effect of systemic opioids (specifically, heroin
and morphine) after selectively ablating DA neurons within the
vlPAG (Flores et al., 2004). Mechanistically, activation of D2

receptors induces GIRK currents (Pillai et al., 1998; Marcott
et al., 2014) and dopamine applied on slices in vitro reduces
presynaptic GABA release (Meyer et al., 2009). Interestingly,
unlike the antinociceptive tolerance observed with repeated
opioid administration, the DA-receptor system sensitizes to
repeat (-) apomorphine administration, producing increased
antinociception, making the furthered understanding of these
mechanisms of particular relevance for the development of novel
therapeutics (Schoo et al., 2018).

Overall, defining the specific combinations of receptor and
channel expression in combination with other features of cellular
heterogeneity (neurotransmitter content, intrinsic properties,
and specific circuitry) will increase our understanding of
neuron types within the vlPAG. Compiling these features into
comprehensive vlPAG neuron profiles may provide interesting
insight into how pain states alter these neurons, the descending
modulatory circuit, and the efficacy of drugs targeting these
receptor-channel complexes.

Intrinsic firing properties

Characterizing intrinsic membrane and firing properties
is a common approach to defining neuronal heterogeneity
(Prescott and De Koninck, 2002; Sedlacek et al., 2007; Van Aerde
and Feldmeyer, 2015; Pradier et al., 2019) and determining
these properties in naïve animals allows for the evaluation of
alterations induced by persistent inflammation (Li and Sheets,
2018; Adke et al., 2021; McPherson et al., 2021). Neuronal firing
properties and response to noxious stimuli have been used to
define important, functionally distinct neurons within the RVM
(Fields et al., 1983a; Vanegas et al., 1984b). These landmark
papers that characterized responses of distinct neuron types to
noxious stimuli (ON-, OFF-, and NEUTRAL-cells) have served
as a useful framework for subsequent findings.

ON- and OFF-cells respond differently to opioids,
application of EAAs, and blocking inhibitory inputs. First,
RVM ON-cells selectively express MORs and as a result,
iontophoretic application of morphine inhibits ON-cell firing
without affecting OFF-cell firing (Heinricher et al., 1992). ON-
and OFF-cells respond differently to excitatory and inhibitory
afferent input. Iontophoretic application of a glutamate
receptor antagonist reduces the ON-cell burst triggered by the
noxious stimulus and ON-cell spontaneous firing and does not
alter OFF-cell firing (Heinricher and Roychowdhury, 1997;

Heinricher et al., 1999). Conversely, iontophoretic application of
the GABA antagonist bicuculline eliminates the OFF-cell pause
triggered by the noxious stimulus but does not change ON-cell
firing (Heinricher et al., 1991). Together these studies suggest
that enhanced glutamate release within the RVM can increase
ON-cell firing while keeping the OFF-cells unaltered and
enhanced GABA release within the RVM can reduce OFF-cell
firing without impacting ON-cell firing. This highlights the
importance of identifying which vlPAG neurons are activated by
pain states, how they alter afferent inputs in the RVM, and where
endogenous or exogenous opioids intervene in the circuit.

In addition to determining how specific synaptic inputs can
affect RVM ON- and OFF-cells, studies have examined how
these cells respond to noxious stimuli during different pain
stages. Upon CFA injection, both ON- and OFF-cell spontaneous
activity are enhanced but spontaneous firing for both neuron
types returns to baseline after a couple of hours; however,
mechanical thresholds are reduced into the innocuous range
(Cleary et al., 2008). Furthermore, blocking excitatory afferent
inputs within the RVM prior to chronic constriction injury
results in slower and diminished development of mechanical
allodynia, correlating with a reduction in the hyperexcitability
of spinal neurons (Sanoja et al., 2008). Combined with what
is known about the effect of afferent inputs that impinge onto
distinct neuron types in the naïve condition, this suggests
that glutamatergic inputs onto ON-cells are important for
the development of hyperalgesia, calling into question how
excitatory and inhibitory projections from the vlPAG contribute
to these changes.

In vivo recordings from the vlPAG have also identified
neurons that respond to nociceptive stimuli (Heinricher et al.,
1987; Samineni et al., 2017b), finding ON-, OFF-, and
NEUTRAL-cells. Neuropathic pain induced by paclitaxel, a
commonly used chemotherapy drug, enhances spontaneous
firing and lowers the response thresholds in vlPAG ON-cells
and OFF- and NEUTRAL-cells in response to noxious and
previously innocuous stimuli (Samineni et al., 2017b). These
studies provided evidence that pain states selectively activate
subpopulations of neurons within the vlPAG and that the acute
firing response to a noxious stimulus can be used to distinguish
distinct vlPAG neuron populations.

An ex vivo survey of nearly 400 neurons using in vitro
whole-cell patch-clamp experiments identified four distinct
neuron types based on their intrinsic firing properties: Tonic
(35%), Phasic (46%), Onset (10%), and Random (9%; McPherson
et al., 2021). Tonic neurons (35%) fired continuously in response
to depolarizing current steps compared to Phasic neurons
(46%) which reached depolarization block in the more strongly
depolarizing steps. These neuron types allowed the same study
to identify that persistent CFA-induced inflammation (5–7 d)
selectively enhances the spontaneous firing rate of Phasic
neurons. Identifying activation of specific subtypes of vlPAG
neurons prompts many interesting follow-up studies, including
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examining intrinsic changes in receptors and/or channels or
adaptations in afferent inputs. A study evaluating GABAergic
neurons in a genetically defined mouse model observed that
firing patterns in mice largely correlated with neurotransmitter
content, with 31/33 GABAergic neurons having a tonic firing
pattern with the other 2/33 showing a phasic pattern (Park
et al., 2010). If this correlation observed in mice is upheld
in rats, enhanced spontaneous activity of Phasic neurons after
persistent inflammation may be producing the glutamate afferent
input onto RVM ON-cells that contributes to allodynia. These
interpretations are made even more interesting if neurons
with distinct firing patterns have unique afferent inputs, that
could for example contribute to enhanced Phasic firing after
persistent inflammation or unique efferent targets that implicate
the enhanced Phasic firing in altering signaling within different
circuits.

In addition to providing a useful framework to identify
mechanisms of targeted neuronal activation after different
stimuli, firing patterns provide insight into how neurons may
encode noxious stimuli. For example, a tonic firing neuron can
entrain stimuli of varying intensities, whereas a phasic neuron
can only do so at low-intensity ranges. At the higher depolarizing
intensities a Phasic neuron becomes a coincidence detector,
similar to the Onset neuron (Prescott and De Koninck, 2002).
This can change whether presynaptic release from these neurons
onto their downstream targets is ongoing (Tonic) or transient
(Phasic). Recently published work has discovered opposing
functional outputs produced by activating the same GABAergic
neuron population with different channelrhodopsin-2 variants
that have distinct off-kinetics (Baleisyte et al., 2022). The
two variants produce two different firing patterns with the
same optogenetic stimulation paradigm; the faster variant has
identical action potentials with each stimulation, whereas the
slower variant leads to significant attenuation of the action
potential peak over repeated stimulation—demonstrating
the importance of combining firing properties with
neurotransmitter content to more completely understand
the implication of neuron populations within a circuit.

Circuit diversity

Afferent inputs

The vlPAG receives inputs from many cortical and
subcortical regions associated with nociceptive, cognitive, and
affective components of pain. Ascending nociceptive inputs to
the vlPAG come through the spinothalamic, spinoparabrachial,
and spinomesocenphalic tracts, with some inputs coming
directly from the spinal cord to the vlPAG (Menétrey et al.,
1982; Yezierski and Mendez, 1991). The spinomesencephalic
tract provides direct inputs to the PAG, however, these inputs

have been linked to nociception and analgesia, as well as
aversive behaviors (Willis and Westlund, 1997). Additional
ascending nociceptive inputs come from the parabrachial
complex (Gauriau and Bernard, 2002), which receives inputs
from the superficial and deep dorsal horn (Roeder et al.,
2016). Forebrain regions including the medial prefrontal,
agranular insular, and anterior cingulate cortices, amygdala,
BNST, and hypothalamus send the most significant supraspinal
inputs to the PAG (Shipley et al., 1991; An et al., 1998;
Floyd et al., 2000; Hao et al., 2019; Silva and McNaughton,
2019). In addition to anatomical studies showing connections
between these regions and the vlPAG, studies using lesions
and pharmacological manipulations have provided evidence that
these regions participate in pain circuitry (Donahue et al., 2001;
Ikeda et al., 2007; Starr et al., 2009; Bliss et al., 2016; Mills
et al., 2018). For example, antinociception induced by morphine
injected into the basolateral and medial nuclei of the amygdala
is interrupted by lesioning the vlPAG (Helmstetter et al., 1998;
McGaraughty et al., 2004)—emphasizing the importance of the
vlPAG as an integration site for cortical inputs involved in pain
modulation and opioid-mediated analgesia.

Supraspinal inputs are both excitatory and inhibitory so
vlPAG neuronal activity is dictated by the E/I balance onto
an individual neuron. Opioid-mediated disinhibition of pain
is one example where it is presumed that glutamatergic PAG
output neurons are biased towards a more inhibited state by
GABAergic afferent inputs. In one study, glutamatergic inputs
from the medial (fastigial) cerebellar nuclei synapse onto 20%
of Chx10-expressing glutamatergic neurons, 21% of GABAergic
(GAD2+) neurons, and 70% of DA neurons within the vlPAG
(Vaaga et al., 2020), clearly demonstrating that afferent inputs
are not universally distributed within the vlPAG. These results
highlight the importance of identifying specific afferent inputs
that are activated by either pain or opioids that could be useful
in defining subpopulations of vlPAG neurons.

Persistent inflammation induced with CFA enhances GABA
tone in the vlPAG of female rats (Tonsfeldt et al., 2016).
In addition to changes in GABA release by pain states, the
glutamatergic release was decreased in the vlPAG 3 and 10 d after
spinal nerve ligation (Ho et al., 2013). Although different pain
models were used in these studies, the results suggest possible
changes in the balance of excitatory and inhibitory inputs
(E/I balance). Altered afferent release from either excitatory or
inhibitory terminals can influence firing rates, and the changes
to firing induced by opioid-mediated inhibition of presynaptic
release, thus yielding altered engagement with downstream
targets like the RVM. For example, if the afferent inputs onto a
neuron are excitatory-dominant in the naïve condition, opioids
will remove the excitatory drive, resulting in inhibition of firing.
However, if the known enhanced GABA tone after persistent
pain shifts the E/I balance onto this same neuron to becoming
inhibitory-dominant, opioids will now activate firing. This shift
in how opioids can alter vlPAG neuronal firing can have a
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significant effect when considering how any specific neuron
engages with ON- or OFF-cells within the RVM.

Efferent targets

Projection target is another important feature that can
increase our understanding of how distinct types of vlPAG
neurons engage with downstream targets and how that
connection is altered by persistent inflammation or opioid
action. The vlPAG contributes to the overall output of the
descending pain modulatory pathway at the level of the
dorsal horn of the spinal cord through its connection with
the RVM (Behbehani and Fields, 1979; Gebhart et al., 1983;
Prieto et al., 1983). The RVM-projecting population contains
both GABAergic and non-GABAergic neurons (Commons
et al., 2000; Morgan et al., 2008). In the mouse, both tonic
firing (7/12) and phasic firing (5/12) neurons project to the
RVM with comparable density; however, low-threshold spiking,
MOR-expressing GABAergic tonic firing neurons did not project
to the RVM (Park et al., 2010). Lau et al. (2020) found that
RVM-projecting vlPAG neurons lacking MOR expression are
disinhibited by DAMGO application compared to non-RVM-
projecting neurons which are inhibited (n = 9), however,
other findings show that RVM-projecting vlPAG neurons can
express MORs (Commons et al., 2000). A subset of dynorphin-
releasing glutamatergic vlPAG neurons (∼32%) project to the
RVM, making up ∼10% of the RVM-projecting vlPAG neurons
(Nguyen et al., 2022). Altering the activity of this particular
subpopulation of excitatory neurons can impact responses to
cold, thermal, itch, and nociception.

Recent studies have also shown that vlPAG projections
to regions other than the RVM can be implicated in
antinociception, expanding the definition of subpopulations
involved in descending pain modulation beyond
RVM-projecting neurons. One example is DA neurons
that project to the BNST (Hasue and Shammah-Lagnado, 2002;
Yu et al., 2021), which interestingly has reciprocal connections
with the vlPAG via GABAergic efferents (Hao et al., 2019).
Despite not projecting to the RVM (Suckow et al., 2013), these
DA neurons have been implicated in the broader supraspinal
pain circuitry and analgesia (Meyer et al., 2009; Taylor et al.,
2019; Yu et al., 2021). Another is the connection between the
central medial nucleus of the thalamus, which when lesioned
temporarily alleviates mechanical hyperalgesia in a neuropathic
pain model (Sun et al., 2020). Additional examples of reciprocal
connections between the vlPAG and other brain regions, such as
the amygdala (Ottersen, 1981; Hasue and Shammah-Lagnado,
2002; Oka et al., 2008; Sun et al., 2019), show pain-induced
alterations (Li and Sheets, 2018). Multi-region circuits, such
as that between the vlPAG, central medial thalamic nucleus,
and the BLA are activated by neuropathic pain (Sun et al.,
2020), which is known to project back to the vlPAG via neurons

with distinct intrinsic membrane properties within the central
medial and lateral nuclei of the amygdala (Rizvi et al., 1991; Li
and Sheets, 2018). These reciprocal connections could account
for the polysynaptic responses that lead to latent changes
in RVM neuronal firing in response to vlPAG stimulation
(Odeh et al., 2003).

The vlPAG has many other efferent targets that are associated
with other behaviors. GABAergic projections to the VTA have
been implicated in freezing behaviors (Laurent et al., 2020).
Single-unit recordings in awake behaving animals have linked
vlPAG cellular activity to threat probability evaluation (Wright
et al., 2019). The subpopulation of neurons in mice involved
in freezing with distinct connectivity, molecular markers
(Chx10 and glutamate), and electrophysiological features (Vaaga
et al., 2020). An entire field of work has implicated this region
in the acquisition, expression, and extinction of fear, anxiety,
or defensive response (Borszcz et al., 1989; Fanselow, 1991; De
Oca et al., 1998; McDannald, 2010; Wright and McDannald,
2019; Wright et al., 2019). It is important to understand whether
the circuits associated with behaviors or physiological states
other than pain overlap with the vlPAG neurons that are
specifically engaged in pain modulation. This could shed light
on possible circuit mechanisms for comorbidities observed with
chronic pain or other conditions that increase an individual’s
susceptibility to developing pain conditions.

Conclusion

The heterogeneity of the vlPAG calls for understanding
neuronal subpopulations that comprise pain circuits with a
greater resolution than the field currently uses. Combining
multiple features, such as neurotransmitter content,
receptor/channel expression, intrinsic firing properties,
afferents inputs, efferent targets, etc., will create the opportunity
to identify novel targets that interfere with pain processing,
especially in chronic pain states. As new innovative approaches
are developed, we can address key questions that remain
in the field regarding the spatial and temporal specificity
of endogenous opioid release within the descending pain
modulatory pathway.
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