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Abstract

Quantitatively evaluating the spatiotemporal variation of soil moisture (SM) and its causes

can help us to understand regional eco-hydrological processes. However, the complicated

geographical environment and the scarce observation data make it difficult to evaluate SM

in Northwest China. Selecting the Tarim River Basin (TRB) as a typical representative of the

data-scarce area in Northwest China, we conducted an integrated approach to quantitatively

assess the spatiotemporal variation of shallow soil moisture (SSM) and its responses to cli-

mate change by gathering the earth system data product. Results show that the low-value

of SSM distributes in Taklamakan Desert while the high-value basically distributes in the

Pamirs and the southern foothill of Tianshan Mountains, where the land types are mostly for-

est, grassland, and farmland. Annual average SSM of these three land types present a sig-

nificant increasing trend during the study period. SM at 0–10 cm of all land types are

positively correlated to precipitation in spring and autumn, and SM at 0–10 cm in the forest,

grassland, and farmland are positively correlated with temperature in winter. SSM presents

in-phase relation with precipitation whereas it presents anti-phase relation with temperature,

with the significant resonance periods about 6–8 years and 2–3 years which mainly distrib-

ute from 1970s to early 1990s and 1960s respectively. The time lags of SSM relative to tem-

perature change are longer than its lags relative to precipitation change, and the lags vary

from different land types.

Introduction

SM is an essential eco-hydrological factor, which contributes to the exchange of water and

energy between earth’s surface and the atmosphere [1, 2]. It accumulates the most information

of the surface hydrological processes and changes the energy exchange between land-atmo-

sphere by affecting the surface Alberto, the growth of vegetation, and evaporation [3]. SM is an

essential factor affecting climate change and an important indicator reflecting the changes in

surface hydrology [4]. Researchers have found that seasonal anomalies in soil moisture have
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vital influence on the seasonal variation of atmospheric circulation [5]. The effect of soil mois-

ture on climate change even exceeds the effect of sea surface temperature in the circumstance

of land [1]. For a specific region, the spatiotemporal variation of SM is mainly influenced by

the climate change, hydrological cycle, and surface ecosystem. Moreover, SSM is an indicator

of eco-hydrological processes and regional climate change. It is mainly affected by tempera-

ture, precipitation, sunlight, evaporation, and surface vegetation[6, 7]. Scholars have studied

the change trend of SM and its relationship with atmospheric circulation, climate change, and

NDVI. Precipitation and temperature are the two most important meteorological factors

affecting the change of SM. [8–11]. However, there have relatively fewer researches about the

spatiotemporal variation of SM and its response to the climate change under different land

types, especially in Northwest China, a typical arid and semi-arid area in the continental

interiors.

Climate of Northwest China is gradually becoming warmer and wetter with the global

warming [12–15]. Under the impacts of regional and global climate variation, how does the

SSM of different land types change? What is the spatiotemporal variation pattern of SSM?

How does it respond to the climate change? It is not easy to reply to these questions thor-

oughly. It is difficult to answer these questions because of the complex geographic environ-

ment and scarce observation data in Northwest China.

We gathered the earth system data product to solve the problem of lacking observation

data, including the SM data and the grid data of precipitation and temperature. The Global

Land Data Assimilation System (GLDAS) combines satellite and surface-based meteorological

observation data to provide reliable data for the research of SM [16, 17]. The GLDAS outputs

exist estimated deviations and limitations and can hardly avoid the uncertainties of parameters

and the atmospheric driving data, which will make influences on the research results [18–21].

However, there still have some studies acknowledged the availability of this dataset. Research-

ers used GLDAS data to conduct a lot of studies, which confirms the reliability of this dataset

[22, 23]. The evaluation of soil data and temperature data of GLDAS reveal that this dataset

has good reliability[24]. GRACE and GLDAS data was used to investigate the variation of ter-

restrial water storage in the Tianshan Mountains and its surrounding regions, the results indi-

cated that GLDAS data have a good consistency and linear relationship with GRACE data

[25]. In particular, SM data of GLDAS show good correlation and consistency with observa-

tion data, which is consistent with many studies [26–28].

To understand the spatiotemporal variation of SSM and its relationship with precipitation

and temperature under different land types in Northwest China, we selected the TRB as a typi-

cal representative of the data-scarce area in Northwest China (Fig 1). Based on the SM data of

GLDAS and the monthly grid data of precipitation and temperature in China to investigate

the spatiotemporal variation of SSM and its relationship with precipitation and temperature

under different land types from 1961 to 2010 by using the Mann-Kendall trend test, Pearson

correlation coefficient and the cross wavelet transform. Soil thickness not only reflects soil

development, but also affects soil nutrients, water migration, and the growth of plant root. The

average soil thickness in Xinjiang is about 68.9 cm [29]. Research indicated that the soil thick-

ness of the Hapli-Gelic Camboso [30] in the Qilian country, Qinghai Province is about 48 cm

[31]. Considering the mountainous with high altitude in the TRB where distributed frozen

soil, we took the soil thickness of 48 cm as the reference for the study of SSM. GLDAS SM con-

sists of four layers of 0–10 cm, 10–40 cm, 40–100 cm, 100–200 cm. Therefore, we selected the

first two layers of GLDAS SM to investigate the variation of SSM in the TRB. In the following

work, we defined the soil depth of 0–40 cm as the shallow soil layer, which means that the SSM

refers the SM in the layer with the depth of 0–40 cm.
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Study area

A typical representative of the data-scarce area in Northwest China, the TRB locates in Xin-

jiang Province of Northwest China, and it is the largest inland river basin in China (Fig 1).

This basin mainly consists of the Aksu River, Kashi River, Yarkand River, Hotan River, Kaidu

River-Konqi River and other main tributaries as well as the mainstream of the Tarim River[32,

33]. The north of the TRB is the Tianshan Mountains, the southwest is the Pamirs and the Kar-

akoram Mountains, the south is the Kunlun Mountain and the Altun Mountains, and the cen-

tral region is the Taklimakan Desert, consequently generating a closed basin surrounded by

high mountains that leads to the relative enclosed ecosystem[34]. This river basin belongs to

the typical continental climate, with drought climate, rare precipitation, large amount evapora-

tion, limited water resources, and its natural vegetation mainly distributes near the river[35].

Land types in the north belong to the mountain desert, grassland, and coniferous forest, with

the relatively high vegetation coverage. The central region is mainly covered by the desert, its

vegetation mainly distributes in the oasis agricultural district and the upper and middle

reaches of the Tarim River. The vegetation coverage of the western Kunlun Mountains of the

south is relatively high, which are mainly grassland and alpine vegetation [36–38]. Referring

the relevant research literatures [39, 40], we mainly classify land types of TRB into five catego-

ries: desert, forest, grassland, farmland, and other land types.

Fig 1. The study area. (The GTOPO30 DEM data are from USGS, https://earthexplorer.usgs.gov).

https://doi.org/10.1371/journal.pone.0217020.g001
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Materials and methods

Materials

To investigate the spatiotemporal variation of SSM in the TRB, we used the monthly data of

SM during the period from 1961 to 2010 with a spatial resolution of 0.25˚×0.25˚, which are

obtained from the GLDAS-NOAH-2.0 dataset (https://hydro1.gesdisc.eosdis.nasa.gov/data/

GLDAS/GLDAS_NOAH025_M.2.0/). The GLDAS SM data include four layers (i.e. 0–10 cm,

10–40 cm, 40–100 cm, and 100–200 cm). As defined above, the SSM refers the SM in the layer

with depth of 0–40 cm, so we only used the data of two layers (i.e. the 0–10 cm and 10–40 cm).

To evaluate the availability of GLDAS SM data, we used observation data of relative SM from

1992 to 2010, which were downloaded from China Meteorological Administration (http://

data.cma.cn). The observation depth includes 10 cm, 20 cm, 50 cm, 70 cm, and 100 cm. In this

research, we selected the 10 cm and 50 cm observation data to evaluate the GLDAS SM data at

0–10 cm and 10–40 cm. The distribution of observation stations is mapped in the Fig 1.

In order to show the response of SSM to climate change, we also used the monthly grid data

of precipitation and temperature with the spatial resolution of 0.5˚×0.5˚ in the same period,

which are a subset of the grid dataset of ground surface precipitation and temperature gathered

from the China Meteorological Administration (http://data.cma.cn).

To make sure the same spatial resolution with 0.25˚×0.25˚ as the SM data, the precipitation

and temperature data were resampled by using the bilinear interpolation method, and then

use the grid points of SM data that within the areas of each land type to extract the values of

precipitation and temperature. The GTOPO30 DEM (about 1 kilometer) is downloaded from

USGS (https://earthexplorer.usgs.gov).

Methods

This research used The Mann-Kendall test to examine the change trend of SSM and also used

the Pearson correlation coefficient and cross wavelet transform to explore the relationship and

time lags of SSM relative to the variation of precipitation and temperature.

Mann-Kendall test. The Mann-Kendall test was used to detect the trend in the interan-

nual and seasonal variation of SSM in the TRB. The Mann-Kendall test is a non-parametric

testing method, which is widely used to investigate the significance of the trend in climatic and

hydrological time series[41, 42]. For a time series Xt = (x1,x2,� � �,xn), the statistic S of the

Mann-Kendall test is expressed as follows[43]:

S ¼
Pn� 1

i¼1

Pn
k¼iþ1

sgnðxk � xiÞ ð1Þ

where, Xk and Xi are the annual values in years k and i respectively, n is the length of the data

sample, sgn is symbolic function:

sgnðyÞ ¼

1 ðy > 0Þ

0 ðy ¼ 0Þ

� 1 ðy < 0Þ

ð2Þ

8
><

>:

when the length of data sample greater than or equal to 8, the statistic S is close to a normal dis-

tribution, its average value is zero, and the variance is:

Var Sð Þ ¼
nðn � 1Þð2nþ 5Þ �

Pn
i¼1

tiði � 1Þð2iþ 5Þ

18
ð3Þ

where ti is the number of the i-th group data.
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The standardized statistic Zc is expressed as follows:

Zc ¼

S � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p ; S > 0

0 ; S ¼ 0

Sþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p ; S < 0

ð4Þ

8
>>>>>><

>>>>>>:

the Zc value is a trending statistic. If the Zc is positive, it indicates that the tested sequence

shows an increasing trend, and the negative value indicates a decreasing trend. If the absolute

value of the Zc is greater than 1.64 (the 95% confidence level), indicating that the trend of the

sequence is significant. β represents the slope, which is commonly used to measure the magni-

tude and direction of the trend. The positive value represents rises and the negative value rep-

resents decline, the formula is:

b ¼ Median
xi � xj
i � j

� �

; 8j < i ð5Þ

Pearson correlation coefficient. We used Pearson correlation coefficient to measure the

correlation of SSM with precipitation and temperature in the corresponding periods. For the

data series x1,x2,� � �xn and y1,y2,� � �yn of the two variables X and Y, the formula is as follows[44]:

R ¼
Pn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � �yÞ2

q ð6Þ

the range of the correlation coefficient is [–1, 1]. If R> 0, the two variables are positively corre-

lated; if R = 0, the two variables are independent and have no correlation; if R< 0, it means the

two variables are negatively correlated.

Cross wavelet transform. Cross wavelet transform (XWT) method effectively combines

wavelet transform[45] and cross spectrum analysis, which can investigate the correlation of

two time series in time-frequency domain from multiple time scales[46, 47].

We used the XWT method to investigate the multi-scale correlation of SSM with precipita-

tion and temperature, as well as the time lags of SSM to the variation of precipitation and

temperature.

The XWT of the two series X and Y are WX(S) and WY(S), respectively, then the XWT can

be defined as:

WXY
n ðsÞ ¼WX

n ðsÞW
Y�
n ðsÞ ð7Þ

where Wn
Y�(s) denotes the complex conjugate of Wn

Y(s) and s is a time delay. The correspond-

ing wavelet power spectral density is |Wn
XY(s)|. This value becomes larger means the more sig-

nificant correlation between the two time series, and reflects both have a common high-

energy. Significant test of continuous cross wavelet power spectrum, usually using the red

noise standard spectrum[46, 48].

Results and discussion

The evaluation of availability for GLDAS SM data

To further evaluate the availability of GLDAS SM data in the TRB, we calculated the correla-

tion coefficients of GLDAS SM data and observation data (Table 1). We selected the 10 cm

and 50 cm observation data to evaluate the GLDAS SM data at 0–10 cm and 10–40 cm. The
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results of evaluation indicate that the GLDAS SM data present a relatively good correlation

with observation data, which means the GLDAS SM data can reflect the temporal variations of

SM and are applicable in the TRB. The results are consistent with the research of the assess-

ment of SM data over China that GLDAS SM data have relatively good correlation with obser-

vation data and can better describe the seasonal and interannual variations of SM [28].

The spatial patterns of SSM

The SSM at 0–10cm and 10–40cm in the TRB are mapped to show their spatial patterns. We

can see that the spatial distribution of SM at 0–10 cm (Fig 2A) and 10–40 cm (Fig 2B) in the

TRB is basically consistent during the study period. The low-value of SSM distributes in the

central regions while the high-value distributes in the Pamirs and the southern foothill of

Tianshan Mountains with high altitude, and the land types are mainly forest, grassland, and

farmland. These regions have relatively abundant precipitation, high vegetation cover, and

relatively strong water storage capacity. The low-value of SSM mainly distributes in the

Taklimakan Desert, with scarce precipitation, large amount evaporation, and strong water

permeability.

The interannual and seasonal variation of SSM

As can be seen from the Fig 3, annual average SM at 0–10 cm in the farmland of the TRB is

considerably higher than that in other land types. Annual average SM at 0–10 cm in the forest

only has small differences with the grassland, and annual average SM at 0–10 cm in the desert

is the lowest among all land types (Fig 3A). Additionally, the differences of annual average SM

at 10–40 cm between the farmland and grassland are relatively small, and annual average SM

Table 1. The correlation coefficient of GLDAS SM data and observation data.

Category Aksu Marabishi Hotan Kashgar Ruoqiang Yarkant

0–10 cm 0.6679� 0.6440� 0.6162� 0.8257� 0.8401� 0.5232�

10–40 cm 0.6327� 06042� 0. 5179� 0.6857� 0.8327� 0.4412�

� Represents passed 0.05 significance test. We selected the observation data of each station, which have common periods with GLDAS SM data.

https://doi.org/10.1371/journal.pone.0217020.t001

Fig 2. The spatial distribution of average SSM in the TRB from 1961 to 2010. (The average SSM data are extracted from the free shared data, GLDAS SM

data, which are from the NASA Goddard Earth Sciences Data and Information Services Center.).

https://doi.org/10.1371/journal.pone.0217020.g002
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at 10–40 cm in the farmland and grassland are considerably higher than other land types. Simi-

larly, annual average SM at 10–40 cm in the desert is the lowest among all land types (Fig 3B).

As shown in the Figs 4 and 5, SM at 0–10 cm in the farmland is higher than that in other

land types in the spring, summer, autumn, and winter. The seasonal differences of SM in the

forest and grassland are relatively small. SM at 0–10 cm in the desert is the lowest. Besides, SM

at 10–40 cm in the farmland and grassland has quite small differences, and both are signifi-

cantly higher than that in other land types. SM at 10–40 cm in the desert is the lowest. SSM of

the farmland in spring and summer are higher than that in other seasons, which are probably

influenced by the agricultural irrigation and relatively rich precipitation in summer. The

growth of spring wheat requires relatively abundant water, the experiment of the effect of Irri-

gation on the SM of spring wheat indicated that irrigation has obvious effect on SM [49]. Addi-

tionally, SSM in the forest, grassland, and desert are commonly highest in the summer. The

main reason probably is that precipitation is the principal source of SSM [50], and precipita-

tion is relatively abundant in summer.

The change trend of SSM

The Mann-Kendall test is conducted to examine the change trend of SSM during the study

period. The results are shown in Table 2 (under the confidence level of 0.05), it can be seen

that the interannual variation of SSM in the forest, grassland, and farmland all present a signif-

icant increasing trend. For the seasonal variation, SM at 0–10 cm in the forest, grassland, and

farmland show a significant increasing trend in the spring, summer, autumn, and winter,

which are especially greater in the spring and winter. In addition, SM at 10–40 cm in the forest,

grassland, farmland, and desert commonly present a significant upward trend in the spring,

summer, autumn, and winter, which are especially greater in the summer. Studies indicate

that the precipitation and temperature in the study area has a significant increasing trend

Fig 3. The interannual variation of the annual average SSM in the TRB from 1961 to 2010.

https://doi.org/10.1371/journal.pone.0217020.g003
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during past several decades[51]. Precipitation is one important source of SSM [50], and the

increases of temperature will cause the thawing of frozen soil and snow, which are another

important source of SSM. So that the increases of SSM in the TRB are closely related to the cli-

matic warming and wetting trend.

The simultaneous correlation of SSM with precipitation and temperature

Precipitation and temperature are often considered as the principal climatic factors that can

affect the variation of SM in relevant studies [52–54]. In the following work, we mainly discuss

the correlation of SSM with precipitation and temperature in the TRB.

The results of Pearson correlation coefficient are shown in Table 3. At the confidence level

of 0.05, SM at 0–10 cm in the forest, grassland and desert all have a positive correlation with

precipitation in spring, summer, and autumn during the same periods. Due to the relatively

abundant precipitation and the relatively small evaporation in autumn, SM at 0–10 cm in the

forest and grassland are positively correlated with precipitation in autumn, with the correla-

tion coefficients of 0.5546 and 0.6664, respectively. SM at 0–10 cm in the farmland is positively

correlated with precipitation in spring, autumn and winter, and its correlations are more sig-

nificant in autumn, with a correlation coefficient of 0.6362. However, SM at 0–10 cm in the

farmland has no obvious correlation with precipitation in summer. In addition, SM at 0–10

cm in the desert presents a positive correlation with precipitation in spring, summer, and

autumn over the same periods, with correlation coefficients of 0.4688, 0.4740, and 0.3781,

Fig 4. The seasonal variation of SM at 0–10 cm in the TRB.

https://doi.org/10.1371/journal.pone.0217020.g004
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respectively. It is mainly for the reasons that the impact of precipitation on SSM in the desert is

more direct and the increases of precipitation will affect the variation of SSM. The snowmelt

in the spring will gradually gather in the middle area due to the terrain, which will make SSM

increase to some extent.

SM at 10–40 cm in the forest, grassland and farmland have a significant positive correlation

with precipitation in autumn during the corresponding periods, with the correlation coeffi-

cients of 0.4134, 0.3086, and 0.4741, respectively (Table 3). We can illustrate that SSM in the

TRB has relatively significant positive correlation with precipitation in autumn during the cor-

responding periods. However, the correlation between precipitation and SM at 10–40 cm in

the desert is quite weak. In the Taklimakan Desert, the average annual precipitation is only

about 50 mm, but its average evaporation is as high as approximately 1200 mm [55], which

convert most precipitation to water vapor before it seeps into the deeper soil layers.

SM at 0–10 cm in the forest, grassland and farmland have a significant positive correlation

with temperature in winter during the corresponding periods, with the correlation coefficients

of 0.3932, 0.3976 and 0.5079, respectively (Table 3). The main reason is that the higher or

lower temperature in winter influences the soil frozen status and hydro-thermal regime [50,

56]. However, the correlation between temperature and SM at 0–10 cm in the desert is unob-

vious. Moreover, SM at 0–10 cm in the farmland is negatively correlated with temperature in

summer. For the reason of high temperature will result in the increases of potential evapora-

tion which will reduce SSM.

Fig 5. The seasonal variation of SM at 10–40 cm in the TRB.

https://doi.org/10.1371/journal.pone.0217020.g005
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Table 2. The Mann-Kendall test of SSM.

Land types Category Zc Slop

0–10 cm 10–40 cm 0–10 cm 10–40 cm

Desert Year 1.4388 3.1954� 0.0044 0.0204

Spring 0.4852 2.6600� 0.0018 0.0163

Summer 1.7566� 3.3961� 0.0077 0.0244

Autumn 0.1004 2.8441� 0.0003 0.0188

Winter 1.8570� 3.0448� 0.0047 0.0169

Forest Year 2.8273� 3.8813� 0.0127 0.0382

Spring 2.2251� 3.3961� 0.0132 0.0345

Summer 1.6845� 3.5630� 0.0059 0.0462

Autumn 1.8905� 3.4129� 0.0102 0.0369

Winter 4.2493� 4.1657� 0.0201 0.0324

Grassland Year 3.5802� 2.9612� 0.0150 0.0240

Spring 2.4258� 2.8273� 0.0181 0.0244

Summer 1.9908� 2.9779� 0.0124 0.0347

Autumn 1.7399� 2.5931� 0.0084 0.0205

Winter 4.6509� 2.9110� 0.0224 0.0185

Farmland Year 3.7307� 2.0578� 0.0145 0.0173

Spring 1.9741� 1.6562� 0.0120 0.0136

Summer 2.0243� 2.2920� 0.0111 0.0214

Autumn 2.1079� 2.2083� 0.0105 0.0175

Winter 5.3535� 2.4091� 0.0270 0.0181

� Represents passed 0.05 significance test.

https://doi.org/10.1371/journal.pone.0217020.t002

Table 3. The correlation of SSM with precipitation and temperature.

Land types Category Precipitation Temperature

0–10 cm 10–40 cm 0–10 cm 10–40 cm

Desert Spring 0.4688�� 0.2506 -0.0737 0.2413

Summer 0.4740�� 0.1660 -0.1070 0.2588

Autumn 0.3781�� 0.2695 0.0363 0.2701

Winter 0.0006 -0.0634 0.1870 0.2717

Forest Spring 0.4417�� 0.2773 0.0014 0.1461

Summer 0.3602� 0.2128 -0.1641 0.2475

Autumn 0.5546�� 0.4134�� 0.1232 0.2879

Winter 0.2487 0.1980 0.3932�� 0.3973��

Grassland Spring 0.3307� 0.1991 0.0506 0.1773

Summer 0.4008�� 0.2354 0.2110 0.2015

Autumn 0.6664�� 0.3086� 0.0931 0.2202

Winter 0.1343 0.1665 0.3976�� 0.2351

Farmland Spring 0.4217�� 0.2182 -0.1153 0.1827

Summer 0.0724 0.1255 -0.3280� 0.0715

Autumn 0.6362�� 0.4741�� 0.0539 0.2742

Winter 0.3120� 0.1702 0.5079�� 0.1708

� Represents passed 0.05 significant test

��represents passed 0.01significant test.

https://doi.org/10.1371/journal.pone.0217020.t003
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For the simultaneous correlation between temperature and SM of 10–40 cm layer, only SM

at 10–40 cm in the forest has a significant positive correlation with temperature in winter dur-

ing the same periods. Comparing with the other land types, forest mainly distributes in the

southern foothill of Tianshan Mountains and near the river, the influence of temperature

change on the sunny slope and the river ice is relatively greater.

The relationships between SM, precipitation and temperature are quite different from the

research in Eastern China [8]. The SM in Eastern China of different depths (0–200 cm) is posi-

tively correlated with precipitation in spring, summer and autumn. While the SM at 10–40 cm

in the TRB is weakly correlated with precipitation. Moreover, the SM at 0–10 cm and 10–40

cm of Eastern China is negatively correlated with temperature in winter. However, the SM at

0–10 cm and 10–40 cm in the TRB is positively correlated with the temperature in winter.

From the results of Pearson correlation coefficient, we can find that SM at 0–10 cm of all

land types is positively correlated to precipitation in spring and autumn, and SM at 0–10 cm in

the forest, grassland, and farmland is positively correlated with temperature in winter.

Multi-scale correlation and time lags

The XWT of precipitation and SSM is mapped in Figs 6 and 7 and Table 4. We notice that SM

at 0–10 cm in the desert and precipitation was in-phase with significant common power of 6–8

year band from 1979 to1990. This in-phase relationship indicates that SM will increase with

the increases of precipitation and decrease with the decreases of precipitation. Similarly, SM at

0–10 cm in the forest and farmland mainly presented an in-phase relationship with precipita-

tion. However, SM at 0–10 cm in the grassland presents a significant in-phase relationship

with precipitation from 1995 to 2001 (Fig 6). Moreover, SM at 10–40 cm in the desert, forest,

and farmland has a significant in-phase relationship with precipitation. SM at 10–40 cm in the

grassland has an in-phase relationship with precipitation from 1995–2001 (Fig 7). In the TRB,

the principal resonant periods of precipitation and SSM in the desert, forest, and farmland are

about 6–8 year, with an in-phase relation. The significant main resonant periods of precipita-

tion and SSM in the grassland are about 2–3 years.

The XWT of temperature and SSM in the TRB is mapped in Figs 8 and 9. SM at 0–10 cm in

the desert has a significant anti-phase relationship with temperature from 1961 to 1969 (Fig 8).

Fig 6. The cross wavelet transform of precipitation and SM (0–10 cm). (The area surrounded by the thick black line

indicates the 5% significance level against red noise and the cone of influence (COI) with edge effects is shown as a

lighter shade. Arrows presents the relative phase relationships between precipitation and SM, where the right direction

means in-phase, the left direction means anti-phase, and up direction indicates that precipitation leading SM by 90˚.

The land types are (a) desert, (b) forest, (c) grassland, and (d) farmland.).

https://doi.org/10.1371/journal.pone.0217020.g006
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This anti-phase relationship indicates that the SM will decrease with the increases of tempera-

ture and it will increase with the decreases of temperature. SM at 0–10 cm in the forest, grass-

land, and farmland all present an anti-phase relationship with temperature. In addition, SM at

10–40 cm in the desert, forest grassland, and farmland have an anti-phase relationship with

temperature (Fig 9). We can find that the principal resonant periods of temperature and SSM

in the TRB are about 2–3 year, with the anti-phase relation (Table 4).

Fig 7. The cross wavelet transform of precipitation and SM (10–40 cm). (The area surrounded by the thick black

line indicates the 5% significance level against red noise and the cone of influence (COI) with edge effects is shown as a

lighter shade. Arrows presents the relative phase relationships between precipitation and SM, where the right direction

means in-phase, the left direction means anti-phase, and up direction indicates that precipitation leading SM by 90˚.

The land types are (a) desert, (b) forest, (c) grassland, and (d) farmland.).

https://doi.org/10.1371/journal.pone.0217020.g007

Table 4. The cross wavelet transform of SSM with precipitation and temperature.

Land types Category Period /years Time range Mean phase angle/˚ Relation Time lags/d

Desert PRE�0–10 6–8 1979–1990 0.35˚±0.11˚ in-phase 0.3549

PRE�10–40 6–8 1972–1987 0.07˚±0.12˚ in-phase 0.0710

TEM�0–10 2–3 1961–1969 -2.04˚±0.81˚ anti-phase 2.0683

TEM�10–40 2–3 2002–2006 1.29˚±0.36˚ in-phase 1.3079

Forest PRE�0–10 6–8 1974–1990 0.86˚±0.13˚ in-phase 0.8719

PRE�10–40 6–8 1972–1990 0.35˚±0.06˚ in-phase 0.3549

TEM�0–10 2–3 1964–1969 -1.76˚±0.05˚ anti-phase 1.7844

TEM�10–40 2–3 1964–1966 -3.12˚±0.03˚ anti-phase 3.1633

Grassland PRE�0–10 2–3 1995–2001 0.28˚±0.13˚ in-phase 0.2839

PRE�10–40 2–3 1999–2006 -2.45˚±0.03˚ anti-phase 2.4840

TEM�0–10 2–3 1964–1969 -2.42˚±0.17˚ anti-phase 2.4536

TEM�10–40 2–3 2002–2006 -2.27˚±0.07˚ anti-phase 2.3015

Farmland PRE�0–10 6–8 1974–1987 0.77˚±0.11 in-phase 0.7807

PRE�10–40 6–8 1980–1885 0.24˚±0.04˚ in-phase 0.2433

TEM�0–10 2–3 1995–1998 -2.97˚±0.04˚ anti-phase 3.0113

TEM�10–40 2–3 2005–2008 -2.80˚±2.39 anti-phase 2.8389

Note: PRE�0–10 presents the cross wavelet transform between annual average SM of 0–10 cm layer and auunal average precipitation, PRE�10–40 presents the cross

wavelet transform between annual average SM of 10–40 cm layer and annual average precipitation. TEM�0–10 presents the cross wavelet transform between annual

average SM of 0–10 cm layer and annual average temperature, TEM�10–40 presents the cross wavelet transform between annual average SM of 0–10 cm layer and

annual average temperature.

https://doi.org/10.1371/journal.pone.0217020.t004
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The phase angle of XWT can figure out the time lags between tow time series. As can be

seen from Table 4, SSM of the different land types have different time lags compared with the

variation of precipitation and temperature. The time lags of the SSM relative to the tempera-

ture change is significantly longer than its time lags relative to the precipitation change, and

the time lags vary from different land types. SM at 0–10 cm and 10–40 cm show different time

lags compared with the precipitation change, with the lags of about 0.28d–0.87d and 0.07–

0.35d, respectively. SM at 0–10 cm and 10–40 cm also present different time lags compared

with the temperature change, with the lags of about 1.78d–3.01d and 1.30d–3.16d, respectively.

The variation of SSM in the TRB is closely related to climate change. Precipitation is a princi-

pal and direct sources of SSM, which means the impact of precipitation on the variation of

SSM is more direct. However, temperature affects the change of SM by affecting the soil

freeze-thaw process and the evaporation of the surface soil layer [57–59]. Therefore, the time

lags of SSM relative to temperature changes are longer than its time lags relative to precipita-

tion change.

Fig 8. The cross wavelet transform of temperature and SM (0–10 cm). (The area surrounded by the thick black line

indicates the 5% significance level against red noise and the cone of influence (COI) with edge effects is shown as a

lighter shade. Arrows presents the relative phase relationships between temperature and SM, where the right direction

means in-phase, the left direction means anti-phase, and up direction indicates that temperature leading SM by 90˚.

The land types are (a) desert, (b) forest, (c) grassland, and (d) farmland).

https://doi.org/10.1371/journal.pone.0217020.g008

Fig 9. The cross wavelet transform of temperature and SM (10–40 cm). (The area surrounded by the thick black line

indicates the 5% significance level against red noise and the cone of influence (COI) with edge effects is shown as a

lighter shade. Arrows presents the relative phase relationships between temperature and SM, where the right direction

means in-phase, the left direction means anti-phase, and up direction indicates that temperature leading SM by 90˚.

The land types are (a) desert, (b) forest, (c) grassland, and (d) farmland).

https://doi.org/10.1371/journal.pone.0217020.g009
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The results of XWT reveal that the significant correlation between precipitation and SSM

mainly distributes in the periods from the 1970s to the early 1990s, and the significant correla-

tion between temperature and SSM mainly distributes in the periods about the 1960s. It is basi-

cally consistent with the researches about the variation of drought and waterlogging. The

drought of the TRB presented serious in the 1960s, and the transition periods from drought to

waterlogging were about the 1970s to the 1980s, while the drought conditions significantly

declined in the mid-to-late 1980s [60, 61].

The main results of the XWT show that there is a relatively strong link between precipita-

tion and SSM, and it is mainly the in-phase relation, while temperature and SSM is mainly the

anti-phase relation, and the link is relatively weak. The in-phase relationship indicates that SM

will increase with the increases of precipitation and decrease with the decreases of precipita-

tion, and the anti-phase relationship indicates that the SM will decrease with the increases in

temperature and it will increase with the decreases of temperature. We can find that the varia-

tion of SSM in the TRB is more influenced by precipitation, and temperature is less effective in

affecting of SSM change [10]. The time lags of SSM to temperature changes are longer than its

time lags relative to precipitation, and the lags vary from different land types, which are differ-

ent from previous researches [8, 10, 18, 50].

Conclusion

We investigated the spatiotemporal variation of SSM in different land types and its responses

to the climate change in the TRB based on the GLDAS SM data and the grid data of precipita-

tion and temperature in China. This research used the Mann-Kendall test to examine the

change trend of SSM, and also used the Pearson correlation coefficient and cross wavelet trans-

form to explore the relationship and time lags of SSM relative to the variation of precipitation

and temperature. The main conclusions are as follows: (1) the low-value of SSM distributes in

the Taklamakan Desert, whereas the high-value of SSM mainly distributes in Pamirs and the

southern foothill of Tianshan Mountains, where the land types are mainly forest, grassland,

and farmland. (2) Annual average SSM and seasonal SSM of the forest, grassland, and farm-

land all present a significant increasing trend during the study period. (3) SM at 0–10 cm of all

land types are positively correlated to precipitation in spring and autumn, and SM at 0–10 cm

in the forest, grassland, and farmland are positively correlated with temperature in winter. (4)

SSM presents in-phase relation with precipitation whereas it presents anti-phase relation with

temperature, with the significant resonance periods, with the periods about 6–8 years and 2–3

years respectively. (5) The significantly related periods of SSM and precipitation are mainly

from1970s to early 1990s, and its significantly related periods with temperature are mainly

around 1960s. (6) The time lags of SSM relative to temperature change are longer than its time

lags relative to precipitation change, and it varies from different land types.
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