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Abstract

Brain morphology varies across the ageing trajectory and the prediction of a person's

age using brain features can aid the detection of abnormalities in the ageing process.

Existing studies on such “brain age prediction” vary widely in terms of their methods

and type of data, so at present the most accurate and generalisable methodological

approach is unclear. Therefore, we used the UK Biobank data set (N = 10,824, age

range 47–73) to compare the performance of the machine learning models support

vector regression, relevance vector regression and Gaussian process regression on

whole-brain region-based or voxel-based structural magnetic resonance imaging data

with or without dimensionality reduction through principal component analysis. Per-

formance was assessed in the validation set through cross-validation as well as an

independent test set. The models achieved mean absolute errors between 3.7 and

4.7 years, with those trained on voxel-level data with principal component analysis

performing best. Overall, we observed little difference in performance between

models trained on the same data type, indicating that the type of input data had

greater impact on performance than model choice. All code is provided online in the

hope that this will aid future research.
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1 | INTRODUCTION

The world population is ageing rapidly, with one in four people in

Europe and North America and one in six people globally predicted to

be aged over 65 by 2050 (United Nations, Department of EconomicAndrea Mechelli and Walter H. L. Pinaya contributed equally to this work.
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and Social Affairs, 2019). On a societal level, the ageing population is

linked to greater socioeconomic costs (United Nations, Department of

Economic and Social Affairs, 2019); on an individual level, ageing is

associated with a progressive decline in physical and cognitive abilities

(Fjell & Walhovd, 2010). It, therefore, is of critical importance to

detect age-related health issues in their early stages to prevent or

slow down further deterioration.

Recently, there has been great interest in measuring the ageing

process of the brain through brain age prediction using machine learn-

ing methods, most commonly based on structural magnetic resonance

imaging (MRI). Previous studies have reported very high correlations

between brain age predictions and chronological age in healthy people

(e.g., r > .9, Franke, Ziegler, Klöppel, & Gaser, 2010). In disease, how-

ever, the brain-ageing pattern may deviate from the chronological age-

ing trajectory. Various psychiatric and neurological diseases appear to

have mechanisms that manifest as accelerated ageing in different brain

regions, for example, schizophrenia (Koutsouleris et al., 2014; Nenadi�c,

Dietzek, Langbein, Sauer, & Gaser, 2017) and Alzheimer's disease

(Franke et al., 2010; Gaser, Franke, Klöppel, Koutsouleris, &

Sauer, 2013). These abnormal ageing patterns may be detectable before

symptom onset while the individual still appears healthy, and they can

serve as a personalised marker of general brain health (Cole &

Franke, 2017). Brain age prediction thus has translational potential for

early detection of age-related conditions (Cole & Franke, 2017).

For the successful application of brain age to the clinical context,

it is essential to first understand healthy brain ageing and disentangle

the effects of different methodological approaches on its prediction.

The literature shows great variability in methods, including the choice

of analytical models and their parameters, the preprocessing of the

neuroimaging data, sample sizes and the selection of input features

(e.g., region- vs. voxel-level). While several studies have compared dif-

ferent models on the same data (e.g., Franke et al., 2010; Valizadeh,

Hänggi, Mérillat, & Jäncke, 2017), the most suitable methodological

approach for brain age prediction is yet to be established.

In this study, we aimed to compare three commonly used

machine learning methods to predict brain age: support vector regres-

sion (SVR), relevance vector regression (RVR) and Gaussian process

regression (GPR). In addition, we aimed to identify the optimal set of

processing parameters for each method. Therefore, we assessed the

impact of the following methodological choices for models trained on

structural MRI data: (a) the use of region- or voxel-based

preprocessing of MRI scans, (b) the effect of dimensionality reduction

on voxel-based models, (c) the generalisation of models to an inde-

pendent data set, and (d) the minimum number of training subjects

required for model performance above chance level.

We investigated three main hypotheses. First, based on the previ-

ous literature (see overview in Table S1), we expected the models to

perform with mean absolute errors (MAE) below 5 years. Second, we

expected the models trained on region-based data to perform better

than those trained on voxel-based data due to the higher dimensional-

ity in the latter, which increases noise, risk of confounding factors and

redundancy of data. Third, as RVR is often viewed as state-of-the-art

(Franke & Gaser, 2019), we expected this model to achieve the

highest level of accuracy for all types of data input, followed by SVR

and then GPR. To our knowledge, this is the first study to directly

compare these methods on a large data set of more than 10,000 sub-

jects. Our methodologies are introduced in detail and all code is pro-

vided online, so that the reader can easily develop and apply the

models described here to their own data.

2 | METHODS

2.1 | Subjects

The UK Biobank is a population-based prospective study with over

500,000 participants of middle and old age (https://www.ukbiobank.ac.

uk/; Miller et al., 2016; Sudlow et al., 2015). Ethical approval was

obtained by UK Biobank from the research ethics committee (REC refer-

ence 11/NW/0382). The present study was conducted under project

number 40323. We included neuroimaging data from two imaging cen-

tres: Site 1, located in the Manchester area (Cheadle), and Site 2, located

in Reading. Subjects with a diagnosis of brain-related disorders were

excluded (based on the UK Biobank data code 19 “ICD10”, full list in

Table S2). To avoid the confounding effects of scanner differences, we

treated the two acquisition sites as separate data sets in further analysis.

We discarded any participants without data available on age, sex,

or ethnicity. Participants with non-white ethnicity were excluded due

to the very small sample size, consistent with a previous UK Biobank

study took this approach to minimise heterogeneity (Zhao

et al., 2018). In order to have large enough samples per age for cross-

validation (Section 2.5.2), age groups with fewer than 99 subjects

were excluded, which affected ages younger than 47 or older than 73.

In the Site 1 data set, we also excluded subjects to ensure that the

male/female proportion would not be statistically different across the

different ages (see Figure S1 for details). Based on these criteria,

2,148 out of 12,628 subjects from Site 1 and 77 out of 421 subjects

from Site 2 were marked for exclusion. Further subjects were

excluded if they did not meet quality criteria for voxel-based data

(Section 2.2.2) or for region-based data (Section 2.2.4). The demo-

graphics of the final included samples are presented in Table 1. The

same subjects were used for the region- as well as the voxel-based

machine learning analyses.

TABLE 1 Demographic information on UK Biobank data set from
Sites 1 to 2

UK Biobank (N = 10,824)

Site 1 (N = 10,480) Site 2 (N = 344)

Age, years

Mean ± SD 61.3 ± 6.9 62.4 ± 6.7

Range [47, 73] [47, 73]

Sex, n (%)

Men 4,734 (45%) 149 (43%)

Women 5,746 (55%) 195 (57%)
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2.2 | MRI acquisition and processing

2.2.1 | MRI acquisition

At both sites, structural MRI scans were acquired on a 3T Siemens

Skyra scanner with a standard Siemens 32-channel RF receive head

coil. 3D T1-weighted MRI scans were obtained using a 3D MPRAGE

acquisition sequence with the following parameters: inversion time /

repetition time = 880/2000 ms, voxel size = 1 mm isotropic, field of

view = 208 mm × 256 mm × 256 mm, in-plane acceleration factor = 2.

Further details on the acquisition protocol are available on the UK

Biobank website (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=

1977) and in Miller et al. (2016).

2.2.2 | Quality control of raw MRI data

Quality control of the raw MRI scans was performed using the freely

available machine learning tool MRIQC (Esteban et al., 2017, 2019).

MRIQC takes various raw image metrics from an MRI scan, including,

for example, the presence of movement, artefacts, and signal-to-noise

ratio. Subjects were marked for exclusion if they had an MRIQC rating

of 0.5 or higher, in line with the default threshold (Esteban

et al., 2017). In this way, 1,303 out of 12,628 subjects from Site 1 and

50 out of 421 subjects from Site 2 were marked for exclusion based

on the MRIQC score.

2.2.3 | Region-based data preprocessing

Region-level tissue segmentation and anatomical labelling were per-

formed using the recon-all pipeline with standard parameters in

FreeSurfer (version 6.0, http://surfer.nmr.mgh.harvard.edu/; Fischl

et al., 2002). During this pipeline, FreeSurfer automatically removes

non-brain tissue, reconstructs the cortical surface, and segments corti-

cal and subcortical brain regions. The cortical surface of the structural

MRI scans was parcellated using the Desikan-Killiany cortical atlas

(Desikan et al., 2006) and segmented into 68 cortical regions (34 per

hemisphere). An additional 33 neuroanatomical structures were

extracted using the ASEG atlas in FreeSurfer (Desikan et al., 2006; Fis-

chl et al., 2002). Further technical details about the pipeline were

described elsewhere (Dale, Fischl, & Sereno, 1999; Fischl et al., 2002).

In this study, we normalised the resulting 101 regional volumes (for

the complete list, see Table S3) by the total intracranial volume (also

computed by FreeSurfer). These normalised regional volumes were

used as input data for further analysis.

2.2.4 | Quality control of region-based
preprocessed data

Quality control of FreeSurfer-preprocessed MRI scans was performed

using Qoala-T (Klapwijk, van de Kamp, van der Meulen, Peters, &

Wierenga, 2019). Qoala-T automatically rates the quality of

FreeSurfer-preprocessed scans to detect artefacts or processing

errors. We inverted the probability scale of Qoala-T to match the

MRIQC scale (see Section 2.2.2), so that both methods output the

probability of a low-quality image. Subjects were marked for exclusion

if they had a Qoala-T rating of 0.5 or higher in line with the default

value (Klapwijk et al., 2019). In this way, 1,626 out of 12,628 subjects

from Site 1 and 62 out of 421 subjects from Site 2 were marked for

exclusion based on the Qoala-T score. Overall, subjects were excluded

if they were marked as low quality by either Qoala-T or MRIQC (see

Section 2.2.2) or were excluded because of missing data or processing

for homogeneity (Section 2.1). Taken together, quality control

removed 413 out of 12,628 subjects from Site 1 and 16 out of

421 subjects from Site 2.

2.2.5 | Voxel-based data preprocessing

Voxel-level preprocessing was performed using the Advanced

Normalisations Tools (ANTs, version 2.2.0, http://stnava.github.io/

ANTs/; Avants, Tustison, Song, et al., 2011; Avants, Tustison, &

Song, 2009). Each MRI scan was first bias field corrected using the N4

method (Tustison et al., 2010) and skull-stripped using a probabilistic

tissue segmentation (via Atropos; Avants, Tustison, Wu, Cook, &

Gee, 2011). After the skull stripping, we registered the brain images

into a template space called ICBM 2009c nonlinear symmetric (avail-

able at http://nist.mni.mcgill.ca/?p=904; Fonov et al., 2011; Fonov,

Evans, McKinstry, Almli, & Collins, 2009). The registration was per-

formed using a three-stage approach that included a rigid body trans-

formation, an affine transformation, and a SyN registration (using the

Mattes mutual information) to align each image with the template

(Avants, Epstein, Grossman, & Gee, 2008). After this preprocessing,

we extracted the voxels inside the template's brain mask and flattened

the three-dimensional volume into a one-dimensional vector of grey-

scale values that was then used as input to further analysis.

2.3 | Dimensionality reduction

An important difference between the analysis of region- and voxel-

based data is the greater need of addressing the “curse of dimension-

ality” in the latter, meaning that the number of features (i.e., voxels) is

considerably higher than the number of subjects. Methods of dimen-

sionality reduction remove redundant features (e.g., high spatial corre-

lations between voxels) and noise to reduce overfitting of the model

to the training data. Principal component analysis (PCA) is a commonly

used unsupervised technique for this, in which new features are cre-

ated by linearly transforming correlated features in the data into a

smaller number of uncorrelated features (“principal components”),
while retaining most of the variance (Mwangi, Tian, & Soares, 2014).

In the present study, linear incremental PCA (IPCA) from the

sklearn library in Python was performed on the ANTs-preprocessed

training data (Ross, Lim, Lin, & Yang, 2008). IPCA is typically used as a

2334 BAECKER ET AL.

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977
http://surfer.nmr.mgh.harvard.edu/
http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
http://nist.mni.mcgill.ca/?p=904


replacement for PCA when the data set to be decomposed is too large

to fit in memory. IPCA builds a low-rank approximation for the input

data using an amount of memory that is independent of the number

of input data samples. It is still dependent on the input data features,

but changing the batch size allows for control of memory usage. The

only limitation of this method is that the number of components com-

puted must be lower than the batch size. In our case, we were able to

compute 150 components without having any numerical issues (when

using a batch size of 400 and using 128 GB of RAM). The 150 compo-

nents explained 71% (±0.002) of the data variance.

2.4 | Machine learning models

2.4.1 | Support vector regression

Support vector machine (Cortes & Vapnik, 1995) is one of the most

commonly used supervised machine learning techniques in neuroim-

aging, especially linear SVR. The main idea behind a linear SVR model

is to find a flat hyperplane that deviates from the training data as little

as possible, similarly to linear regression. However, in contrast to lin-

ear regression where the model aims to minimise the observed train-

ing errors, an SVR model calculates the error based only on the data

points that fall outside of a so-called “margin of tolerance” (Smola &

Schölkopf, 2003). The margin of tolerance is defined by the hyper-

parameter epsilon (ε) and represents the deviation from the hyper-

plane that data are allowed to have. The data points outside of this

margin are called support vectors because they determine the position

of the hyperplane. Another parameter that influences the perfor-

mance of SVR is the regularisation hyperparameter C. This parameter

is used to reduce overfitting by trading off the hyperplane complexity

(given by the steepness of the hyperplane) and the obtained training

errors. The so-called “kernel trick” can be used to make nonlinear into

linear data by mapping them into higher dimensions through the appli-

cation of kernel functions (e.g., polynomial, radial basis; Cortes &

Vapnik, 1995). However, the present study only used linear kernels

because nonlinear methods (a) may require too large sample sizes to

generalise well and (b) do not allow for straightforward visualisation

making it difficult to determine which regions contributed most to the

final model (Rasmussen, Madsen, Lund, & Hansen, 2011).

2.4.2 | Relevance vector regression

In contrast to SVR, RVR (Tipping, 2001) uses a general linear model

based on Bayesian inference, meaning that its predictions are probabi-

listic instead of deterministic. The latter is achieved by assuming a

prior probability distribution of the weights of the input data as a

zero-mean normal distribution and iteratively adjusting the values of

precision in the model using evidence approximation. While training,

the weights with weak precision are set to zero, and the basic func-

tions associated with it are pruned. RVR results are generally sparser

than SVR, that is, they use fewer support vectors, which contributes

to their greater robustness to outliers and higher generalisation

(Wang, Fan, Bhatt, & Davatzikos, 2010). Furthermore, since RVR does

not require hyperparameter tuning, it avoids the need to run methods

like grid search or random search, thus making the RVR training pro-

cess potentially less computationally expensive (Franke &

Gaser, 2019). However, because the learning method is a variation of

expectation maximisation, the optimisation is non-convex, which

makes the predictions more prone to local minima errors.

2.4.3 | Gaussian process regression

GPR represents a nonparametric Bayesian approach to classical

regression in form of a supervised machine learning model

(Rasmussen & Williams, 2006; Williams & Rasmussen, 1996). Instead

of learning the exact target value of training data, GPR infers a proba-

bility distribution of possible values. Performing GPR requires the

specification of a prior distribution as a mean and covariance kernel

(e.g., linear, nonlinear, radial). It is usually assumed to be a multivariate

Gaussian distribution with mean 0. The probabilities of this prior dis-

tribution are then adjusted based on the target values in the training

data using Bayes' theorem. In the resulting posterior distribution, the

information from the prior distribution and the real data are combined

into joint probabilities. If the prior distribution is assumed to be

Gaussian, the predictive distribution for previously unseen data will

also be Gaussian. From this predictive distribution, the prediction for

a previously unseen value can be inferred as the mean and the uncer-

tainty of the prediction as its variance. RVR is a sparse version of GPR

with a specified covariance kernel.

2.5 | Model development and comparison

2.5.1 | Model training

Region-based models

Region-based SVR, RVR and GPR models were trained on all subjects

from Site 1 that passed the quality checks of raw and segmented data

(Sections 2.2.2 and 2.2.4).

For the trials using FreeSurfer data, each region was first

normalised by total intracranial volume and then separately scaled

using statistics from the training set. Using the robust scaler approach

in the Python package scikit-learn (Pedregosa et al., 2011), we

removed the median and scaled the values of the regional data to the

interquartile range to increase robustness to outliers. These scaled

values served as input to the model training.

Linear SVR was implemented using “LinearSVR” in the scikit-learn

package with an epsilon-insensitive loss function. SVR models require

tuning of hyperparameter C (see Section 2.4.1). Within each iteration

of the cross-validation (CV, see Section 2.5.2), a fivefold nested CV

(stratified by age) was implemented to conduct a systematic hyper-

parameter search for C using the sklearn grid search method over the

search space 2−7, 2−5, 2−3, 2−1, 1, 2, 23, 25 and 27. The scoring
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parameter was specified as negative MAE. The model with the best

hyperparameter value (measured by the MAE) was then retrained on

the whole training set from that CV iteration before it was applied to

the test set. All other parameters of linear SVR were used with their

default values, for example, an epsilon value of 0, a tolerance for stop-

ping criterion of 1e-4, and a maximum of 1,000 iterations.

RVR models were trained using the Python library sklearn-rvm,

which implements expectation-maximisation RVR. The models were

specified to use a linear kernel and a threshold for alpha selection cri-

terion for the number of relevance vectors of 1e9. The default values

were used for all other parameters, such as a tolerance for stopping

criterion of 1e5, an unfixed beta, no prespecified initial value for

alpha, no bias added to the decision function, and a maximum number

of 5,000 iterations.

GPR was implemented using “gaussian_process” in the scikit-

learn package with a dot-product kernel to specify the covariance

function. The remaining parameters of the function were left at

default, for example, an alpha value of 1e-10 and an optimiser

“fmin_l_bfgs_b” with only one run, which determines the optimiser

for the hyperparameter theta.

Voxel-based models

Voxel-based SVR and RVR models without PCA as well as the voxel-

based SVR, RVR and GPR models with PCA were trained on all sub-

jects from Site 1 that passed the quality checks of raw and segmented

data (Sections 2.2.2 and 2.2.4), so the same subjects were used as

input to the region- and voxel-based models.

The kernels and parameters for the voxel-based models without

PCA were generally the same as in the region-based models. In brief,

SVR was implemented using the sklearn “SVM” library with a

precomputed linear kernel. A systematic hyperparameter search for C

was implemented using the sklearn grid search method in a fivefold

nested CV (stratified by age) over the search space 2−7, 2−5, 2−3, 2−1,

1, 2, 23, 25 and 27 and the scoring parameter specified as negative

MAE. RVR was implemented using the sklearn-rvm library for

expectation-maximisation RVR with a precomputed linear kernel. GPR

on voxel-level data without PCA could not be performed due to com-

putational restraints.

The 150 principal components from PCA (Section 2.3) were

precomputed and then served as input to the voxel-based SVR, RVR

and GPR models with dimensionality reduction. The principal compo-

nents were scaled using the robust scaler from the sklearn library. Lin-

ear SVR, RVR and GPR with PCA were implemented using the same

libraries, functions and parameters as for the region-based analysis.

2.5.2 | Cross-validation

In this study, 10-fold CV was performed to train each regression

model on nine subsets of randomly selected subjects and then test

the model on the one subset that was left out, also called the valida-

tion set. For all models, the CV training and validation sets were

stratified by age to preserve the same age distribution in the training

and validation set. To improve the replicability of the results, we

repeated the 10-fold CV 10 times (method called 10-times 10-fold

CV) following the recommendations by Bouckaert and Frank (2004).

This method resulted in 100 performance measures per model that

were later used in our hypothesis tests.

2.5.3 | Model accuracy

The difference between the participant's predicted brain age and their

chronological age was used to measure the models' predictions at an

individual level. This measure is also known as brain age gap estima-

tion (BrainAGE; Franke et al., 2010), brain-predicted age difference

(brain-PAD; Cole et al., 2018) or brain age delta (Smith, Vidaurre,

Alfaro-Almagro, Nichols, & Miller, 2019). It is calculated as

BrainAGE = predicted age—chronological age, where a positive

BrainAGE indicates that the participant's brain age was predicted to

be older than their chronological age and vice versa.

We reported the performance of each model as the MAE, which

is the mean of the absolute values of BrainAGE across all samples in

the validation or test set. Furthermore, as suggested by Cole, Franke,

and Cherbuin (2019), we also reported the “weighted MAE”, where

the MAE is presented as a ratio of the age interval of the data set. In

the cross-validation results, we divided the MAE by the age range of

this validation set, and in the independent test set, we divided the

MAE by the age range of the independent test set. The age interval in

our train and test data sets was [47, 73], so the MAE was divided by

73–47 = 26 to obtain the weighted MAE. Weighting by the age range

makes the comparison of the results to other studies using different

age ranges more meaningful.

As additional measures, we examined the root mean squared

error (RMSE), which is more sensitive to outliers than MAE, the corre-

lation coefficient Pearson's r for chronological age and predicted age,

and the prediction R2. These measures are explained in more detail

below. All performance metrics were reported as the mean across all

100 models from the CV iterations and repetitions.

It is important to note that the prediction R2 (also called cross-

validation R2 or q2) presented here differs from the coefficient of deter-

mination R2 that is typically reported in regression studies as the square

of the correlation coefficient. We followed recommendations by

Scheinost et al. (2019) of reporting Pearson's r in combination with pre-

diction R2 to reflect the error between predicted and observed values

more accurately, while the coefficient of determination R2 reflects the

error between the predictions and their fit to the regression line

(Alexander, Tropsha, & Winkler, 2015; Scheinost et al., 2019). Whilst

standard R2 indicates how much variation in the sample is accounted

for in the model, prediction R2 denotes the amount of variation in

potential new observations that were not part of the model develop-

ment that is accounted for in the model. Scheinost et al. (2019) demon-

strated that prediction R2 is less likely to overestimate prediction

performance evaluated through CV, making it is less biased.
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2.5.4 | Statistical comparison of regressor
performance

To test for differences in the performance of the evaluated regressors,

we used the version of the paired Student's t test corrected for the

violation of the independence assumption from repeated k-fold CV

during model training (Bouckaert & Frank, 2004; Nadeau &

Bengio, 2003). The regular paired Student's t test would have led to

an increased probability of type I error, as first demonstrated by

Dietterich (1998). The corrected version of the t test outputs the t

statistic and p-value for the comparison of two regressors with the

null hypothesis that their performance is not statistically different

(i.e., their performance difference is equal to 0).

This corrected version of the t test was used to assess whether

the means of MAE values resulting from the 10-times 10-fold CV of

two models were statistically different. The pairwise comparison of

the eight models in this study (i.e., three applied to region-level data,

the two models applied to voxel-level data without PCA, and the

three applied to voxel-level data with PCA) resulted in 28 combina-

tions. Bonferroni correction for multiple comparisons was used to

determine the significance level (α = .05/28 comparisons ≈ .0018). If a

statistically significant difference was found between two models, the

relatively lower/higher MAE of each model was used to infer whether

a model performed better or worse than the other.

2.6 | Model generalisation

We also tested model generalisation by applying the models to an

independent test set, the Site 2 data from UK Biobank. Testing in an

independent data set eliminates sample bias in the assessment of per-

formance, and it provides a more realistic representation for the

potential application of brain age prediction as a biomarker in clinical

practice or similar scenarios. In such real-world problems, the data for

age prediction would likely come from several sources with con-

founding imaging effects, such as scanner hardware or operator

inconsistencies. For the region-level data, the 100 regressor models

and scalers, obtained from the 10-times 10-fold CV, were loaded one

by one. The test data were first scaled in the case of region-level data

or masked in the case of voxel-level data (using the template's brain

mask) and then the loaded regressor models were applied to predict

the brain age of each subject in the Site 2 data set. The corrected ver-

sion of the Student's t test was used to assess the statistical signifi-

cance of performance differences between the regressor models. A

Student's t test was also used to test for differences in the age distri-

butions between Sites 1 and 2.

2.7 | Covariate analysis of age

Chronological age may have a confounding effect on brain age predic-

tion models (Le et al., 2018). Whilst we did not account for this poten-

tial effect in the models themselves, we assessed it in a post-hoc

analysis using Spearman's rank-order correlation. The age-BrainAGE

correlation measure is also known as “age bias” (de Lange &

Cole, 2020) and it can be used to assess whether BrainAGE needs to

be corrected for chronological age (for a discussion, see Le

et al., 2018). Spearman's rank-order correlation is a nonparametric

assessment of the monotonicity of the relationship between two vari-

ables, in this case chronological age and BrainAGE. Spearman's corre-

lation coefficient (rS) describes the degree and direction of the

relationship on a scale of −1 to 1 to indicate if the variables are nega-

tively correlated, positively correlated or not at all correlated.

2.8 | Analysis of training set size

We used bootstrapping to estimate the stability of the machine learn-

ing models for different training set sizes. Bootstrapping is a

resampling method, where the original training set is resampled with

replacement to obtain a new training set of the desired sample size.

Bootstrap is commonly used in machine learning classification studies

to assess the robustness of performance across training set sizes and

determine the minimum training set size required for the model to

performance above chance level (e.g., Nieuwenhuis et al., 2012).

Therefore, we chose to systematically assess a wide range of training

set sizes for each machine learning model to investigate how their

MAE differed with smaller and larger training samples.

We created 1,000 bootstrap samples with replacement con-

taining 54–1,080 subjects in the training set, with equal numbers of

men and women per age group (starting at one man and one woman

per age up to 20 each per age). This means that 54 subjects (27 men,

27 women) were added to the training set size in each iteration that

may or may not overlap with the bootstrap training sample at the pre-

vious iteration. Additionally, we created a validation set containing

1,080 subjects (40 subjects per age, 20 women/20 men) that did not

overlap with the subjects in the corresponding training set per itera-

tion. Besides that, we used the whole Site 2 data set (with a non-

uniform age distribution) in order to assess the generalisation. For the

voxel-based models with PCA, we only assessed data sets with more

than 150 subjects, because the PCA algorithm requires more samples

than principal components. Furthermore, training set sizes above

500 were not calculated due the restriction in time and computer

resources.

SVR, RVR and GPR models were retrained on each of the training

bootstrap samples and the MAE was obtained in the corresponding

validation bootstrap sample as well as the independent test set. To

obtain the confidence interval (CI; 95% of confidence) for the esti-

mates, we used the percentile method (Efron, 1981). We compared

these models against a naïve approach where we used the data set

mean age of the uniform distribution as the chance-level prediction

performance. In this case, the mean absolute distance between all

chronological ages and the mean value is the standard deviation of

the uniform distribution

(i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agemax−age minð Þ2=12

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73−47ð Þ2=12

q
=7:5 years). This

approach was used to assess the sample size required for the
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bootstrap models to perform better than chance level, that is, if the

confidence interval did not overlap with the chance value.

2.9 | Experiments

All experiments were conducted in Python 3 using the scikit-learn

library for SVR and GPR (https://scikit-learn.org/stable/; Pedregosa

et al., 2011), sklearn-rvm library for RVR (https://github.com/Mind-

the-Pineapple/sklearn-rvm), and statsmodels library (https://www.

statsmodels.org/stable/index.html; Seabold & Perktold, 2010). The

code is available at https://github.com/MLMH-Lab/Brain-age-

prediction.

3 | RESULTS

3.1 | Model comparison

The results from the 10-times 10-fold CV of the SVR, RVR and GPR

models on region-level data and voxel-level data (with or without

PCA) are summarised in Table 2, whereas the statistical significance of

the model comparisons is reported in Table 3. The models achieved

MAE values between 3.69 years (voxel-based RVR without PCA) to

4.43 years (region-based SVR and RVR; Table 2). Overall, the voxel-

based models with PCA performed significantly better than all other

models (Table 3). The performance of the three voxel-based models

with PCA were very similar with MAE of �3.9 years, and the perfor-

mance of the region-based models was also highly similar across all

measures with MAE of �4.4 years. This was less consistent for the

voxel-based models without PCA. Whilst the lowest MAE was actu-

ally achieved by voxel-based RVR without PCA, this was not statisti-

cally different from any other models. The latter is probably due to its

high standard deviations. Additional analysis revealed that 41 out of

the 100 model iterations underfitted to the training data with <600

relevance vectors (data not shown), which is likely because the rele-

vance vector selection threshold during training was too low. The

voxel-based SVR without PCA performed worse than its RVR coun-

terpart with an MAE value of 4.33 years, though this difference is not

statistically significant. The higher RMSE values for all models indi-

cated the presence of a few outliers in the sample.

Chronological age and predicted age showed moderate positive

correlations for all models (r � .6 for region-based models and r � .7

for voxel-based models). The prediction R2 values showed a similar

pattern of moderate positive scores that are slightly higher for voxel-

based models than for region-based models (R2 � .4 for region-based

models and R2 � .5 for voxel-based models) with the exception of

voxel-based SVR without PCA (R2 � .4). This means that the models

would account for 40–50% of variance in new data observations.

3.2 | Model generalisation

As presented in Table 4, applying the regressor models to an indepen-

dent data set, UK Biobank Site 2, led to MAE scores �4.1 years for all

region-based models and � 3.8 years for the voxel-based models with

PCA. The latter models with PCA performed better than the region-

based ones (Table 5). In terms of MAE, voxel-level RVR without PCA

had the best performance with 3.66 years; however, this was not sta-

tistically different from any other models due to its high SD. The

voxel-based SVR model without PCA performed worst with a MAE of

4.69 years, which was worse than the models with PCA and all

region-based models. The correlation between chronological and

predicted age was moderate to high for all models (r ~ .7). Similarly,

the prediction R2 scores were moderate for most models with slightly

higher values for the voxel based models (R2 ~ .5) with the exception

of voxel-based SVR (R2 = .21), which is in line with the other worse

performance measures for this model.

Importantly, compared to Table 2, all models except for voxel-

level SVR without PCA showed better performance in the indepen-

dent test set than in the CV (significance not assessed), suggesting

that they generalised well. The Student's t test indicated that the age

distribution was statistically significantly different between Sites

1 and 2 (p < .001) with the Site 2 data set being slightly older.

TABLE 2 Performance metrics for region- or voxel-based SVR, RVR and GPR models in 10-times 10-fold CV (UK Biobank Site 1) with or
without dimensionality reduction through PCA

Data type Method MAE Weighted MAE RMSE Pearson's r Prediction R2 Age-BrainAGE correlation

Region SVR 4.43 (0.09) 0.17 5.48 (0.12) 0.62 (0.00) 0.37 (0.03) −0.73 (0.00)

RVR 4.43 (0.09) 0.17 5.44 (0.11) 0.62 (0.00) 0.38 (0.02) −0.78 (0.00)

GPR 4.42 (0.09) 0.17 5.44 (0.11) 0.62 (0.00) 0.38 (0.02) −0.77 (0.00)

Voxel (no PCA) SVR 4.33 (0.10) 0.17 5.43 (0.12) 0.73 (0.00) 0.39 (0.03) −0.23 (0.00)

RVR 3.69 (0.45) 0.14 4.60 (0.50) 0.75 (0.02) 0.55 (0.11) −0.62 (0.02)

Voxel (PCA) SVR 3.89 (0.08) 0.15 4.86 (0.11) 0.71 (0.00) 0.51 (0.02) −0.68 (0.00)

RVR 3.90 (0.08) 0.15 4.85 (0.10) 0.71 (0.00) 0.51 (0.02) −0.72 (0.00)

GPR 3.90 (0.08) 0.15 4.85 (0.10) 0.71 (0.00) 0.51 (0.02) −0.71 (0.00)

Note: . In each column, the data are presented as mean value (SD) across all model iterations. GPR performance on voxel-level data without PCA was not

assessed.
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3.3 | Covariate analysis of age

In the CV evaluation of the models, a high negative Spearman's corre-

lation coefficient (rS) for chronological age and BrainAGE was found

for all models (rS ≈ −.7) except for voxel-based SVR, where a low nega-

tive association was found (rS = −.23; Table 2). Similarly, in the gener-

alisation analysis, the models also displayed high negative age-

BrainAGE correlations for all models (rS ≈ −.7) except for voxel-based

SVR without PCA (rS = −.16; Table 4).

3.4 | Analysis of training set size

The analysis of training set size showed that the performance of the

regression models in an independent test set improved with larger

training set size, but the minimum number of subjects required for

performance above chance level varied with model type (Figure 1).

Among the region-based models, RVR required about 120 subjects to

perform above chance level in an independent data set, while the SVR

and GPR models trained on the same data needed more than 270 sub-

jects to achieve the same performance. However, the MAE for GPR

increased sharply between 54 and 108 subjects before decreasing

again at 152, probably due to overfitting at small sample sizes. To

summarise, RVR appeared to require less than half the sample size

than SVR or GPR to predict brain age on region-level data better than

chance.

The MAE performance for voxel-level data showed different pat-

terns for increasing training set sizes. In the absence of PCA, the train-

ing performance of the SVR model was close to zero for any training

set size, because almost all training samples were assigned to support

TABLE 3 Statistical assessment of differences in model performance in terms of MAE of the region- or voxel based SVR, RVR and GPR in
10-times 10-fold CV

SVR

(region)

RVR

(region)

GPR

(region)

SVR (voxel,

no PCA)

RVR (voxel,

no PCA)

SVR

(voxel, PCA)

RVR

(voxel, PCA)

GPR

(voxel, PCA)

SVR (region) – 0.98 (−0.02) 0.80 (0.26) 0.50 (0.68) 0.14 (1.50) <0.001 (5.11) <0.001 (5.29) <0.001 (5.31)

RVR (region) – 0.48 (0.70) 0.48 (0.71) 0.13 (1.51) <0.001 (5.33) <0.001 (5.54) <0.001 (5.57)

GPR (region) – 0.51 (0.67) 0.14 (1.50) <0.001 (5.27) <0.001 (5.48) <0.001 (5.52)

SVR (voxel,

no PCA)

– 0.20 (1.30) <0.001 (3.58) <0.001 (3.35) <0.001 (3.41)

RVR (voxel,

no PCA)

– 0.69 (−0.40) 0.66 (−0.44) 0.67 (−0.43)

SVR (voxel,

PCA)

– 0.44 (0.78) 0.31 (1.02)

RVR (voxel,

PCA)

– 0.58 (−0.55)

GPR (voxel,

PCA)

–

Note: The table presents the p-values (t-statistic). Statistical significance was assessed using a version of the paired Student's t test corrected for the

violation of the independence assumption in CV. The significance level was corrected for multiple comparisons using Bonferroni's method

(α = .05/28 ≈ .0018). Statistically significant differences between model performances are shown in bold.

TABLE 4 Performance metrics of region- or voxel-based SVR, RVR and GPR models with or without PCA in independent test set (UK
Biobank Site 2)

Data type Method MAE Weighted MAE RMSE Pearson's r Prediction R2 Age-BrainAGE correlation

Region SVR 4.06 (0.02) 0.16 5.07 (0.02) 0.65 (0.00) 0.42 (0.00) −0.72 (0.00)

RVR 4.10 (0.02) 0.16 5.06 (0.02) 0.66 (0.00) 0.42 (0.00) −0.77 (0.00)

GPR 4.08 (0.01) 0.16 5.05 (0.01) 0.66 (0.00) 0.42 (0.00) −0.77 (0.00)

Voxel (no PCA) SVR 4.69 (0.09) 0.18 5.92 (0.11) 0.71 (0.01) 0.21 (0.03) −0.16 (0.01)

RVR 3.66 (0.57) 0.14 4.51 (0.61) n/aa 0.53 (0.15) −0.82 (0.16)

Voxel (PCA) SVR 3.77 (0.04) 0.15 4.65 (0.04) 0.74 (0.00) 0.51 (0.01) −0.60 (0.01)

RVR 3.82 (0.03) 0.15 4.65 (0.04) 0.74 (0.00) 0.51 (0.01) −0.64(0.01)

GPR 3.81 (0.03) 0.15 4.64 (0.04) 0.74 (0.00) 0.51 (0.01) −0.63 (0.01)

Note: In each column, the data are presented as mean value (SD) of the predictions from the 100 model iterations. GPR performance on voxel-level data

without PCA was not assessed.
aPearson's r for voxel-based RVR without PCA could not be calculated, since the model underfitted to the training set and predicted the sample mean age

in 41 out of the 100 iterations; therefore, their predictions in the independent test set had no variance.
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vectors. In contrast, many of the RVR algorithm repetitions unde-

rfitted, leading to very broad confidence intervals for all types of per-

formance assessments and training set sizes. The voxel-based SVR

model with PCA needed a minimum of approximately 200 subjects to

perform above chance, whilst RVR and GPR with PCA performed

above chance level for all training set sizes tested.

4 | DISCUSSION

The present study compared SVR, RVR and GPR with different

morphometric input to perform brain age prediction. A total of

eight models was assessed. The wide range of methods used in pre-

vious studies makes it challenging to disentangle the direct effect

of model choice and other factors, such as the characteristics of the

data set. In our study, we showed that the type of data input is gen-

erally more important than the choice of model, but various other

aspects like data set size and processing time available should be

considered when choosing a model. In Figure 2, we provide a deci-

sion tree that may help inform the model choice. This decision tree

is based on the sequence of steps a researcher would typically take

when designing a brain age study and is informed by the results of

the present investigation. It is important to note that these results,

and therefore our recommendations, are based on the UK Biobank.

For example, our recommendations regarding the sample size and

computational resources may be dependent on the characteristics

of this specific data set. However, we believe that the general idea

that some models require considerably more training data and com-

putational resources than others can be generalised to other

data sets.

Based on the literature, our first hypothesis was that all models

would perform with MAE values below 5 years. With scores ranging

from 3.7 to 4.7 years in the CV as well as the independent test set,

this hypothesis was confirmed. These findings are generally in line

with existing studies using a comparable setup, where MAE values in

CV and independent data sets tend to fall between 3.9 and 6.2 years

and 4.8 and 7.1 years, respectively (see Table S1 for an overview of

related studies).

Our models showed moderate-high positive associations between

age and predicted age (r ≈ .7 for all models) and they accounted for

40–50% of variation in new data (prediction R2 ≈ .4–.5). Whilst these

values are relatively high, the associations were lower than previous

brain age studies that reported r values above .9 (Cole, Leech, &

Sharp, 2015; Franke et al., 2010; Gutierrez Becker, Klein, &

Wachinger, 2018; Kondo et al., 2015). The latter studies have in com-

mon that they covered a wider age range, including young people. In

these age groups, the ongoing brain maturational changes make the

task of brain age prediction easier. It therefore is possible that the lim-

ited and older age range in our sample along with the greater hetero-

geneity because of our unique data set size contributed to the lower—

though still relatively high—r values of our models.

Our second hypothesis was that region-based models would out-

perform voxel-level ones due to the “curse of dimensionality” and

high level of redundancy in the latter data, for example, high spatial

correlations between voxels. This hypothesis was not confirmed, as

there was no significant difference between the region- and voxel-

based models (without PCA) in CV. Nonetheless, it appeared that

dimensionality reduction through PCA could successfully remove

redundancy to the extent that voxel-based models with PCA per-

formed significantly better than the region-based models. This finding

suggests that some of the age-related heterogeneity might be lost if

the MRI data are summarised as regional volumes using FreeSurfer

software. One previous study compared region- and voxel-level data

input for GPR, but there was no clear difference in performance based

on data type only (Gutierrez Becker et al., 2018). Comparing previous

studies using either region- or voxel-level data as input also does not

point at either type of data preprocessing being more suited for brain

age prediction using SVR, RVR or GPR (Table S1).

TABLE 5 Statistical assessment of differences in model performance in terms of MAE of the region- or voxel-based SVR, RVR and GPR
models in an independent test set (UK Biobank Site 2)

SVR

(region)

RVR

(region)

GPR

(region)

SVR (voxel,

no PCA)

RVR (voxel,

no PCA)

SVR

(voxel, PCA)

RVR

(voxel, PCA)

GPR

(voxel, PCA)

SVR (region) - 0.04 (−2.07) 0.15 (−1.46) <0.001 (−6.23) 0.51 (0.66) <0.001 (6.80) <0.001 (6.62) <0.001 (6.72)

RVR (region) - 0.23 (1.21) <0.001 (−5.92) 0.47 (0.73) <0.001 (7.80) <0.001 (7.82) <0.001 (7.76)

GPR (region) - <0.001 (−6.10) 0.49 (0.70) <0.001 (7.38) <0.001 (7.58) <0.001 (7.65)

SVR (voxel,

no PCA)

- 0.10 (1.66) <0.001 (8.94) <0.001 (8.58) <0.001 (8.56)

RVR (voxel,

no PCA)

- 0.86 (−0.18) 0.80 (−0.25) 0.81 (−0.25)

SVR (voxel, PCA) - 0.10 (1.67) 0.08 (−1.77)

RVR (voxel, PCA) - 0.66 (0.44)

GPR (voxel, PCA) -

Note: The table presents the p-values (t-statistic). Statistical significance was assessed using a version of the paired Student's t test corrected for the

violation of the independence assumption in CV. The significance level was corrected for multiple comparisons using Bonferroni's method

(α = .05/28 ≈ .0018). Statistically significant differences between model performances are shown in bold.
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Our third hypothesis was that RVR would perform best regardless

of data input type, because it is seen as the “most popular” algorithm
for brain age prediction (Cole et al., 2019). This hypothesis was not

confirmed. Although voxel-based RVR without PCA showed the low-

est MAE overall with ~3.7 years, the difference to the other models

was not statistically significant due to its high variance. The analysis

F IGURE 1 MAE of region- and voxel-based SVR, RVR, and GPR models with or without PCA for the training set size compared to chance
level (7.5 years; black dotted line). MAE is shown for the performance within the training (red line) and test set (green line) of the CV (Site 1) and
in the independent test set (Site 2; blue line). The confidence intervals (shaded areas) for the different size of the data sets were calculated using
bootstrap analysis. Note that bootstrap training samples were selected to be age- and sex-homogeneous of increasing size with the minimum of
one man and one woman per age and maximum of 20 men and 20 women per age. For the voxel-based models with PCA, data sets with <150

subjects could not be assessed, because the PCA algorithm requires more samples than principal components. Furthermore, training set sizes
above 500 were not calculated due limited time and computational resources

BAECKER ET AL. 2341



of training set size also suggested that many iterations underfitted to

the training set, which likely caused this variance. Therefore, we can-

not conclude that RVR is the best model choice for brain age predic-

tion regardless of data input. Previous studies on RVR or SVR that did

not show a clear superior model (Table S1). Only two studies seem to

have directly compared these two methods. For example, in Kondo

et al. (2015), RVR performed slightly better than SVR in terms of MAE

(4.50 and 4.73 years after dimensionality reduction, respectively). In

Franke et al. (2010), RVR also performed slightly better than SVR after

dimensionality reduction (4.98 vs. 5.10 after dimensionality reduction)

but not without dimensionality reduction (5.23 vs. 5.14 without

dimensionality reduction). This coincided with our findings, where

PCA improved SVR but not RVR performance. However, neither of

the previous studies assessed the significance of the difference, and

we did not find a statistically significant difference between SVR and

RVR if trained on the same data.

In terms of the GPR model, performance did not differ to SVR

and RVR if trained on the same data. This confirms findings from a

previous study where RVR and GPR were compared (Aycheh

et al., 2018). However, there is little data available on this comparison

and especially GPR on region-based data seems to be rare in the brain

age literature. Our region-based GPR model had a smaller MAE than

Gutierrez Becker et al. (2018), but higher than Aycheh et al. (2018).

The MAE of the voxel-based GPR model with PCA is lower than pre-

vious comparable models by >1 year (Cole et al., 2015, 2018; Monté-

Rubio, Falcón, Pomarol-Clotet, & Ashburner, 2018; Table S1).

While MAE values of our models were generally low, their

weighted MAE scores of 0.14 and above were notably higher than in

other studies on SVR, RVR and GPR, where the scores tend to fall

between 0.07 and 0.09 (Table S1). This is likely due to the smaller age

range used here, as detailed in the limitations below. Although

weighted MAE has not been formally validated as a measure of model

performance, taking into account the age range of the training and

test set is a useful exercise. A potential reason for the relatively high

weighted MAE scores in our study might be greater heterogeneity in

our sample due to the very large data set of >10,000 subjects, while

the largest comparable study had around 3,000 subjects (Valizadeh

et al., 2017). The acquisition of 10,000 subjects in one scanner will

likely take place over a much longer time period than smaller data

sets, so the acquired images will also be affected by changes in the

scanner environment. These scanner effects might further contribute

to the heterogeneity of our sample. In short, while the large data set is

a clear strength of our study, it might compromise the comparability

of our results to other studies in terms of weighted MAE.

Our models showed relatively high negative correlations between

chronological age and BrainAGE in the CV iterations as well as the

independent test set (approx. −0.7 for all with the exception of voxel-

based SVR without PCA). This finding suggests that the models were

equally and highly affected by regression to the mean (Le et al., 2018),

although it is unclear why voxel-based SVR may be less affected by

this. Whilst the high confounding effect of chronological may be seen

as a limitation of our study, we believe it does not affect the direct

comparison of models, which was our primary objective. Nonetheless,

future studies should revisit these models and include the correction

for age in the training. Various types of correction have been pro-

posed in recent years (Beheshti, Nugent, Potvin, & Duchesne, 2019;

Cole et al., 2020; de Lange & Cole, 2020; Le et al., 2018).

In a clinical context, it is crucial for a model to generalise to data

from different scanners, because the parameters and environment of

a scanner can introduce considerable bias. It is important to note that

the independent data set in the present study was acquired on a dif-

ferent scanner with the same acquisition parameters, so future studies

should address how our models would perform in other independent

data sets acquired using different scanners and acquisition parame-

ters. Our models generalised well to the independent test set. Indeed,

the region-based models or the voxel-level models with PCA per-

formed slightly better in the independent data set than in the CV set

by approx. 0.3 and 0.1 years, respectively. Statistical significance

between CV and generalisation performance was not assessed. These

findings suggest the promise of these models for real-world applica-

tion. In previous brain age prediction studies that compared model

performance in an independent data set against the CV test, the

models usually performed worse in the former (Cole et al., 2018;

Franke et al., 2010; Lancaster, Lorenz, Leech, & Cole, 2018; Liem

et al., 2017; see Table S1). However, similar to our findings, two stud-

ies also showed comparable performance in both (Cole et al., 2015; Le

F IGURE 2 A decision tree for researchers choosing the most
suitable brain age prediction model for their project. The ranking is
inferred from our experience developing the models as well as the
results of our investigation. These recommendations are thus built on
the UK Biobank data set and our specific computational resources, so
any application to other projects should be done with caution. The
models in this study were developed using a high-end consumer-
grade desktop computer with a 16-core (32-processes) CPU @
3.40 GHz utilising 128 GB RAM. The voxel-based models with PCA
took 1–2 weeks to train, while the voxel-based models without PCA
took <1 day. The region-based models took <1 hr to train
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et al., 2018). Performance differences in an independent data set can

likely be explained by sample characteristics, such as the similarity of

this sample and the training data. In our case, the independent test set

was acquired using the same acquisition protocol on a different scan-

ner and the subjects came from the same population as the CV set.

Noise and homogeneity should thus be similar between the samples.

However, the independent test set appeared to be significantly older

and it contained a slightly higher proportion of women (57%, see

Table 1). So far, it is unclear whether sex has a considerable effect on

brain age prediction, but this factor may have contributed to the per-

formance differences between the sites in our study.

As expected, the analysis of training set size showed that larger

sample sizes generally led to better prediction performances, though

MAE scores did plateau with increasing training set size. For the

region-based models, RVR required only half the training sample size

than the other two to make predictions better than chance level,

suggesting its suitability for studies where the sample size is limited.

The analysis of training set size for GPR showed a sharp decrease in

performance (i.e., higher MAE) at the smaller training set sizes, which

might indicate overfitting to the training sample in the smaller sam-

ples. To our knowledge, no other studies have systematically evalu-

ated the impact of training set size analysis to brain age prediction. In

one case, Franke et al. (2010) assessed the effect of training set size

by running separate RVR models on the full training data set

(N = 410), half the data set (N = 205) and a quarter of the data set

(N = 103). The MAE decreased from the smallest training set

(5.6 years) to the largest set (4.9 years), which coincided with our

results.

While our investigation was based on healthy brain ageing, it is

important to ponder the potential implications of our findings for

studies in clinical populations. One of the most promising uses of

brain age prediction is its relevance and use as a biomarker. It could,

for example, be implemented as an individualised marker of brain

health in diagnostic tools. The main idea is to quantify the deviation

between predicted and chronological age. Brains that are predicted to

be older than their true age might suggest aberrant age-related

changes and be associated with disease (Cole & Franke, 2017). Previ-

ous studies have assessed BrainAGE in various neurological and psy-

chiatric disorders and they demonstrated that different stages of

Alzheimer's disease as well as schizophrenia can present as acceler-

ated ageing in the brain (Franke et al., 2010; Franke & Gaser, 2012;

Gaser et al., 2013; Kaufmann et al., 2019; Koutsouleris et al., 2014,

2015; Nenadi�c et al., 2017; Schnack et al., 2016). One of the neces-

sary characteristics of a biomarker is its reliability. Therefore, future

studies could adopt a longitudinal design to (a) further examine the

reliability of the brain age prediction methods through test–retest

setups in single or multi-scanner experiments, (b) learn more about

the brain changes in health and disease, and (c) explore if brain age is

a useful marker of treatment success in clinical trials.

The present study had three main limitations. First, whilst our

data set size was quite large, the age range of 47–73 was smaller than

most studies in the literature (e.g., Ashburner, 2007; Cole et al., 2018,

Cole et al., 2015; Franke et al., 2010; Gutierrez Becker et al., 2018; Le

et al., 2018; Madan & Kensinger, 2018; Wang et al., 2014; Table S1).

Furthermore, we excluded non-white ethnicities from the analysis

because of data availability. These two factors imply that our models

cannot be applied to data sets with ages or ethnicities that were not

included in the training sample. Second, whilst the present study

explored a wide range of methodological choices in terms of machine

learning models and data input, there are several other methods that

could be assessed in the future. For example, we did not explore

nonlinear regression models, because we were interested in the inter-

pretability of the models. Nevertheless, Ashburner (2007) directly

compared the performance of RVR using either a linear and radial-

basis kernel and found performance improvements with some config-

urations of the nonlinear one, so this seems to be an interesting area

for future research. In addition, deep convolutional neural networks

have shown to have a high accuracy when predicting brain age (Cole

et al., 2017; Ito et al., 2018; Peng, Gong, Beckmann, Vedaldi, &

Smith, 2021). Third, the present study was based on the use of a sin-

gle neuroimaging modality. Our models could likely be improved by

using multimodal input data. Previous research has shown that even

combining different morphometric features, such as cortical thickness,

surface area and/or curvature information, can improve model perfor-

mance (Valizadeh et al., 2017; Wang et al., 2014; Zhao et al., 2018),

because they may carry potentially complementary information about

brain age. Similarly, Gutierrez Becker et al. (2018) achieved better per-

formance of their GPR model when combining voxel-level and region-

level features than looking at them separately, and Liem et al. (2017)

were the first to combine structural and functional MRI in brain age

prediction to achieve better performance. Multimodal data sets could

also integrate conventional health assessments of ageing, which might

improve the performance and generalisation of the models, making

them a promising avenue for future brain age research (Cole

et al., 2018).

5 | CONCLUSION

By systematically and rigorously comparing the performance of differ-

ent algorithms on the same data set, the present study demonstrated

that SVR, RVR and GPR models are suitable for brain age prediction

based on both region- and voxel-based morphometric data. When

designing a brain age study, researchers should consider various fac-

tors to choose the most appropriate model. Most importantly, while

the overall best performance was achieved by voxel-based models

with dimensionality reduction through PCA, this was also the most

computationally expensive approach and might not be feasible if com-

putational or time resources are limited. Furthermore, neuroimaging

studies are often limited in their sample size. Our analysis of training

set size revealed that region-based RVR required the smallest training

set to yield good performance with about 120 training subjects. This

RVR model was also the simplest and fastest to implement. In conclu-

sion, by providing clarification on important methodological aspects,

the present investigation represents a step towards achieving the full

clinical potential of brain age prediction, which lies in its application to
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the diagnosis, prognosis and monitoring of brain disorders. We are

making all of our scripts open source (available at https://github.com/

MLMH-Lab/Brain-age-prediction) in the hope that this will aid future

research.
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