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Weronika Augustyn 1,2, Arkadiusz Chruściel 1,* , Wiesław Hreczuch 1, Joanna Kalka 2, Patryk Tarka 3

and Wojciech Kierat 4

1 MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
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Abstract: Clostridioides difficile infections (CDIs) are the most common cause of acquired diseases
in hospitalized patients. Effective surface disinfection, focused on the inactivation of the spores of
this pathogen, is a decisive factor in reducing the number of nosocomial cases of CDI infections. An
efficient disinfection procedure is the result of both the properties of the biocidal agent used and
the technology of its implementation as well as a reliable, experimental methodology for assessing
the activity of the biocidal active substance based on laboratory models that adequately represent
real clinical conditions. This study reviews the state of knowledge regarding the properties and
biochemical basis of the action mechanisms of sporicidal substances, with emphasis on chlorine
dioxide (ClO2). Among the analyzed biocides, in addition to ClO2, active chlorine, hydrogen
peroxide, peracetic acid, and glutaraldehyde were characterized. Due to the relatively high sporicidal
effectiveness and effective control of bacterial biofilm, as well as safety in a health and environmental
context, the use of ClO2 is an attractive alternative in the control of nosocomial infections of CD
etiology. In terms of the methods of assessing the biocidal effectiveness, suspension and carrier
standards are discussed.

Keywords: chlorine dioxide; disinfection; sporicidal activity; Clostridioides; Clostridium difficile

1. Introduction

The One Health approach recognizes that human health is closely connected to the
health of animals and the natural environment. The paradigm of One Health is based
on the observation that health is a continuous, combined, global, and interdependent
series of causes and effects occurring within ecosystems as well as in human and animal
populations [1–3]. Therefore, the One Health approach refers to the protection of human
health in line with environmental protection. This approach has become increasingly
important against the background of the ongoing global pandemic. It is worth noting that
in the last three decades, more than 70% of infectious human diseases were zoonoses [3].
These are diseases whose etiological factors originate from farm and companion animals,
as well as wild animals. New zoonoses have recently appeared more frequently, especially
in the reservoirs of microorganisms occurring in nondomestic animals [4,5]. The factors
favoring the appearance of unknown zoonoses include constant changes in ecosystems
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and local environments. An important topic in the context of the One Health approach is
antibiotic resistance, as several habitats may be sites for the emergence and maintenance of
resistant microorganisms, including hospital effluents, wastewater treatment plants, farms,
or aquaculture ponds [6]. In such habitats, genetic material that determines antibiotic
resistance is transferred to the genomes of antibiotic-sensitive bacteria.

To face the challenges of a changing world, intensive cooperation among veterinar-
ians, medical doctors, environmentalists, chemists, and biologists is crucial. Emerging
new infections require action to develop effective drugs, but also special precautions to
prevent the spread of infections. It should also be noted that an equally important issue in
contemporary infectiology is the existence of species that have managed to develop over
the course of their evolution effective mechanisms of high resistance to biocides. These
include enteropathogenic bacteria of the genera Salmonella, Campylobacter, and Clostridium,
as well as Escherichia coli, which are the cause of food toxico-infections [7]. The development
of new, effective disinfection methods is important not only in medical areas, but also in
processes related to environmental engineering and securing access to drinking water.

In North America and Europe, infections with Clostridioides difficile (CDI) are the most
common causes of intestinal diseases acquired during hospitalization. This phenomenon is
associated with the use of antibiotics and chemotherapy, as well as with ineffective decon-
tamination of the hospital environment [8]. On average, CDI occurs in 4–8 of 1000 hospital
patients [9]. In this regard, over 1 million infections are recorded in the USA alone [10],
with about 29,000 deaths per year, of which more than 80% occur in immunocompromised
patients over 65 years of age [11,12]. The cost of US health care related to the fight against
CDI is about $ 6 billion per year [13]. In Germany, in 2019, over 2200 cases of CDI with
serious clinical condition were reported, with 20% having a fatal outcome [14]. It was
calculated that the average German hospital will treat approximately 96 cases of CDI each
year; 70% of them will be acquired during hospitalization [15]. According to the 2016
Annual Epidemiological Report of the US Department of Health and Human Services
(CDC 2018), the highest hospitalization-related morbidity rates, with an average rate of
2.38 per 10,000 hospitalized person-days, have been reported for Estonia (12.93), Lithuania
(7.88), and Poland (6.18). Germany did not participate in these studies.

The bacterium Clostridioides difficile (CD) was first isolated in 1935 from the stool of a
healthy infant [16]. In the 1970s, it was shown to be associated with post-antibiotic diarrhea,
pseudomembranous colitis, and intestinal perforation [17]. It belongs to the group of
gram-positive anaerobic rods, forming spores that enable long-term survival in the external
environment [18]. This pathogen produces two toxins, namely Clostrioides difficile A (TcdA)
toxin and Clostrioides difficile B (TcdB) toxin, which are large multidomain proteins with a
molecular weight of 308 and 270 kDa, respectively [19]. The CD strain of the R027 ribotype
is particularly difficult to combat and, unlike others, produces several times more TcdA
and TcdB, as well as a binary toxin with ADP-ribosyltransferase activity, involved in cell
apoptosis and contributing to significant tissue damage [20,21].

According to the latest estimates, more than half of the CDI cases are associated
with healthcare facilities [22]. Since CD is transmitted by the fecal-oral route through
contaminated hands, the proper strategy to fight this microorganism is the cleaning and
disinfection of sanitary surfaces and frequently touched surfaces [23]. Because of the
high resistance of spores to chemical disinfection, many washing and disinfecting agents
commonly used in hospitals, including alcohol-based agents, are not effective against
CD [24], making the use of specialized preparations mandatory. For manual surface
cleaning, products based on active chlorine, glutaric aldehyde, ortho-phthalic aldehyde,
and peracetic acid are often used [25]. Among the non-contact disinfection methods,
gaseous hydrogen peroxide is used in automatic processes [22]. To increase the efficiency
of disinfection, mixed techniques are also used, such as the application of an oxidant and
UV light [26,27]. Later in the article, we discuss the mechanism of the biocidal action of the
chemical compounds most commonly used for disinfection in healthcare facilities.
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2. Characterization of Biocides Against Clostridioides difficile Used in
Healthcare Settings
2.1. Active Chlorine

The commonly used term “active chlorine”, adopted from the terminological area of
the analytical chemistry of sodium chlorate (I) solutions, is used to refer to preparations
containing chlorine with oxidation states 0 and +1, in contrast to chloride ions Cl− without
biocidal properties. Application forms of preparations based on active chlorine are usually
aqueous solutions containing a complex, equilibrium system of several forms of chlorine,
with concentrations resulting from the pH of the solution, i.e., elemental chlorine (Cl2),
chloric acid (HClO), chlorate ions (I) (ClO−), as well as small amounts of complex trichloride
(Cl3−) ions [28,29]. In view of the complexity of the issue, the chemistry of the above systems
requires a wider discussion.

Active chlorine solutions used in disinfection are generally obtained from preparations
containing active chlorine-releasing substances (CRAs, chlorine-releasing agents), including
sodium hypochlorite (formerly “sodium hypochlorite”) and selected N-chlorine derivatives
of amines, such as sodium dichloroisocyanurate (NaDCC) or chloramines [30,31].

Commercially available sodium hypochlorite solutions are produced by absorption of
elemental chlorine in sodium hydroxide solution (1):

Cl2 + 2 NaOH � NaClO + NaCl + H2O (1)

A by-product of Reaction (1) is sodium chloride, some amounts of which are present in
sodium hypochlorite solutions, also due to the partial decomposition of sodium hypochlorite (2):

NaClO � NaCl +
1
2

H2O (2)

Under the conditions of an excess of hydroxide ions (pH > 7) in an aqueous solution,
sodium chlorate (I) undergoes electrolytic dissociation according to Equation (3):

NaClO � Na+ + ClO− (3)

Lowering the content of hydroxyl ions leads to the production of poorly dissociated
chloric acid (I) (4), considered as a form of active chlorine, which mainly determines the
biocidal properties [30] (4):

ClO− + H2O � HClO + OH− (4)

Further reduction of the pH of the solution leads to the opposite reaction (1) and the
production of molecular chlorine.

Figure 1 shows the equilibrium forms of active chlorine in a solution of sodium
hypochlorite, depending on the pH of the solution, based on the data presented by the
Black & Veatch Corporation [32].

The course of the equilibrium curves presented in Figure 1. shows that the maximum
concentration of biocidal chloric acid (I) occurs between pH 3 and 6. Below this range,
the HOCl concentration drops at the expense of the production of molecular chlorine. In
solutions with pH > 7, the share of ClO- ions with lower biocidal effectiveness increases.

In the case of using N-chlorinated derivatives, the source of chloric acid (I) is the hydrol-
ysis reaction of sodium diisocyanurate or chloramine, according to Equations (5) and (6).
As mentioned earlier, HOCl mainly determines the biocidal properties.



Int. J. Environ. Res. Public Health 2022, 19, 750 4 of 17
Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 1. Curves of equilibrium concentrations of elemental chlorine (Cl2), chloric acid (HOCl), and 

chlorate (I) ions (ClO
-
) in aqueous solutions depending on the pH. 

The course of the equilibrium curves presented in Figure 1. shows that the maximum 

concentration of biocidal chloric acid (I) occurs between pH 3 and 6. Below this range, the 

HOCl concentration drops at the expense of the production of molecular chlorine. In so-

lutions with pH > 7, the share of ClO- ions with lower biocidal effectiveness increases. 

In the case of using N-chlorinated derivatives, the source of chloric acid (I) is the hy-

drolysis reaction of sodium diisocyanurate or chloramine, according to Equations (5) and 

(6). As mentioned earlier, HOCl mainly determines the biocidal properties. 

 

(5) 

 

(6) 

The biocidal mechanism of chloric acid (I) action on microbial cells consists of the 

disruption of metabolic pathways essential for the functioning of the cell and the degra-

dation of genetic material. The influence of HOCl from chloramine (NH2Cl) has been in-

vestigated as early as in the 1970s. Authors Shih and Lederberg [33] showed the effect of 

a significant decrease in the transformational capacity of B. subtilis DNA under the influ-

ence of several dozen µmol/L HOCl solutions. Studies conducted with the use of isolated 

E. coli RNA nucleotides (CMP, AMP, GMP) showed significant changes in their molecular 

structure, confirmed by UV spectrophotometry. Other authors [34] showed that HOCl can 

undergo a Fenton-type reaction, leading, similar to H2O2, to the production of HO· radi-

cals, the interaction of which with DNA leads to degradation. 

The strong influence of chloric acid (I) on oxidative phosphorylation pathway dis-

ruption as well as on other processes involving the cell membrane has been demonstrated 

[35,36]. The effect of 96% inhibition of DNA synthesis and complete inhibition of E. coli 

growth was found at a concentration of 2.6 mg/L HOCl [37]. 

The most frequently used preparations containing active chlorine with sporicidal 

properties are sodium hypochlorite [38] and sodium dichloroisocyanurate (NaDCC) [39]. 

However, sporicidal activity requires higher concentrations (for NaClO above 200 mg/L, 

N-chloro derivatives >1,000 mg/L) [40–42]. 

0

20

40

60

80

100

1 3 5 7 9 11

ac
ti

v
e 

ch
lo

ri
n
e 

fo
rm

, 
 %

 w
t.

pH

Cl2 HOCl ClO
-

N

N

N
Cl Cl

O

O O
–

Na
+

+ OH22

Na
+

N

N

N
H H

O

O O
–

+ 2 HClO

S N
–

O

O Cl

Na
+

+ OH2
Na

+
S N

–
O

O H

+ HClO

Figure 1. Curves of equilibrium concentrations of elemental chlorine (Cl2), chloric acid (HOCl), and
chlorate (I) ions (ClO−) in aqueous solutions depending on the pH.
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The biocidal mechanism of chloric acid (I) action on microbial cells consists of the dis-
ruption of metabolic pathways essential for the functioning of the cell and the degradation
of genetic material. The influence of HOCl from chloramine (NH2Cl) has been investigated
as early as in the 1970s. Authors Shih and Lederberg [33] showed the effect of a significant
decrease in the transformational capacity of B. subtilis DNA under the influence of several
dozen µmol/L HOCl solutions. Studies conducted with the use of isolated E. coli RNA
nucleotides (CMP, AMP, GMP) showed significant changes in their molecular structure,
confirmed by UV spectrophotometry. Other authors [34] showed that HOCl can undergo
a Fenton-type reaction, leading, similar to H2O2, to the production of HO· radicals, the
interaction of which with DNA leads to degradation.

The strong influence of chloric acid (I) on oxidative phosphorylation pathway dis-
ruption as well as on other processes involving the cell membrane has been demon-
strated [35,36]. The effect of 96% inhibition of DNA synthesis and complete inhibition of E.
coli growth was found at a concentration of 2.6 mg/L HOCl [37].

The most frequently used preparations containing active chlorine with sporicidal
properties are sodium hypochlorite [38] and sodium dichloroisocyanurate (NaDCC) [39].
However, sporicidal activity requires higher concentrations (for NaClO above 200 mg/L,
N-chloro derivatives > 1000 mg/L) [40–42].

The decisive stage in the mechanism of the sporicidal action of active chlorine seems to
be the increase in the permeability of the spore coating (cortex), manifested by the release of
dipicolinic acid (DPA) [43]. The mechanism of the sporicidal activity of HClO is also based
on the degradation of the structures of peptides and amino acids, lipids, and nucleic acids
in pathogen cells [44]. In studies of 21 CD isolates, 1000 mg/L of active chlorine reduced
spores by L = 4-6-LOG during a contact period of 10 min, depending on the clinical strain.
The equation is as follows:

L = log10
A
B

(7)
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where A is the microbial count before decontamination and B is the microbial count after
decontamination.

Lowering the concentration to 500 mg/L resulted in the reduction of the most infec-
tious CD isolate ribotype R027 to L = 1.2–2.4-LOG. In addition, the use of active chlorine
concentrations below the recommended levels may affect the hydrophobicity of spores
and, thus, their ability to adhere to the surface, which in turn may favor the spread of
the pathogen [45]. However, preparations containing active chlorine show a number of
disadvantages: a destructive effect on rubber and plastics, as well as metal corrosion.
They are also unstable, and their decomposition can be accelerated by solar radiation and
elevated temperatures.

A significant environmental issue related to the use of preparations based on active
chlorine is their ability to chlorinate organic matter and produce disinfection by-products
(DBPs), which potentially harm the environment and human health [46,47]. Previous
results [48–51] show that chlorination or chloramination in water environments containing
amino acids or humic substances derived from soil can result in the production of the toxic
substances cyanogen chloride, dichloracetonitrile, and organochloramines.

2.2. Glutaraldehyde

The critical stage in the mechanism of the biocidal action of aldehydes is the denatura-
tion of proteins and the degradation of RNA and DNA [52]. This is the effect of the high
reactivity of the aldehyde group, in particular with respect to amino groups, leading to
irreversible condensation with the formation of a stable imide linkage (8). The result is an
irreversible loss of functionality of the biochemical particles with amine groups [53].
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The most popular aldehyde to combat CD is glutaraldehyde (GA). The mechanism of
action of bifunctional glutaraldehyde is the formation of imide bonds with lipopeptides
and peptidoglycan of bacterial cell walls, causing their deformation. Glutaral also reduces
dipicolinic acid formation, which is characteristic of spores and determines their external
factor resistance [54]. The advantage of products based on glutaraldehyde is the low price,
but they can denature proteins, which may be dangerous in the case of disinfection of
surfaces susceptible to biofilm formation. Moreover, GA is one of the substances that are
an odor nuisance, toxic, and dangerous for the natural environment, further reducing its
value [55].

Glutaraldehyde has a high sporicidal activity. A 1% GA solution, with a contact
period of 15 min, can reduce CD spores at the L = 1.03-LOG level, and a 6% solution can
reduce such spores at the L = 2.05-LOG level. The discussed results were obtained using
the “four-field” method according to the EN 16615 standard [56]. However, the spore
reduction of L ≥ 4.0-LOG, required in the medical field, was not achieved [15]. Products
based on GA are most frequently used in the disinfection of medical instruments and
equipment, especially in endoscope disinfection. However, compared to peracetic acid
or o-phthalaldehyde, the disinfection results were poorer [25]. In this sense, the use of
GA-based formulations for CD appears controversial.

2.3. Hydrogen Peroxide

Hydrogen peroxide (H2O2) is a strongly oxidizing, odorless substance with strong
biocidal properties in liquid and gaseous form. Low concentrations of gaseous H2O2 are
more effective than liquid forms [57]. The mechanism of action is based on the production
of highly reactive hydroxyl radicals (9), oxidizing thiol groups in proteins, lipids, and
nucleic acids [58]. Its rapid decomposition into oxygen and water reduces the toxicological
hazards associated with its use.

H2O2 + e− + H+ → H2O + OH· (9)
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The biocidal activity of preparations with H2O2 increases with increasing tempera-
ture [59]. The L = 4-LOG reduction level for B. subtilis spores can be achieved within 11 min
for a 26% solution. Increasing the temperature to 76ºC allows achieving the same reduction
within 30 s [60]. Treatment of CD spores with 0.5% H2O2 wipes for 30 s and 3 min reduced
the pathogen by L = 2.8 [61].

Techniques of surface disinfection with gaseous H2O2 in automatic disinfection pro-
cesses have been developed and commercialized in the 1980s and 1990s [62]. There are
three basic disinfection systems using H2O2: HPV (hydrogen peroxide vapor) by Bioquell,
VHP (vapor hydrogen peroxide) by Steris, and aHP (aerosolized hydrogen peroxide) by
Sterinis [58,63].

The HPV and aHP systems have been tested in the decontamination of hospital wards
affected by CDI. The HPV system introduced to hospitals for two periods of 10 months
reduced the amount of CDI by 53% compared to the control [64]. In the case of the aHP
fogging system, its disinfection efficiency was compared to that of sodium hypochlorite.
Efficiency was obtained for 91% of hospital rooms where people infected with CD were
present. Fogging was carried out for 1 h using a 5% solution of H2O2 with the addition of a
silver cation. In the case of 0.5% sodium hypochlorite solution (5 mg/L active chlorine),
the effectiveness of the disinfection process was noticed in 50% of the disinfected rooms.
By testing the disinfection effectiveness of the same products in vitro on polyvinyl chloride
or laminate carriers, imitating floors and furniture in hospital rooms, spore reductions of
L = 4.18 ± 0.8-LOG for H2O2 solution and L = 4.32 ± 0.35-LOG for sodium hypochlorite
were obtained [65].

Decontamination with H2O2 largely depends on the type of the disinfected surface.
Significant differences were found in the effectiveness of decontamination of B. subtilis
spores, depending on surface porosity. Within 20 min and at a concentration >1000 mg/L
H2O2 on porous surfaces of industrial flooring and pine wood, the level of pathogen
reduction, respectively, L = 1.6-LOG and L = 2.2-LOG. On non-porous glass or cardboard
surfaces, spore reduction levels were L = 7.5-LOG and L = 7.6-LOG [66].

2.4. Peracetic Acid

Peracetic acid (PAA) is a colorless, clear liquid with an acetic odor. It is a strong
oxidant, with an oxidation potential comparable to that of ozone [67].

The essence of PAA’s biocidal activity lies in its ability to homolyze, with the formation
of highly reactive hydroxyl radicals (10) [68]:
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These, in turn, interact with organic matter, analogously to hydrogen peroxide. The
advantage of peracetic acid over H2O2 is its resistance to decomposition by peroxidases,
which allows it to remain active [52]. As a result of the reaction of free radicals with amino
acids, biological proteins are inactivated, leading to inhibition of the vital functions of
pathogens. In this sense, PAA is an alternative to GA products. However, the stability of its
working solutions is low, it has a strong odor, and can corrode surfaces [60].

In the EN 16615 carrier method against CD, the expected reduction of L ≥ 4-LOG
spores was obtained during a contact period of 15 min for a solution with a PAA concen-
tration of 4% [15]. In endoscope disinfection, the use of PAA resulted in shorter exposure
times than required for GA or ortho-phthalaldehyde. The reduction of CD in the endoscope
after a contact period of 5 min at 30 ◦C was L ≥ 5-LOG [25].

2.5. Chlorine Dioxide

Due to the lack of the ability to chlorinate organic matter and, thus, to produce
ecotoxic chlorine-based disinfection byproducts, ClO2 is an alternative to commonly used
preparations based on active chlorine and other biocides. The strong oxidizing properties of
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ClO2, combined with the selectivity of the biocidal action, and the inability to form harmful
by-products of disinfection justify the increased interest in this chemical compound as an
active ingredient in disinfectants [32,69]. The above-mentioned specific properties of ClO2
directly result from its unusual molecular structure, presented in the form of resonance
structures in Figure 2, proposed by Pauling [70].
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Figure 2. Electronic structure of the chlorine dioxide molecule.

The ClO2 molecule is a free radical where the unpaired electron is not located at a
specific atom but is part of a covalent three-electron bond. This explains the stability of
the ClO2 molecule and the lack of a tendency to dimerize to form Cl2O4, unlike other
simple inorganic radicals with similar symmetry. The ClO2 is a yellow-brown gas with
a characteristic acrid odor. At 1 atm pressure, ClO2 boils at 11 ◦C and melts at −59 ◦C.
At higher concentrations, both gaseous and liquid ClO2 have strong explosive properties.
Hence, in practical use, ClO2 is not compressed but generated in situ in aqueous solutions
at concentrations not exceeding 3 g/L. It can also be released as a gas at concentrations
below the explosive limit [71].

Studies on the chemical activity of ClO2 in aqueous solutions have shown the pos-
sibility of effective and quick reactions with various functional groups by free radical
oxidation [72–76].

The non-specific mechanism of the bactericidal and virucidal action of ClO2 can
therefore be explained by the reactions with numerous molecules of key importance for the
organism under attack, at different levels of the cell structure (cell membrane, organelles,
intracellular processes) and virus (protein envelope, genetic material). Because of its strong
oxidizing properties, ClO2, especially in aqueous solutions, exhibits biocidal activity by
influencing the cellular equilibrium of electron transfer processes.

The mechanism of protein denaturation via ClO2 is based on a reaction with six amino
acids: cysteine, tryptophan, tyrosine, proline, hydroxyproline, and histidine; reactivity with
the first three is extremely high [77].

In the case of cysteine, degradation and loss of biochemical functions is the result of
dimerization of this amino acid, with the formation of a disulfide bond [78]. The precursor
of the reaction is a thiyl radical formed as a result of the high susceptibility of the thiol
group of cysteine to radical oxidation [79]. Recombination of the thiyl radical with another
ClO2 molecule gives a transient Cys-ClO2 adduct. At high pH values, reaction with another
cysteine thiol radical leads to the formation of the aforementioned dimer (cystine); at a low
pH, cysteic sulfonic acid is generated (11) and (12) [80].
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An example of the degradation of an amino acid under the influence of ClO2 with the
participation of amine nitrogen atoms is the production of a radical precursor of tryptophan
oxidation. The diagram shows one of the two alternative pathways of the radical attack of
the ClO2 molecule directed at the indole nitrogen atom, leading to the formation of a radical
cation and, after proton cleavage, a resonance-stabilized radical, the extreme mesomeric
forms of which are shown in Equation (13) [81]:
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The radical presented in the above scheme is a precursor in the reaction of formation
of among others N-formylokinurenine, formed as a result of the attack of the ClO2 radical
on the 3-yl carbon atom of the indole moiety [82]. Under the influence of ClO2, tyrosine is
oxidized to 3,4-dihydroxyphenylalanine (DOPA) or 2,4,5-trihydroxyphenylalanine [83].

One interesting finding, shedding light on the possible mechanism of the influence of
ClO2 on living organisms, is the strong ClO2 interference in redox processes, determining
electrochemical equilibria in mitochondria and cell membranes, in particular with regard
to the NADH/NAD + redox system responsible for cellular respiration and mediation in
ATP synthesis [84,85]).

In the context of amino acid composition, it is worth analyzing the potential mecha-
nism of CD toxin inactivation against ClO2. At the amino acid level, TcdA and TcdB are
approximately 45% identical [86]. They have a similar multi-domain structure, consisting of
a glucosyltransferase (GTD) domain, a processing domain (APD), a translocation domain,
and a C-terminal domain (CROP) [87]. Both TcdA and TcdB, due to repeating oligopeptides
of the CROP domain, bind to receptors on the cell surface. The TcdA receptors can be
carbohydrate antigens designated as I, X, Y, occurring in the human intestinal epithelium
(Figure 3B—step 1) [88]. After endocytosis (Figure 3B—step 2), toxins penetrate the en-
dosomes (Figure 3B—step 3), where low pH values facilitate conformational changes in
the translocation domain, exposing hydrophobic residues and creating a channel through
which GTD domains and, most likely, APD (Figure 3B). Figure 3B—step 4 enter the cy-
tosol. The process of GTD cleavage and release is induced by the APD domain, to which
inositol hexakisphosphate (InsP6) binds (Figure 3B—step 5) [87,89,90]. The released GTD
domain inactivates intracellular GTPases from the Rho and Ras families (Figure 3B—step 6).
Glycosylation, i.e., the transfer of glucose from UDP-glucose to threonine-37, occurs in
the Rho protein and threonine-35 (in the Rac and Cdc42 proteins) [91,92]. This blocks
the biological functions involved in regulating the actin cytoskeleton and disrupting cell
signaling (Figure 3B—step 7) [86], resulting in a cytopathic effect, rounding, and necrosis
of the host cells.
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Figure 3. Mechanism of action of TcdA and TcdB. (A) Four functional domains of TcdA and TcdB:
glycosyltransferase domain (GTD), autoprocessing domain (APD), translocation domain, repeat
oligopeptide domain (CROP,) (B) Multistage mechanism of cell intoxication by TcdA and TcdB [87].

According to the available literature, the interaction of ClO2 with CD can therefore take
place on several levels. The APD auto-processing domain is a protease containing cysteine
and histidine residues in the active center, most likely responsible for the binding of zinc
ions, facilitating the proper release of the GTD domain into the cytosol [93]. At the catalytic
center of GTD, there is a tryptophan residue which binds UDP-glucose. Tryptophan is
a key amino acid determining enzymatic activity and, thus, the cytotoxicity of large CD
toxins [94]. Oxidation of the aforementioned amino acids with ClO2 may influence the key
stages of the TcdA and TcdB mechanisms in the cell and, thus, inhibit the cytotoxic effect of
host proteins.

The possible paths of ClO2 reactions with elements of biologically active molecule
structures presented above are mainly the result of studies using isolated, pure forms
of biologically active target compounds. Unfortunately, reports describing the results of
studies on the mechanisms of biocidal activity in vivo, based on observations of changes in
living organisms, are few, and the obtained conclusions are not consistent. For example, the
results of Zhu et al. indicate that ClO2 in concentrations higher than 100 mg/L damages
DNA in Saccharomyces cerevisiae [95]. This does not confirm DNA damage as the primary
cause in the biocidal action mechanism as reported in a previous study [96]. Similarly,
ambiguities are observed in the investigations of the mechanism of sporicidal action of ClO2.
Young and Setlow reported that B. subtilis spores treated with ClO2 showed no tendency
to accumulate DNA damage [97]. The occurrence of the above effect was found both in
spores in which low-molecular-weight DNA protects proteins against genotoxins (SASP)
and strains lacking the sspA genes and sspB coding for SASP proteins were produced;
there were no symptoms of mutagenesis under the influence of ClO2.

Increased sensitivity to ClO2 was observed for spores lacking the coat protein, ex-
amined with chemical methods or by mutation of genes encoding respective proteins.
Although no release of dipicolinic acid (DPA) was found in the ClO2-treated spores; the
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spores released DPA much more easily after sub-lethal heat treatment than untreated ones.
The above observations lead us to the conclusion that the critical process of the mechanism
of action of the sporicidal ClO2 solution against B. subtilis spores is not DNA damage, but
the damage to the cortex layer composed of, among others, DPA.

An attempt to create a molecular basis for explaining the mechanism of the sporicidal
action of ClO2 has been described elsewhere [98]. The study focused on the observation of
the expected changes in the chemical structure of DPA and DNA as well as selected amino
acids of Bacillus thuringiensis spores exposed to the ClO2 solution with a concentration
of 750 mg/L. The study of molecular structure changes was carried out using Raman
spectroscopy and the optical laser tweezer (LTRS) technique. Changes in the structure of
spores were determined via scanning electron microscopy (SEM) and transmission electron
microscopy (TEM). Although a high degree of spore reduction was observed under the
influence of the ClO2 solution (5-6-LOG was obtained), no visible changes were found
in the Raman spectra, both for the bands characteristic for DPA and DNA as well as for
amide bands related to possible changes in the structure of amino acids. There were also no
significant changes in the SEM and TEM images of the spores under the influence of ClO2.

Although studies on the effectiveness of ClO2-based preparations are scarce, the
estimated sporicidal properties of ClO2 should be considered attractive, in particular in
relation to the low risks to human health and the environment. Foegeding et al. [99]
studied the effects of ClO2 on the survival of Bacillus cereus T, B. cereus F4810/72, Bacillus
stearothermophilus ATCC 1518, and Clostridium perfringens NCTC 8798 spores in the
environment of a relatively low concentration of ClO2 (20–80 ppm) at pH 4.5 and 8.5, using
various sporulation methods.

Comparison of sporicidal properties showed the effect of B. cereus T sporulation
method on survival. In the case of C. perfringens spores, a decrease in survival was observed
at higher pH. At a concentration of 50 mg/L, the level of 4-LOG reduction at pH 4.5
was achieved for 15–30 min for B. cereus spores (depending on the sporulation method),
20 min for B. subtilis, and 80 min for C. perfringens. The same level of reduction at pH 8.5
was achieved after 45 min for C. perfringens. The influence of the pH on the survival
of the remaining spores was insignificant. In another study [100], spores of B. pumilus
SAFR-032 and B. subtilis ATCC 6051 model strains for C. difficile, resistant to disinfection
with hydrogen peroxide, under unloaded conditions and in ClO2 aqueous solutions were
investigated. For the concentration of 47 mg/L and period of 10, 60, and 24 min, reduction
levels of 1-LOG and 2-LOG were obtained, respectively. Complete reduction was only
achieved after 24 h. However, increasing the ClO2 concentration to 187 mg/L achieved
complete spore reduction within 10 min. In 2005, Perez et al. demonstrated that a solution
with a concentration of 600 mg/L ClO2 reduced CD spores to the level of L = 6 LOG within
15–30 min, depending on the strain and the condition of the microorganisms. The tests
were carried out in unloaded (clean) conditions with the use of steel disc tests [101]. In
another study, reduction of CD at the level of 2.48-LOG and 2.65-LOG was achieved for
the concentration of 1,600 mg/L ClO2 during 10 min without organic load on sterile glass
carriers [102].

The suspension tests of the authors of this publication, carried out in accordance with
the EN 17126 standard, showed the effectiveness in controlling CD at the level of 4.49-LOG
for a solution with a concentration of 100 mg/L ClO2 under clean conditions and a contact
period of 5 min.

3. Standardized Methods for Assessing the Sporicidal Activity of Disinfectants

As already mentioned, an important element in the control of CDI is surface disin-
fection, especially the so-called “tactile”. Producers of disinfectants demonstrate their
sporicidal activity through suspension and/or carrier tests.



Int. J. Environ. Res. Public Health 2022, 19, 750 11 of 17

3.1. Suspension Methods

Until 2018, the standards EN 14347:2005 and EN 13704:2018-09 [103,104] were avail-
able. The first one covers Phase 1, Step 1 studies, in which, according to the provisions of
the European Committee for Standardization (CEN), it is determined whether the active
substance exhibits a sporicidal effect at the stage of selecting the product’s formula ingredi-
ents. The standard applies to products used in agriculture, home and service hygiene, food,
as well as in the industry, public utilities, and medicine and veterinary medicine. The tests
are carried out without any organic burden on Bacillus subtilis and Bacillus cereus spores.
However, the responsible implementation of biocides requires further Phase 2 research.

The suspension standard EN 13704:2018-09 describes Phase 2, Step 1 tests, which
consist of determining the effectiveness parameters, i.e., concentration and contact period
under the conditions of use of the preparation. Mandatory tests are performed in clean and
unclean conditions for Bacillus subtilis spores and for Bacillus cereus spores and Clostridium
sporogenes. Products placed on the market and used in medical areas were mostly tested
according to the described standard but under unclean conditions, with an increased
organic load (3.0 g/L of bovine albumin and 3 mL/L of defibrinated sheep blood).

Since 2018, the suspension standard EN 17126:2018-01 [105] has been available for
testing the sporicidal effectiveness of disinfectants in the medical field. It covers the use
of preparations for disinfecting surfaces, tools, and textiles in two areas, sporicidal and
sporicidal against CD R027 NCTC 13366. It is currently the only standard approved by the
CEN that describes the methodology for determining the effectiveness of the preparation
against CD. However, due to the direct contact of disinfectants with the pathogen sus-
pension, this method still does not reflect the actual conditions of the disinfection process.
Therefore, Phase 2, Step 2 studies (the so-called “carrier studies”) were carried out, in
which the effectiveness was determined in conditions simulating practical application [106].
The essence of the problem is that the spore-active formulations in the suspension tests
do not achieve the required reduction in the carrier tests. As a result, the recommended
concentrations of the disinfectant are not effective in practice.

3.2. Carrier Methods

Currently, there are no approved carrier standards for liquid disinfectants for the con-
trol of spores in medical areas. Some manufacturers of sporicidal disinfectants specify the
effectiveness of their preparations against CD or Bacillus subtilis spores in accordance with
EN 13697:2015 [107]. Gemein et al. [15] proposed a carrier method using the mechanical
factor of sporicidal activity against CD, based on the standard EN 16615:2015, intended for
the medical field. This is the so-called “four-field method”, thanks to which it is possible
to test the effectiveness of microbial reduction on contaminated test surfaces and also the
extent of the spread of spores [108]. The method uses a wiping mechanism, with a tissue
soaked in a disinfectant, and a test surface with four designated areas, in which only the
first is contaminated with spores. As shown in the Figure 4, the method takes into account
the effect of secondary spread of the pathogen during rubbing.

The red polygon arrow line shows the trajectory of the disinfectant tissue, moved
along the four fields, starting from infected field A through uninfected fields B, C, D, and
back. After rubbing the remaining fields, the degree of pathogen spread is determined.

3.3. Carrier Methods for Assessing the Effectiveness of Automatic Air Disinfection

One interesting aspect in the context of the assessment of sporicidal activity is the
use of the carrier standard EN 17272:2020, approved and published in 2020 [109]. The
standard describes methods of disinfecting surfaces by air with the use of automated
processes involving the emission of an aerosol or gas of active substances into the air
through stationary (stationary) devices. Determining the effectiveness of preparations
is used in the fields of medicine, veterinary, industry, and public utility. The mentioned
standard applies to the processes controlling vegetative forms of bacteria, mycobacteria,
fungi, viruses, and bacteriophages, as well as their spores. The obligatory strain in the
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assessment of sporicidal activity according to the standard is Bacillus subtilis ATCC 6633. In
addition, it facilitates testing the effectiveness against any pathogen, including CD.
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4. Conclusions

Biocides used in clinical disinfection for the control of bacteria resistant to disinfection
treatments, in particular spore-forming bacteria, are usually simple, low-molecular-weight
chemical compounds with strong oxidants (active chlorine, peroxygen compounds) or
electrophiles with high affinity for atoms with non-binding electron pairs (e.g., amino
nitrogen atoms).

The mechanism of the biocidal action of the above compounds mainly consists of
the denaturation of proteins by generating irreversible structural changes at the level of
functional groups of individual amino acids, such as:

• oxidation of thiol groups with the formation of disulfide bridges or derivatization of
amine compounds by radical oxidation (oxidants);

• formation of imine bonds (Schiff compounds) by condensation of amino groups of
amino acids with carbonyl groups (aldehydes).

The disruption of intracellular redox processes, which constitute steps in metabolic
pathways (oxidants, in particular ClO2), may be an important step in the mechanism of the
killing action. Despite the natural ability of spores to produce proteins that protect DNA
against genotoxic effects (UV radiation, chemical genotoxins), the factor determining the
resistance of spores to the action of the discussed substances, including ClO2 or HClO, is
their protein shell (coat).

Among the discussed biocidal compounds effective in controlling vegetative forms
and CD spores, one attractive alternative is chlorine dioxide, because of its high biocidal ef-
fectiveness and low risks for human health and the environment. Although the underlying
mechanism has not been fully elucidated, this compound shows a relatively high sporicidal
activity. The way in which it is carried out experimentally plays a key role in assessing the
effectiveness of the sporicidal disinfectant.

The key condition for the reliability of the assessment of effectiveness, affecting the
final test result, is the adequacy of the mapping of the real object, which is a fragment
of a diverse, usually non-standard clinical environment, by artificially created model
conditions of a laboratory method. The approximation of laboratory conditions to real
conditions is achieved through the implementation of subsequent phases and stages of
biocidal effectiveness assessment.

The suspension standard EN 17126:2018-01 is an example of the procedure in Phase 2
of Step 1 of the assessment of sporicidal activity of chemical disinfectants. The next stage of
approaching the real clinical environment is the designed carrier standards in Phase 2 of
Step 2. The carrier standards simulate the conditions occurring during surface disinfection;
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they can be divided into those with and without the use of a mechanical factor. The four-
field carrier test, included in the EN 16615 standard and intended for the evaluation of
sporicidal activity, allows the evaluation of the degree of spore reduction on the surface
with the use of a chemical and mechanical agent, to determine whether the preparation has
a prolonged effect and thus can be used for periods of up to 1 h, and estimate the effect
of transferring spores to other surfaces during e disinfection. The use of a vehicle test,
applying a mechanical factor will be the largest step in assessing the sporicidal activity of
chemical disinfectants.
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