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QTL mapping of modelled 
metabolic fluxes reveals gene 
variants impacting yeast central 
carbon metabolism
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The yeast Saccharomyces cerevisiae is an attractive industrial microorganism for the production of 
foods and beverages as well as for various bulk and fine chemicals, such as biofuels or fragrances. 
Building blocks for these biosyntheses are intermediates of yeast central carbon metabolism (CCM), 
whose intracellular availability depends on balanced single reactions that form metabolic fluxes. 
Therefore, efficient product biosynthesis is influenced by the distribution of these fluxes. We recently 
demonstrated great variations in CCM fluxes between yeast strains of different origins. However, we 
have limited understanding of flux modulation and the genetic basis of flux variations. In this study, 
we investigated the potential of quantitative trait locus (QTL) mapping to elucidate genetic variations 
responsible for differences in metabolic flux distributions (fQTL). Intracellular metabolic fluxes were 
estimated by constraint-based modelling and used as quantitative phenotypes, and differences in 
fluxes were linked to genomic variations. Using this approach, we detected four fQTLs that influence 
metabolic pathways. The molecular dissection of these QTLs revealed two allelic gene variants, PDB1 
and VID30, contributing to flux distribution. The elucidation of genetic determinants influencing 
metabolic fluxes, as reported here for the first time, creates new opportunities for the development of 
strains with optimized metabolite profiles for various applications.

The yeast Saccharomyces cerevisiae has been used for millennia for the production of various fermented foods 
and beverages1. In modern times, yeast has become popular in new applications, ranging from the biosynthesis 
of ethanol (for biofuels) and other raw materials (for chemical syntheses) to the production of fine chemicals 
used as fuel additives, flavours and fragrances, or medical components2. Advances in metabolic engineering are 
constantly expanding the range of yeast’s applications.

Many phenotypic traits of S. cerevisiae relevant to industrial processes are dependent on the functional and 
regulatory properties of central carbon metabolism (CCM)3. The yeast metabolic network that involves a large 
number of intracellular reactions is highly conserved and has evolved to be organized as a bowtie structure, 
meaning that all carbon sources are converted to 12 different precursor metabolites, which are then used by 
the cell for the biosynthesis of macromolecules that compose cellular biomass4,5. In addition, these precursors 
form the basis for the synthesis of extracellular metabolites, e.g., succinic acid, which is industrially produced by 
yeast fermentation as a building block for polymer production6,7. Furthermore, they serve as starting points for 
the heterologous production pathways of renewably produced fine chemicals8,9. The tight reduction of cellular 
carbon core metabolism to a small number of important metabolites results in a high carbon flux through these 
compounds10, controlled by a complex regulation on genetic (transcription, translation, protein modifications 
and protein-protein interactions) and metabolic levels. Therefore, understanding how metabolic flux distribution 
is controlled is a key requirement for increasing product biosynthesis by metabolic engineering11.

While metabolite turnover rates are difficult to determine experimentally, they can be estimated by mod-
elling12,13. Commonly used constraint-based models (CBM) formulate metabolic networks as a stoichiometric 
matrix to predict intracellular fluxes through the application of experimental constraints on input and output 
fluxes. Depending on the network size and number of constraints, this approach, which is termed metabolic 
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flux analysis (MFA), can be sufficient for estimating fluxes. However, in most cases, adding constraints on input 
and output data is not sufficient to estimate all fluxes of a network. One way to address this insufficiency is the 
13C-MFA approach. It tracks 13C from labelled substrates across cellular metabolites with the aim of generating 
information to constrain and estimate intracellular fluxes. Another way is to apply the assumption that cellular 
functions of biochemical networks in a steady state are limited by physico-chemical constraints14. In this case, 
the flux balance analysis (FBA) approach chooses the best fitting solution through linear optimization out of a 
narrowed solution frame defined by the stoichiometric matrix of the CBM15. The outcome of this flux prediction 
depends on an applied objective function (maximization of ATP production, minimization of metabolic adjust-
ment, or in most cases, maximization of biomass production)16.

To study how metabolic fluxes are modulated by genetic or environmental determinants, we previously used a 
combined 13C-MFA/FBA approach to estimate the intracellular fluxes of S. cerevisiae CCM in conditions of modi-
fied intracellular redox balance17,18. Another example of the application of FBA is the study of Quirós et al. (2013), 
which used a model developed by Vargas et al. (2011) to evaluate changes in yeast metabolism in high sugar 
must19,20. In both studies, glycolytic fluxes showed the least variation, whereas the fluxes of the pentose phosphate 
pathway (PPP) were highly variable. 13C-MFA, on the other hand, was used to study network robustness21 or the 
effects of deletion mutants22. The latter study demonstrated interesting links between networks, e.g., a positive 
correlation between the PPP and biomass yield.

In recent years, studies have generated vast amounts of information about the genotypic and phenotypic diver-
sity of S. cerevisiae by comparison of growth parameters in different media23–28. Furthermore, several studies 
extended the characterization of diversity to a greater number of phenotypic traits, including life history traits and 
metabolic traits, showing that origin has a broad phenotypic impact and that part of these phenotypic differences 
can be explained by adaptation to the ecological constraints imposed by origin29–31.

Recently, we assessed the diversity of flux distributions between S. cerevisiae strains from different origins32, 
using the constraint-based model developed by Celton et al. (2012) to estimate CCM flux distributions between 
43 strains grown under wine fermentation conditions18. The study showed a contrasting image regarding flux 
variability with quasi-constancy of glycolysis and ethanol synthesis on the one hand, but large variations in other 
fluxes, such as the PPP and acetaldehyde production, on the other hand. In addition, the fluxes’ multimodal 
distributions related to ecological origin revealed an association between genetic origin and flux phenotype32.

Results from flux analysis have been used for strain improvement (increased ethanol yield, optimization of 
metabolites production, …) by metabolic engineering based on flux predictions33–38. Therefore, more knowl-
edge about the impact of genomic variation on metabolic flux distributions can potentially assist with the selec-
tion or improvement of strains for diverse applications, in the food and beverage industries as in the field of 
biotechnology.

Quantitative trait locus (QTL) mapping, which has been applied in numerous existing studies, has become 
an important approach to more deeply understand the genomic complexity of S. cerevisiae and decipher the 
impact of genomic variation on yeast complex traits39. This application includes investigations of genetic deter-
minants influencing the formation of industrially relevant traits, which have led to the discovery of allelic vari-
ants accounting for variations in these traits40–48. In all these studies, the assessed traits were straightforward to 
quantify. However, difficulties remain in detecting QTLs for traits with small variations or those that are more 
challenging to determine, such as intracellular metabolic fluxes.

The possibility of using QTL mapping to decipher genomic variations impacting metabolic profiles (rather 
than those affecting single metabolites) would create ways to understand the mechanisms behind metabolic flux 
distributions and to engineer strains with superior metabolic properties for various applications. To achieve this 
aim, we phenotyped 130 meiotic F2-segregants from a cross of two S. cerevisiae yeast strains for their production 
of extracellular main metabolites during the exponential phase. We modelled the intracellular fluxes of yeast 
CCM by applying these experimentally determined metabolite concentrations to a constraint-based model18. 
Subsequently, we used these estimated fluxes as phenotypic data to perform QTL mapping on metabolic flux 
distributions. With this approach, we were able to detect four fQTLs that influenced various metabolic fluxes. By 
performing reciprocal hemizygosity analysis (RHA), we confirmed the robustness of the method by validating the 
role of two genes, PDB1 and VID30, within two fQTLs. The allelic variants of these genes show different effects on 
the fluxes of glycolysis, ethanol synthesis, glycerol synthesis, the tricarboxylic acid (TCA) cycle and the excretion 
of TCA cycle metabolites.

Results
Phenotyping of strains.  Fluxes of the CCM were predicted for all strains, using extracellular metabolite 
concentrations that were experimentally determined during the exponential growth stage (when cells are in a 
quasi-steady state). Because of the structure of the network, some fluxes are directly correlated. To assess for flux 
correlations, we analysed the relationships between steady-state reaction fluxes as described by Poolman et al.  
200749 in order to produce a correlation matrix (Supplementary Fig. S1). Based on the observed strong linkage 
between single reactions within main metabolic pathways, representative reactions were selected for these path-
ways to facilitate the following analyses (Table 1).

For the production of extracellular main metabolites, the corresponding estimated excretion fluxes were cho-
sen as representative. For main metabolic pathways, either the first flux (PPP, upper glycolysis, ethanol synthesis, 
TCA reductive, TCA oxidative) or the last flux of the pathway (lower glycolysis) were chosen. In the case of 
parallel fluxes leading to the same metabolite (ethanol synthesis, AKG synthesis), both fluxes were chosen for 
evaluation.

Principal component analysis (PCA) of selected flux reactions was performed to assess flux correlations and 
to evaluate the variation between parent and segregant strains (Fig. 1).
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With the first two dimensions explaining 69.1% of trait variation, the PCA of estimated fluxes adequately 
depicts the variation among strains. The parent strains behave similarly and show only minor differences in their 
flux profiles, whereas the segregant strains are more divergent. This finding is confirmed by the visualization of 
trait distributions (Supplementary Fig. S2). The parental strains are located within the population of segregants 
for the majority of traits.

To further assess variation among strains, coefficients of variation for estimated fluxes were separately calcu-
lated for the parent and segregant strains (Fig. 2).

Flux abbreviation* Pathway Reaction

G6p_F6p Upper glycolysis g6p[c]  ⇌ f6p[c]

Pep_Pyr Lower glycolysis pep[c] + adp[c] → pyr[c] + atp[c]

G6p_6pgl PPP g6p[c] + nadp[c] ⇌ 6pgl[c] + nadph[c]

Pyr_Acald Ethanol synthesis pyr[c] → acald[c] + CO2[c]

Acald_Eth Ethanol synthesis acald[c] + nadh[c] → etoh[c] + nad[c]

Acald_Ac Acetate metabolism acald[c] + nadp[c] → ac[c] + nadph[c]

Ac_Accoa Ac-CoA metabolism ac[c] + 2 atp[c] → accoa[c] + 2 adp[c]

Pyr_Oaa TCA reductive 
branch pyr[c] + atp[c] + CO2[c] → oaa[c] + adp[c]

Acald_Eth_m Ethanol synthesis acald[m] + nadh[m] ⇌ etoh[m] + nad[m]

Oaa_Cit_m TCA oxidative branch accoa[m] + oaa[m] → cit[m]

Icit_Akg_m_nad TCA oxidative branch icit[m] + nad[m] → akg [m] + CO2[m] + nadh[m]

Icit_Akg_m_nadp TCA oxidative branch icit[m] + nadp[m] → akg[m] + CO2[m] + nadph[m]

Eth_t Ethanol excretion etoh[c] →

Ac_t Acetate excretion ac[c] →

Pyr_t Pyruvate excretion pyr[c] →

Akg_t AKG excretion akg[c] →

Succ_t Succinate synthesis succ[c] →

Glyc_t Glycerol synthesis glyc[c] →

CO2_t CO2 synthesis CO2[c] ⇌ 

BIOMASS Biomass formation

3.96 g6p[c] + 0.258 r5p[c] + 0.129 e4p[c] + 0.116 g3p[c] + 0.303 3 pg[c] + 0.232 pep[c] + 0.775 
oaa[c] + 1.084 pyr[m] + 0 pyr[c] + 0.176 accoa[m] + 0.252 accoa[c] + 0.106 akg[m] + 0.366 
akg[c] + 0 CO2[c] + 0.136 glu[c] + 115 atp[c] + 0.106 atp[m] + 1.499 nad[c] + 0.176 
nad[m] + 0.602 nadph[m] + 5.35 nadph[c] → 115 adp[c] + 0.106 adp[m] + 1.499 
nadh[c] + 0.176 nadh[m] + 0.602 nadp[m] + 5.35 nadp[c]

Table 1.  Flux Selection. Selection of 20 fluxes that are representative of the main metabolic pathways. *flux 
abbreviations are encoded as substrate and product connected with “_”. For mitochondrial reactions, we 
added “_m”. Extracellular transport and mitochondrial transport reactions are marked with “_t” and “_tm”, 
respectively. Metabolite abbreviations can be found in Supplementary Table S2.

Figure 1.  Principle component analysis. PCA of selected estimated fluxes (left), and variation among parents 
(red and green) and segregant strains (grey) (right). Flux abbreviations are given in Supplementary Tables S2 
and S3.
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The results demonstrate that the variation among segregant strains regarding CCM fluxes exceeds the varia-
tion found between the parent strains, for half of the traits more than ten times (Pep_Pyr, Pyr_Acald, Acald_Eth, 
Ac_Accoa, Pyr_Oaa, Akg_Succoa_m, Eth_t, Glyc_t, CO2_t, BIOMASSE). This finding confirms the conclusion 
drawn by PCA (Fig. 1), which is explicitly that the parent strains show higher similarities in flux distributions 
than the segregant population. However, differences in variation can be seen between single fluxes. To better 
visualize trait variation between all segregants, the distributions of fluxes were plotted around the mean value for 
representative reactions within the central carbon metabolic network (Fig. 3).

While the fluxes of glycolysis and ethanol synthesis vary by only ±2.5% around the mean value, the fluxes 
of the PPP or metabolite production, such as glycerol or acetic acid production, diverge up to 200% around the 
mean. Most fluxes are normally distributed; however, few outliers can be seen, particularly for α-ketoglutarate, 
pyruvate and ethanol excretion. The distributions of two fluxes differ from a normal distribution, namely, the 
synthesis of acetyl-CoA from acetate (Ac_Accoa) and the NADP-dependent mitochondrial flux from isocitrate 
to AKG (Icit_Akg_m_nadp) of the TCA cycle oxidative branch. In the case of Icit_Akg_m_nadp, the analyses 
indicate that this flux is inactive in the majority of segregant strains and both parents (Supplementary Fig. S2). In 
the case of Ac_Accoa, a subpopulation of segregants shows a reduced flux towards acetyl-CoA. The presence of 
two distinctive populations indicates the major influence of one allele on the trait.

Genome-wide identification of QTLs influencing metabolic carbon fluxes.  In the first step, QTL 
mapping was performed on metabolite yields determined during the exponential phase, using a previously 
obtained segregant marker map46. Linkage analysis led to the detection of 8 QTLs on 5 chromosomes influencing 
7 traits (Table 2), which included most of the determined metabolite production yields as well as differences in 
sugar uptake (expressed as G/F ratio, the ratio of glucose and fructose remaining in the medium).

The highest detected LOD score was 4.71 for QTL chr4@152.6 influencing succinate yield, meaning that 
almost 16% of trait variation can be explained by this locus.

In the second step, QTL mapping was performed on estimated intracellular carbon fluxes. The analysis 
detected 24 single results of genomic regions influencing intracellular fluxes (Supplementary Table S4). Loci with 
highly identical borders were grouped to fQTLs (Table 3).

A total of 4 fQTLs on chromosomes II, V, VII and VIII were detected that influence 7 traits, which includes 
fluxes of glycolysis/ethanol synthesis, glycerol synthesis, the TCA cycle oxidative branch, biomass formation and 
metabolite transport/excretion. No QTLs could be detected for the fluxes of the PPP, the TCA cycle reductive 
branch and glutamate cycle, although these fluxes show the most substantial variation among the segregant strains 
(Fig. 2). As no QTL with an influence on the synthesis of acetyl-CoA from acetate (Ac_Accoa) was detected, the 
previous hypothesis from phenotyping that one locus has a major impact on this flux could not be confirmed 
(Fig. 3). The highest LOD score of 4.63 was found for the influence of QTL chr7@18.0 on glycolysis and ethanol 
synthesis, meaning that 15.7% of trait variation can be explained by this locus. The QTL region furthermore influ-
ences the most traits. In addition to the fluxes of glycolysis and ethanol synthesis, the fluxes of biomass formation, 
the TCA cycle oxidative branch and metabolite transport/excretion are affected.

Figure 2.  : Flux variation. Coefficient of variation of selected representative fluxes among the parent strains of 
the study (red) and among the resulting F2-segregants (blue). Flux abbreviations are given in Supplementary 
Tables S2 and S3.
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Combining the results obtained with both QTL mappings, 12 QTLs with a minimum peak distance of 10 cM 
were detected on 8 chromosomes (Fig. 4), of which 8 QTLs influence metabolite yields or the consumption of 
sugars during the exponential phase of fermentation, and 4 QTLs influence estimated metabolic fluxes of CCM.

Validation of detected fQTLs.  To evaluate the solidity of obtained fQTL mapping results, candidate genes 
within the 2 fQTLs with the highest LOD score were selected for validation. These genes were chosen according 
to their biological function related to central carbon metabolism and their distance to the QTL peak (Table 4).

Figure 3.  Average flux distribution. Schematic representation of modelled metabolic network with average flux 
distribution among segregant strains. Flux strength is expressed as percentage of glucose input and is displayed 
with a colour gradient from yellow to red. Average flux values ± standard deviation are indicated in blue for 
selected representative metabolic reactions, together with the variation of these fluxes around the mean that is 
normalized to a value of 1 (a-s). Distributions are displayed in red for reactions constrained by experimental 
data and in blue for modelled reactions. Metabolite abbreviations are given in Supplementary Table S2.
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The impact of these genes and their allelic variants was evaluated by RHA. In QTL chr2@222.9, detected 
to influence glycerol synthesis, PDB1 with a distance of 22.5 kb to the QTL peak was assessed, and a signif-
icant influence of the allelic variants on the trait was detected. The allelic variants of the gene differ in three 
non-synonymous single-nucleotide polymorphisms (SNPs; Table 5). The MTF2621 allele of PDB1 increases glyc-
erol synthesis fluxes by 5% (Fig. 5).

Trait QTL name Chromosome QTL start [bp] QTL end [bp] LOD

Succinate yield chr4@122.8 IV 356071 380035 4.42

G/F ratio chr4@125.4 IV 356071 400864 3.67

G/F ratio chr4@139.3 IV 409433 448045 3.63

CO2 yield chr4@139.3 IV 410742 448045 4.05

Succinate yield chr4@152.6 IV 426649 488205 4.71

G/F ratio chr4@160.0 IV 448242 505548 3.76

CO2 yield chr4@160.0 IV 448242 505548 4.33

Glycerol yield chr7@90.3 VII 252047 273771 3.76

AKG yield chr10@242.3 X 717987 648141 4.38

Ethanol yield chr13@208.9 XIII 622064 660267 4.22

G/F ratio chr13@214.5 XIII 624189 648141 3.62

CO2 yield chr13@214.5 XIII 624189 648141 3.7

Acetate yield chr13@237.7 XIII 710548 726277 3.84

AKG yield chr15@31.8 XV 67745 111309 3.52

Table 2.  Detected metabolite QTLs. List of QTLs with an influence on metabolite yields and the ratio of 
residual glucose to fructose concentrations (G/F ratio) during the exponential phase.

Trait QTL name Chromosome QTL start [bp] QTL end [bp] LOD max

Glycerol synthesis chr2@222.9 II 662795 701771 4.58

Malate transport chr5@128.3 V 354177 400836 4.01

Glycolysis & ethanol synthesis chr7@18.0 VII 40689 58851 4.63

Biomass chr7@25.5 VII 52412 82449 3.73

TCA cycle oxidative branch chr7@25.5 VII 52412 82449 4.05

Transport & excretion TCA metabolites chr7@25.5 VII 52412 82449 4.05

Ethanol transport chr8@155.7 VIII 443664 483121 3.45

Table 3.  Detected fQTLs. List of QTLs with an influence on modelled metabolic fluxes.

Figure 4.  QTL map. Plot of all detected QTLs against related chromosomes with marker positions. QTLs 
detected to influence metabolite yields or sugar consumption during the exponential phase (orange) and QTLs 
detected to influence estimated metabolic fluxes (blue) are displayed as 1-LOD support interval with the peak 
position as horizontal bar.
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In region chrVII:40,689..82,449 detected to influence glycolysis, ethanol synthesis, biomass formation, TCA 
cycle fluxes and transport/excretion of TCA cycle metabolites, two genes were selected for validation, HAP2 with 
a distance of 23.0 kb to the QTL peak, and VID30 with a distance of 4.0 kb to the QTL peak. While the variants 
of HAP2 did not show significant differences regarding estimated metabolic fluxes, the contribution of VID30 
to the detected phenotype variations could be validated (Table 4). The allelic variants of VID30 differ in three 
non-synonymous SNPs (Table 5). One SNP lies in the 1000-bp upstream region of the gene at position −318; 
however, no predicted transcription factor binding site is affected. No SNP was detected in the terminator region. 
The MTF2621 allele of Vid30 was found to decrease the fluxes of glycolysis and ethanol synthesis in the parental 
hemizygote by 1% (Fig. 5). The total variation regarding ethanol synthesis is only 6% among the segregant strains 
(Fig. 3). Although differences between the hemizygotes can not be directly compared to variation between the 
haploid segregant cells, the determined decrease by 1% caused by the alleles of Vid30 indicates a considerable 
contribution to total variation. To further evaluate the significance of the determined effect of Vid30 on glycolysis 
and ethanol synthesis, the accordance of modelled and experimental determined sugar uptake was assessed for all 
evaluated candidate genes (Supplementary Fig. S3). The mean deviation of the divergence between modelled and 
measured sugar uptake was 1.2% for triplicate measurements. Therefore, the meaningfulness of the 1% difference 
in glycolysis/ethanol synthesis found significant for the alleles of VID30 has to be questioned.

QTL name Trait
Evaluated 
genes

Different impact of allele on trait as 
MTF2621/MTF2622 [factor]

chr2@222.9 glycerol synthesis PDB1 1.05* glycerol synthesis

chr7@25.5
biomass glycolysis & ethanol 
synthesis TCA metabolite 
transport & excretion TCA 
cycle oxidative branch

HAP2 no effect

VID30
0.99* glycolysis & ethanol synthesis 
0.92* − 0.73** TCA metabolite excretion 
(0.90* TCA cycle reductive branch)

Table 4.  Verification of fQTLs. Differences caused by selected allelic gene variants regarding the influenced 
traits were detected by RHA and are given as the ratio of phenotype MTF2621 to phenotype MTF2622. (p-value: 
* ≤ 0.05, ** ≤ 0.01).

Gene Length in AA AA position S288C MTF2621 MTF2622

PDB1 366

14 A A T

26 — A —

289 V V I

VID30 958

37 H Y H

672 E E G

882 I V I

Table 5.  Polymorphisms between target gene alleles. Differences in amino acid (AA) sequences of expressed 
validated gene variants caused by non-synonymous SNPs between the parent strains. Comparison of the strains 
MTF2621 and MTF2622 to S. cerevisiae type strain S288C.

Figure 5.  Allelic effect of PDB1 (A) and VID30 (B) on different estimated fluxes of yeast CCM. Fluxes are 
expressed in relation to the corresponding flux determined in the undeleted heterozygote. (Glyc_t: glycerol 
excretion; AKG_t: AKG excretion; Eth_t: ethanol excretion; Mal_Fum: malate to fumarate flux; Pyr_t: pyruvate 
excretion; Succ_t: succinate excretion; p-value: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001).

https://doi.org/10.1038/s41598-020-57857-3
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In addition to ethanol synthesis, the MTF2621 allele of Vid30 was found to decrease the excretion of pyruvate, 
α-ketoglutarate and succinate by up to 27%. A significant influence of the alleles on the fluxes of the TCA cycle 
oxidative branch could not be detected. However, the fluxes of the reductive branch of the TCA cycle are signifi-
cantly affected, with the MTF2621 allele leading to a decrease in fluxes from malate to succinate by 10%.

Variation of PDB1 and VID30 alleles among the S. cerevisiae population.  To visualize the natural 
variation of validated target genes within the S. cerevisiae population and to potentially link the variants to strain 
origins, phylogenetic trees were drawn using publicly available PDB1 and VID30 gene sequences (Fig. 6 and 
Supplementary Table S5).

Regarding PDB1, allelic variants from yeast strains of different origins do not show much nucleotide variation. 
Two main clusters can be seen, one consisting of mostly laboratory strains and the other consisting of mostly wine 
strains. The allelic variants of the parental strains in this study are comparatively close. In contrast, the phyloge-
netic tree of VID30 variants displays more variation between strains of different origins. A probable explanation 
for the larger variation is a larger gene size. Several clusters can be distinguished, including a laboratory strain 
cluster, a cluster consisting of African and sake strains and a wine strain cluster with a sub cluster of mixed strains. 
The parental variants are more separated. While the MTF2621 allele of VID30 is similar to the allele of strain 
EC1118, a genotypically close wine x flor strain, the MTF2622 allele is located within the mixed cluster.

Discussion
Many S. cerevisiae traits of interest for applications in traditional food industries or industrial biotechnologies are 
dependent on the distribution of carbon fluxes within yeast CCM. We recently showed the pathway-dependent 
variability of flux distributions between S. cerevisiae strains, which was linked to the strain origin for some 
fluxes32. These findings suggest the existence of a stock of genetic resources that can help us understand the 
genetic basis of flux distributions and identify relevant targets for yeast strain improvement. In recent years, 
powerful methods, such as QTL mapping, have been developed to link phenotypic and genomic variations. Our 
objective was to assess the potential of QTL mapping to detect genomic regions influencing metabolic fluxes 
(fQTLs).

To this end, we used a population of 130 F2-segregants obtained from a cross of two wine yeast strains. For 
these strains, intracellular carbon fluxes were estimated by applying concentrations of extracellular metabolites 
during the exponential growth phase to a constraint-based stoichiometric model of yeast CCM. Analysis of flux 
deviations within the population of segregants indicated a positive correlation between the fluxes of the PPP, the 
TCA cycle oxidative branch and biomass formation, whereas these fluxes were negatively correlated to the fluxes 
of upper glycolysis. Negative correlations were furthermore found between the fluxes of lower glycolysis/ethanol 
synthesis and glycerol formation (Fig. 1). These observations are consistent with previous studies32,50.

Although the parent strains did not display large variation for most modelled fluxes, substantial variation 
among the segregants was observed (Fig. 2). For some fluxes, for example, the PPP or main metabolic synthesis 
fluxes, the variation among segregants reached the variation among S. cerevisiae strains from different ecological 
origins as determined by Nidelet et al. 201632. This finding emphasizes the complex nature of intracellular flux 
distributions and indicates a rich genomic resource for metabolic profile optimization.

Figure 6.  Phylogenetic analysis of target genes. Phylogenetic trees of target genes PDB1 (A) and VID30 
(B) made from variant sequences of strains with different origins. Gene sequences were obtained from the 
Saccharomyces Genome Database (https://www.yeastgenome.org). Maximum likelihood trees were constructed 
by the bootstrap method with 200 replications using MEGA v7.0.2683.

https://doi.org/10.1038/s41598-020-57857-3
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With 8 detected QTLs, the number of regions influencing metabolite yields during the exponential phase was 
higher than the detected 4 QTLs influencing modelled metabolic fluxes. However, the regions from both linkage 
analyses differ from each other (Fig. 4), demonstrating that the modelling step was crucial for fQTL detection. 
While QTL mapping of metabolite yields naturally considers a single information, the modelling step preceding 
fQTL mapping represents the integration of multiple information.

As reported in the literature and seen in our study, variances of certain intracellular fluxes, such as glycolysis, are 
generally low. As result, increased statistical power is needed for a more thorough determination of the impact of 
genomic variation on these fluxes. This determination could be achieved by increasing the number of segregants or 
by performing strategies of multiple QTL mapping, which has the potential to find QTLs with minor contributions.

All QTLs were compared to 8 loci detected during our previous study to influence extracellular metabolite pro-
duction yields after 80% of the fermentation using the same parent strains46. Only QTL chr7@18.0, which influences 
the fluxes of glycolysis, ethanol synthesis, biomass production, the TCA cycle and transport/excretion of TCA cycle 
metabolites, was detected in our previous study to influence pyruvate production yield after 80% of the fermentation. 
This finding indicates that the impact of QTL chr7@18.0 on flux distributions has a long-lasting effect on metabolite 
formation that can still be detected at the end of fermentation. However, considering the concentrations of extra-
cellular metabolites during the exponential phase and after 80% of the fermentation, all detected QTL regions differ 
from each other, and there are no common QTLs affecting metabolite production during both phases of fermenta-
tion. This finding indicates that different genomic regions could control metabolite production in the growth phase 
and stationary phase, which actually corresponds to very different physiologic states of yeast during fermentation.

Assessment of the two detected fQTLs with the highest LOD scores by RHA revealed the implication of PDB1 
and VID30 in the evaluated traits. PDB1, shown to influence the fluxes of glycerol synthesis (Table 4, Fig. 5), 
encodes the beta subunit of pyruvate dehydrogenase (PDH), which is part of the large multienzyme PDH com-
plex51. The PDH complex, which includes the other components dihydrolipoamide acetyltransferase and dihy-
drolipoamide dehydrogenase, converts pyruvate into acetyl-CoA52. The allelic variants of PDB1 differ in three 
non-synonymous SNPs (Table 5), one of which, SNP V289I, lies in the pyruvate-ferredoxin oxidoreductase 
domain II of the protein. A possible explanation for the impact of Pdb1 variants on glycerol fluxes is that the 
MTF2621 allele of Pdb1 shows an increased conversion rate of pyruvate to acetyl-CoA, which leads to a higher 
formation of the redox cofactor NADH. The resulting cofactor excess is then compensated through increased 
glycerol synthesis, which maintains redox balance by NADH consumption53. However, no significant difference 
in the estimated flux from pyruvate to acetyl-CoA (Pyr_Accoa_m) was detected by RHA for the alleles of PDB1.

The second validated gene, VID30, possibly influences the fluxes of glycolysis/ethanol synthesis and has an 
impact on the TCA cycle reductive branch and the excretion of TCA cycle metabolites (Table 4, Fig. 5). Two 
functions of Vid30 could potentially account for these observed differences: the regulation of genes involved in 
glutamate/glutamine synthesis and the degradation of various metabolic enzymes. The expression of VID30 is 
repressed by ammonia and upregulated in response to low ammonia levels, a characteristic limitation during 
fermentation in grape must, which was the case in this study. Vid30 regulates various nitrogen catabolic genes, 
including GDH1, GDH2, GDH3, GLN1 and GLT1. These genes express enzymes involved in the synthesis (and 
interconversion) of glutamate and glutamine from AKG and ammonia, therefore explaining the role of Vid30 
in central carbon metabolism since AKG is part of the fluxes of the TCA cycle oxidative branch. Gdh1, Gdh3 
and Gln1 catalyse reactions from AKG to glutamine54–56, whereas Gdh2 catalyses the conversion of glutamate 
to AKG57. Glt1 synthesizes glutamate from either AKG or glutamine58. In low ammonia environments, Vid30 
behaves as a positive regulator of GDH1, GDH3 and GLT1, which increases the flux from AKG to glutamate59. 
Since decreased AKG production was detected for the MTF2621 allele of Vid30 (Fig. 5), we suggest that this vari-
ant stimulates increased flux from AKG to glutamate through the positive regulation of GDH1, GDH3 and GLT1.

Another potential role of Vid30 in central carbon metabolism is its regulation of various metabolic enzymes 
through degradation. When glucose-starved yeast is again transferred to glucose-rich medium, e.g., during 
inoculation, metabolism increases the expression of glycolytic enzymes and simultaneously inactivates gluco-
neogenetic enzymes through catabolite inactivation. Vid30 possesses two functions in this process. It acts as a 
subunit of the glucose induced degradation (GID) protein complex that performs the ubiquitination of enzymes, 
which leads to their proteasome dependent inactivation60–63. Furthermore, Vid30 plays an important role in the 
formation of vesicles of the vacuole import and degradation pathway64, which carries out the degradation of 
enzymes expressed under the growth on non-fermentable carbon sources65–67. Regulation performed in this man-
ner includes the turnover of hexose transporters Hxt3 and Hxt768,69. In addition, various enzymes are regulated 
through degradation by Vid30 that catalyse gluconeogenesis reactions, such as fructose-1,6-bisphosphatase, cyto-
solic malate dehydrogenase, isocitrate lyase and phosphoenolpyruvate carboxykinase70–73. The reactions catalysed 
by these enzymes strongly affect the fluxes of glycolysis and the TCA cycle.

The allelic variants of VID30 differ in three non-synonymous SNPs (Table 5), one of which, SNP V882I, lies 
in the CTLH/CRA domain of the protein, a protein-protein interaction domain also found in other components 
of the GID complex. We propose that the SNPs in the MTF2621 variant of Vid30 influence the protein’s ability to 
inactivate hexose transporters and gluconeogenesis enzymes by degradation, hypothetically by an altered affinity 
to other components of the GID complex. This hypothesis is supported by the observed influence of allelic vari-
ants on the fluxes of the TCA cycle reductive branch (Fig. 5), as cytosolic malate dehydrogenase, which catalyses 
the reaction from malate to oxaloacetate, is among the enzymes inactivated by Vid3065. Furthermore, the reported 
SNPs could affect the role of Vid30 in the regulation of enzymes involved in the synthesis of glutamate from AKG. 
This hypothesis is supported by the detected significant influence of Vid30 alleles on AKG formation (Fig. 5). On 
the other hand, a significant difference between the evaluated alleles in the flux from AKG to glutamate could not 
be detected by RHA. The difference in AKG formation could also be explained by the role of Vid30 in the degra-
dation of isocitrate lyase. The enzyme catalyses the reaction from isocitrate to succinate, which could influence 
AKG synthesis.
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Conclusion
In this study, we prove the feasibility of using modelled phenotypic data to detect regions in the genome influ-
encing the distribution of carbon fluxes within central carbon metabolism (fQTLs) in S. cerevisiae. We used 
concentrations of extracellular main metabolites during the exponential phase of yeast fermentation to estimate 
intracellular fluxes, applying a constraint-based model. This strategy allowed the integration of otherwise inde-
pendent quantifiable traits and resulted in the detection of 4 fQTLs with an influence on 4 main metabolic path-
ways and various metabolite transport and excretion fluxes. These QTLs could not have been found by linkage 
analysis considering extracellular metabolite concentrations alone, demonstrating the need for the modelling step.

The solidity of our approach was further confirmed by the validation of two target genes within the identified 
fQTLs, PDB1 and VID30. The allelic variants of PDB1 account for variation in the glycerol synthesis flux, which 
we hypothesize to be caused by redox imbalances as a result of altered pyruvate conversion. The variants of VID30 
impact the fluxes of glycolysis, ethanol synthesis and the TCA cycle, which we propose to be caused by differences 
in the regulation of enzymes catalysing glutamate formation or differences in the catabolite-induced degradation 
of enzymes involved in sugar uptake, gluconeogenesis and the TCA cycle. Compared to strains of other origins, 
the parental variants of the evaluated target genes are comparatively close. The characterization of more distant 
variants and an evaluation of their influence on intracellular flux distributions will disclose genetic resources that 
bear further potential to shape the metabolic profile of strains.

In summary, our findings of fQTLs and allelic variants impacting metabolic fluxes increase our knowledge of 
the links between genomic variation and yeast metabolic properties and provide a proof-of-concept for the appli-
cability of QTL mapping on modelled metabolic fluxes. This result offers exciting opportunities for uncovering 
superior allelic variants impacting these traits, which could be used to improve strains for manifold purposes, e.g., 
the production of biofuels or other bulk and fine chemicals.

Materials and Methods
Media.  Yeast strains were cultured at 28 °C in yeast extract peptone dextrose (YPD) media, containing 10 g/L 
yeast extract, 20 g/L peptone and 20 g/L glucose. Solid YPD media contained 1.5% agar. Selective YPD media 
contained 200 µg/mL geneticin (G418), 200 µg/mL nourseothricin (clonNAT) or 200 µg/mL hygromycin B.

Fermentations were carried out in synthetic grape must (SM200) as described by Bely et al. 199074. The 
medium contains glucose and fructose at a concentration of 100 g/L each, and assimilable nitrogen in the form of 
ammonium and free amino acids at a concentration of 200 mg/L.

Strain generation.  This study used a set of 130 F2-segregants generated in a former study to map QTLs for 
main and volatile metabolite production by S. cerevisiae during alcoholic fermentation46. The parent strains of 
this segregant population are strain MTF2621 (haploid spore of 4CAR1 [ΔHO::Neor]) and MTF2622 (haploid 
spore of T73 [ΔHO::Natr]). Strain T73 belongs to the phylogenetic clade of wine strains, whereas strain 4CAR1 
belongs to the group of champagne strains, which originated through crossings between strains of the wine clade 
and the flor clade75.

Genotyping of strains.  The segregant strain marker map used for linkage analysis in this study was gen-
erated during a previous study in our working group46. Parent and segregant strains were genotyped by whole 
genome sequencing using Illumina technology, and a global set of 18155 biallelic variant positions was obtained. 
This set was reduced to a dataset of 3727 SNP markers with a minimum spacing of 2.0 kb between SNPs. Four 
segregant strains with the most ambiguous markers were excluded to increase the meaningfulness of the anal-
ysis. One strain was excluded because of its close genomic proximity to another segregant. This exclusion left 
a population of 125 F2-segregants for statistical analyses. Information available in the Saccharomyces Genome 
Database (https://www.yeastgenome.org) was used to associate SNPs with annotated protein domains. The effect 
of detected SNPs on putative transcription factor binding sites was analysed using YEASTRACT (release 2017)76.

Phenotyping of strains.  Segregant strains were phenotyped in duplicate with the parent strains as a control. 
Sterilized 300-mL glassware mini fermenters were filled with 280 mL of SM200 (synthetic must with 200 mg/L of 
assimilable nitrogen) and closed with an air lock. The fermenters were inoculated with overnight yeast cultures 
to a cell density of 1 × 106 cells/mL, weighed and left at 24 °C under stirring (300 rpm). Fermentations were sam-
pled during the exponential phase (when 10 g/L of CO2 was produced), which was determined by weighting the 
fermenters regularly. For each fermentation, dry biomass was determined in duplicate by filtering 10 mL of cell 
suspension through a nitrocellulose membrane with a porosity of 0.45 μm (Millipore, France) and known dry 
weight. The membrane was rinsed twice with 10 mL of distilled water, dried for 48 h and weighed to determine 
the dry biomass of the sample. The concentrations of unfermented sugars (glucose and fructose) and extracellular 
carbon metabolites (ethanol, glycerol, acetic acid, succinic acid, pyruvic acid, and α-ketoglutaric acid) in the fer-
mentation medium were determined by high-performance liquid chromatography (HPLC). The flow rate of the 
device (HPLC 1290 Infinity, Agilent Technologies, USA) was set to 0.6 mL/min (0.005 N H2SO4). Samples were 
separated by a pre-column and an ion-exclusion column (Phenomenex REZEX™ ROA-Organic Acid H +(8%)), 
which was thermostatically controlled at 60 °C. Compounds were detected using a refractometer in combination 
with a UV spectrometer at 210 nm. Chromatograms were processed with Agilent EZChrom software.

Modelling of metabolic fluxes.  To predict intracellular metabolic fluxes, we used DynamoYeast, a pre-
viously developed model of yeast central carbon metabolism18. This model has been chosen for several reasons. 
First, it had been designed specifically to predict fluxes in oenological fermentation. It covers S. cerevisie central 
carbon metabolism with the specification of anaerobic metabolism, e.g., TCA fluxes are composed of an oxida-
tive and reductive branch and therefore do not form a cycle. Second, the biomass reaction function of the model 
had been calibrated with wine yeast strain EC1118, which is phylogenetically closer to the parent strains used 
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in this study than the widely used laboratory reference strain18. Third, it had been used and validated in two 
previous projects in very similar conditions18,32. Last, the choice of a comparatively small model (favored over a 
genome-scale model) is consistent with other studies in literature that use large scale models to examine qualita-
tive phenotypes13, whereas small-scale models are used for quantitative modelling20–22,77.

The DynamoYeast model covers 68 reactions (Supplementary Table S3) and 61 metabolites (Supplementary 
Table S2) of central carbon metabolism, and distinguishes three compartments, the mitochondria, cytoplasm 
and extracellular excretion. Extracellular metabolite concentrations (in mmol/L) and dry mass weight (in g/L) 
obtained by the phenotyping of segregant strains during the middle of the exponential phase were used to con-
strain the model. The error margin for the metabolite reaction rate boundaries of the model was set to ± 2.5%. 
Flux distribution throughout the metabolic network was obtained for each segregant by mass balance analy-
sis with a minimization of glucose input as the objective function. As consequence, our method directly com-
putes mass distribution, unlike other constraint-based methods, e.g., metabolic flux analysis (Vallino and 
Stephanopoulos, 199378), that derive mass data to obtain flux distributions (see Celton et al. 201218 for details 
about the methodology). For computing mass distribution, we follow the assumption that all fluxes - along with 
the biomass composition - are constant during the exponential phase. The estimation of mass distribution allows 
for the expression of fluxes as yields instead of reaction rates.

Fructose was treated as glucose in the modelling approach as this did not impact flux predictions. Finally, 
estimated fluxes were normalized to the predicted sugar uptake in order to enable the comparison of relative flux 
distributions between strains. Due to block effects concerning the determination of succinate concentrations, 
succinate excretion fluxes were constrained by setting a fixed range that corresponded to the maximum succinate 
excretion flux variation between S. cerevisiae strains determined in a previous study by our working group32.

All predictions were performed using the programming language R v3.2.3 with the R/sybil v2.0.0 and R/
sybilSBML v2.0.11 libraries79.

QTL mapping.  QTL mapping of modelled metabolic fluxes was carried out by single QTL mapping (inter-
val mapping method) using the genotype and phenotype information of segregant strains. Linkage analysis was 
performed using the programming language R v3.2.3 (https://www.r-project.org) with the R/qtl v1.40–8 and R/
eqtl v1.1–7 libraries80. Two different phenotype models were tested, the normal model using Haley-Knott regres-
sion and non-parametric analysis. The statistical analyses resulted in logarithm of odds (LOD) scores for each 
marker and pseudo-marker every 2.5 cM. Individual LOD score thresholds for a false discovery rate of 0.05 were 
determined with 1000 permutations. If the same locus was detected with both phenotype models, the results with 
the higher LOD score were selected. An interval estimate of the location of each QTL was obtained as the region 
in which the LOD score is within 1 unit of the peak LOD score (1-LOD support interval). QTL mapping results 
for single metabolic reactions were considered to be a common fQTL if their peaks were less than 10 cM apart.

Reciprocal hemizygosity analysis.  Molecular dissection of the detected QTLs was performed by RHA81,82. 
Target genes in QTLs were chosen according to a biological function associated with central carbon metabolism 
and the gene’s proximity to the determined QTL peak. The gene sequences were deleted in both parent strains by 
homologous recombination with a disruption cassette containing the hygromycin B resistance gene (hphr). The 
disruption cassettes were amplified by polymerase chain reaction (PCR) of the plasmid pAG32 with the primers 
del_(GENE)_fw and del_(GENE)_rv (Supplementary Table S1). Positive integration was selected by plating the 
transformed cells on YPD-agar plates containing hygromycin B. Correct gene deletion was verified by PCR using 
primer test_(GENE)_fw, which binds upstream of the deleted gene, and primer Hygro_rv, which binds within the 
deletion cassette. Subsequently, deleted parent strains were mated with the opposite undeleted parent to form a 
heterozygote that is hemizygous for the target gene. Hemizygous constructions were phenotyped in triplicate. The 
significance of the influence of allelic gene variants on modelled metabolic fluxes was evaluated by student’s t-test. 
If a variant’s impact on several fluxes was tested, p-values were not adjusted for multiple comparisons.

Data availability
Genome sequencing data generated during the current study is available from NCBI under bioproject number 
PRJNA433287; SNP data, marker map and phenotypic data set are available from the INRA Dataverse: https://
data.inra.fr/dataset.xhtml?persistentId = doi:10.15454/C1F8MO.
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