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Abstract

Cholesterol gallstone formation represents a failure of biliary cholesterol homeostasis in which the 

physical-chemical balance of cholesterol solubility in bile is disturbed. Lithogenic bile is mainly 

caused by persistent hepatic hypersecretion of biliary cholesterol and sustained cholesterol-

supersaturated bile is an essential prerequisite for the precipitation of solid cholesterol 

monohydrate crystals and the formation of cholesterol gallstones. The metabolic determinants of 

the supply of hepatic cholesterol molecules that are recruited for biliary secretion are dependent 

upon the input-output balance of cholesterol and its catabolism in the liver. The sources of 

cholesterol for hepatic secretion into bile have been extensively investigated; however, to what 

extent each cholesterol source contributes to hepatic secretion is still unclear both under normal 

physiological conditions and in the lithogenic state. Although it has been long known that biliary 

lithogenicity is initiated by hepatic cholesterol hypersecretion, the genetic mechanisms that cause 

supersaturated bile have not been defined yet. Identification of the Lith genes that determine 

hepatic cholesterol hypersecretion should provide novel insights into the primary genetic and 

pathophysiological defects for gallstone formation. In this review article, we focus mainly on the 

pathogenesis of the formation of supersaturated bile and gallstones from the viewpoint of genetics 

and pathophysiology. A better understanding of the molecular genetics and pathophysiology of the 

formation of cholesterol-supersaturated bile will undoubtedly facilitate the development of novel, 

effective, and noninvasive therapies for patients with gallstones, which would reduce the 
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morbidity, mortality, and costs of health care associated with gallstones, a very prevalent liver 

disease worldwide.
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1. Introduction

Gallstone disease is not only a very prevalent liver disease worldwide, but also a very old 

human disorder, going back thousands of years, as it has been found in ancient mummies in 

Egypt and China. Although gallstone disease was not recognized by ancient Chinese, 

abdominal pain as a result of hepatobiliary diseases and gastric malfunction, jaundice caused 

by liver diseases, and epigastric colic owing most likely to gallstones or biliary ascariasis 

were often treated with bear’s bile.1 The earliest medical record for these therapeutic 

interventions was found in Treatise on Properties of Drugs (c. 643 CE or earlier) written by 

an ancient Chinese doctor Zhen Quan (c. 540 to 643 CE).1 Modern chemical analysis of the 

bile of Asian black bears (Ursus thibetanus or Selenarctos thibetanus) and brown bears 

(Ursus arctos) found that ursodeoxycholic acid (UDCA) is the major composition of the bile 

acid pool in these animals. Notably, UDCA, a hydrophilic bile acid, is now first-line 

pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent 

cholesterol-enriched gallstones.2 Long-term administration of UDCA promotes the 

dissolution of cholesterol gallstones, especially in patients with small (≤5 mm in diameter), 

cholesterol-rich and uncalcified stones (radiolucent on plain X-ray film) in a functioning 

gallbladder with preserved kinetics and a patent cystic duct.3–5 However, the therapeutic 

effect of UDCA is not always achieved in clinical practice because of a high recurrence rate 

of gallstones.5 Although laparoscopic cholecystectomy is nowadays the first choice of 

treatment options for gallstone disease, it is invasive and can cause surgical complications 

regarding morbidity and mortality, and not all patients with symptomatic gallstones are 

candidates for surgery.6

To reduce the morbidity, mortality and costs of health care associated with gallstones, it is 

imperative to elucidate the pathogenesis of gallstone disease. This will promote the 

development of a novel, effective, and noninvasive therapy for patients with gallstones. 

Since the first gallstone gene, Lith1 was identified by quantitative locus trait (QTL) mapping 

methods in inbred strains of mice in 1995,7 a mouse gallstone gene map that contains 25 

Lith genes has been established through genetic analysis of cholesterol gallstone formation 

in different strains of inbred mice fed a lithogenic diet for 8 weeks.8 This greatly promotes 

the discovery of human Lith genes because of homologues between human and mouse 

chromosomes. Such a successful study is the confirmation of ABCG5/G8 as a human Lith 
gene based on mouse studies. The Abcg5/g8 was first identified as the mouse Lith9 by the 

QTL mapping methods,9–11 and subsequently, two major gallstone-associated variants in 

ABCG5/G8 (ABCG5-R50C and ABCG8-D19H) were found not only in German and 

Chilean populations, but also in Chinese and Indian populations.12–19 Therefore, based on 
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the mouse gallstone (Lith) gene map, more human Lith genes will be identified and their 

pathogenic mechanisms will be elucidated in the near future.

2. History of cholesterol and bile acid research

Bile is a yellow, brownish, or olive-green liquid that is composed primarily of water, organic 

solutes (such as lipids), inorganic salts, and some proteins. In bile, cholesterol, 

phospholipids, and bile acids are three major lipids, and bile pigments are minor lipids. 

Chemical studies of bile and gallstones for more than 200 years led to the discovery of 

cholesterol and bile acids, two major organic molecules in bile. The “cholesterol” was first 

identified in gallstones in the mid-18th century, and subsequently, this material was isolated 

from gallstones by some researchers. Accumulated evidence showed during the second half 

of the 18th century that the major component of gallstones was a white crystalline substance 

that is soluble in alcohol and ether, but not in water. It was not until 1816 that the compound 

“cholesterine” was named by chemist Michel Chevreul.20 After cholesterine was found to be 

an alcohol by Berthelot in 1859,21 a new name “cholesterol” was largely used in French and 

English scientific literature. The term cholesterol originated from the ancient Greek chole- 

(bile) and stereos (solid) followed by the chemical suffix -ol for an alcohol. Although 

cholesterol was recognized as a distinct chemical compound in the early 19th century, its 

chemical structure has not been known for many decades. In 1888, Reinitzer22 identified 

that the empirical formula of cholesterol was C27H46O, indicating that cholesterol was not a 

straight-chain compound with a double bond, since it did not have enough hydrogen atoms 

to bind to all the carbon valency of four. However, he saw it was consistent with a structure 

containing four rings with two shared carbon atoms at each ring junction (four fused rings). 

Subsequently, some substances isolated from fungi and green plants were found to be 

cholesterol-like crystalline compounds. In 1889, Tanret23 isolated a substance from rye 

seeds infected with ergot, which closely resembled cholesterol. This compound was named 

ergostérine (now called ergosterol). Furthermore, the empirical formulae of cholic acid 

(C24H40O5), which was found by Strecker in 1848,24 and of deoxycholic acid (C24H40O4), 

which was found by Mylius in 1886,25 displayed a highly similar ratio (1.67) of hydrogen to 

carbon atoms compared with that (1.70) in cholesterol. Because both bile acids and 

cholesterol are present in bile, it was reasonable to hypothesize that the structural features of 

these two compounds could be similar. In 1919, Windaus and his colleagues26 found that the 

carbon skeleton of bile acids was the same as that of the cholesterol molecule, for the most 

part. This discovery greatly promoted the study of the chemical structure of cholesterol 

because the presence of the hydroxyl group in ring C of cholic and deoxycholic acids 

enabled Windaus and other researchers to further investigate the steroid ring system through 

the bile acid approach.

In 1928, the Nobel Committee for Chemistry announced that the Nobel Prize in Chemistry 

1927 was awarded to Heinrich Wieland “for his investigations of the constitution of the bile 

acids and related substances,” as well as that the Nobel Prize in Chemistry 1928 was given 

to Adolf Windaus “for the services rendered through his research into the constitution of the 

sterols and their connection with the vitamins.” Thus, on December 10, 1928, two Nobel 

Prizes in Chemistry were awarded to Wieland and Windaus, respectively. In his Nobel 

lecture,27 Wieland first described a brief history of how three bile acids (including cholic, 
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deoxycholic, and lithocholic acids) were discovered and then, summarized his chemical 

experiments of bile acids. Based on his experimental results, he proposed a possible 

chemical structure of bile acid. In his Nobel lecture,28 Windaus presented his discovery that 

the chemical precursor of vitamin D was a member of the sterol group and also showed how 

sunlight broke one of the chemical bonds in the parent molecule, converting it into the active 

vitamin. This finding clearly explained why exposure to sunlight could prevent rickets, a 

disease caused by vitamin D deficiency in humans. In addition, Windaus proposed a possible 

chemical structure of cholesterol. He spent some 30 years studying the chemical structure of 

cholesterol, which was part of his study of the complex alcohols, known as sterols. He found 

that sterols were closely related to bile acids by transforming cholesterol into cholanic acid. 

Unfortunately, the steroid nucleus of bile acid and cholesterol shown in their Nobel lectures 

was incorrect.29 However, this did not significantly influence their excellent findings and 

conclusions for which their prizes were awarded.

It must be noted that modern physical techniques for structural analysis of steroids were not 

available to these early talented scientists that time. It was a challenging task for these early 

scientists to precisely identify the chemical structures of cholesterol and bile acids. However, 

the development of new physical techniques led to the discoveries of the correct chemical 

structures of these steroids. Desmond Bernal used X-ray diffraction methods to study 

vitamin D, cholesterol, and ergosterol, and reported the chemical structures of these 

compounds in Nature in 1932.30 Subsequently, two research groups, led by Rosenheim and 

King in the UK and Wieland and Dane in Germany, further investigated the chemical 

structure of bile acids.31 Each group independently proposed the structure of 

cyclopentanoperhydrophenanthrene for the steroid nucleus of bile acids. These structures 

were confirmation by both X-ray diffraction and chenodeoxycholic acid synthesis.32 

Obviously, the X-ray diffraction methods played a critical role in the determination of the 

correct chemical structures of these lipids in bile, which was proposed in 1932 and has been 

used ever since. The determination of the sterol ring structure promoted identification of the 

chemical structures of many other biologically important sterols. For example, Adolf 

Butenandt identified the structures of the male and female sex hormones even from 25 mg of 

the male hormone sample. Fig. 1 shows, from left to right, the molecular structures, the 

standard chemical formulae, the perspective formulae, and the space-filling models of 

cholesterol and cholic acid, respectively.

Of special note, although Edward A. Doisy at Saint Louis University won the Nobel Prize in 

Physiology or Medicine 1943 for his outstanding work on the discovery of the chemical 

nature of vitamin K, his other excellent work was the identification of α-, β-, and ω-

muricholic acids, three isoforms of the 3,6,7-trihydroxy bile acids in rat bile.33 

Subsequently, William Elliott synthesized these bile acids and investigated their chemical 

and chromatographic properties.34–38 These muricholic acids are the major bile acids in 

mice and rats, and these findings elucidated differences in bile acid composition between 

rodents and humans.
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3. Physical chemistry of cholesterol

Cholesterol is an essential component of mammalian cell membranes and is widely 

distributed in unesterified and esterified forms. In its unesterified form, the chemical 

structure of the cholesterol molecule includes the cholestene nucleus with a double bond at 

the C-5 and C-6 positions and a hydroxyl group on the third carbon. Furthermore, the 

angular methyl groups at C-10 and C-13, the hydrogen atom at C-8 and the side-chain at 

C-17 are in β configuration. The hydrogen atoms at C-9 and C-14 are in α configuration. 

The solubility of cholesterol is very low in water, approximately 4.7 mmol at 25 °C. 

Furthermore, when one fatty acid attaches to the cholesterol molecule at the C-3 position, its 

residue increases the hydrophobicity of cholesterol.

In the plasma, approximately one third of cholesterol is in the unesterified form and the 

remaining two thirds exist as cholesteryl esters. The actual cholesterol concentration in 

plasma of a healthy individual is usually between 120 and 200 mg/dL. Such a high 

concentration of cholesterol can be present in the blood because plasma lipoproteins, mainly 

high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low-density 

lipoprotein (VLDL), carry large amounts of cholesterol, regardless of whether the 

cholesterol molecule is in a nonesterified or an esterified form.39–45

Notably, approximately 95% of the cholesterol molecule in bile is in the unesterified form 

and <5% of the sterols are cholesterol precursors and dietary sterols.46–48 In contrast, the 

concentrations of cholesteryl esters are negligible in human bile. Moreover, cholesterol is 

abundant in human bile, with normal concentrations being approximately 390 mg/dL in the 

gallbladder. Bile acids, which are metabolites of cholesterol, can form simple and mixed 

micelles in bile, which can aid in solubilizing cholesterol in bile.49–54 Furthermore, the 

vesicles that are composed primarily of phospholipids also greatly promote the solubility of 

cholesterol in bile.55–61

4. Five primary defects leading to cholesterol gallstone formation

As shown in Fig. 2, compelling evidence from clinical studies and animal experiments has 

clearly demonstrated that interactions of five primary defects play a critical role in the 

pathogenesis of cholesterol gallstone disease.8 These defects include (i) genetic factors and 

Lith genes; (ii) hepatic hypersecretion of biliary cholesterol leading to supersaturated bile; 

(iii) rapid phase transitions of cholesterol in bile; (iv) impaired gallbladder motility 

accompanied with hypersecretion of mucins and accumulation of mucin gel in the 

gallbladder lumen, as well as immune-mediated gallbladder inflammation; and (v) increased 

amounts of cholesterol of intestinal origin owing to high efficiency of cholesterol absorption 

and/or slow intestinal motility, which aids “hydrophobe” absorption and augments 

“secondary” bile acid synthesis by the anaerobic intestinal microflora.8,46,62 By numerous 

human and animal studies, hepatic cholesterol hypersecretion is recognized to be the 

primary pathophysiologic defect, leading to the formation of cholesterol-supersaturated bile 

and solid cholesterol crystals, as well as their aggregation and growth into cholesterol 

gallstones. These abnormalities are caused by multiple Lith genes, with insulin resistance as 

part of the metabolic syndrome working with cholelithogenic environmental factors to 
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induce the phenotype.46,63,64 Rapid growth and agglomeration of solid plate-like cholesterol 

monohydrate crystals into microlithiasis and eventually gallstones is a consequence of 

persistent hepatic hypersecretion of biliary cholesterol together with both gallbladder mucin 

hypersecretion and incomplete evacuation by the gallbladder owing to its impaired motility 

dependent on defective smooth muscle response to neuro-hormonal stimuli.65 Over the past 

decades, new progress has been made in the genetic analysis of Lith genes and the 

pathophysiology of gallstone disease. Many excellent review articles on these topics have 

been extensively published, and interested readers can further read these papers.8,47,65–72

5. The sources of cholesterol secreted into bile

Bile formation is an osmotic process and solutes are actively transported into the canaliculus 

by primary active lipid transporters: ABCG5/G8 for biliary cholesterol secretion, ABCB4 

for biliary phospholipid secretion, and ABCB11 for biliary bile acid secretion.46,47 The most 

important solutes driving bile formation are bile acids. Three important physiological 

functions of bile formation are73: (i) it is a major route for the elimination of cholesterol 

from the body, either as unesterified cholesterol or as bile acids, the end productions of 

cholesterol degradation; (ii) it ensures the secretion of bile acids, which are crucial for lipid 

emulsification in the small intestinal tract and subsequent lipid absorption by the 

enterocytes; and (iii) it represents an important pathway for the removal of drugs, toxins, and 

waste productions from the body.

As shown in Fig. 3, the metabolic determinants of the supply of hepatic cholesterol 

molecules that are recruited for biliary secretion are dependent upon the input-output 

balance of cholesterol and its catabolism in the liver. Input is dependent on the amount of 

both unesterified and esterified cholesterol taken up by the liver from plasma lipoproteins 

(LDL > HDL > chylomicron remnants) plus hepatic de novo biosynthesis. Output is 

dependent upon the amount of cholesterol disposed within the liver after its conversion to 

cholesteryl esters (to form new VLDL plus ester storage) minus the amount of cholesterol 

converted to the primary bile acids, such as cholic acid and chenodeoxycholic acid. Overall, 

the liver can systematically regulate the total amount of cholesterol within it, and any excess 

cholesterol can be handled efficiently.

When no dietary cholesterol is consumed, bile contains newly synthesized cholesterol from 

the liver as well as preformed cholesterol, which reach the liver via several different ways. 

Under the circumstances, it is estimated that ~85% of total biliary cholesterol is derived 

from the pools of preformed cholesterol within the liver and less than 15% of the cholesterol 

in bile comes from hepatic de novo biosynthesis. The sources of preformed cholesterol are 

derived from hepatic uptake of plasma lipoproteins, such as HDL, LDL, and VLDL through 

their respective receptors on the basolateral membrane of hepatocytes.74 Consistent with its 

predominant physiological function in reverse cholesterol transport, HDL transfers 

cholesterol from the extrahepatic tissues to the liver for biliary secretion, which is the major 

lipoprotein source of cholesterol that is targeted for hepatic secretion into bile. Acetyl-CoA 

is often used as a substrate for the hepatic de novo biosynthesis of cholesterol, which is 

regulated mainly by 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting 

enzyme in this cholesterol synthesis pathway in the liver.75 This enzyme is up- or down-
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regulated depending on the overall cholesterol balance in the liver. Increasing its enzymatic 

activity could enhance hepatic secretion of biliary cholesterol.76,77 However, its inhibition 

by statins reduces hepatic cholesterol secretion by less than 10%.

Most, but not all, studies showed that the use of oral contraceptive steroids and conjugated 

estrogens in premenopausal women significantly increases the incidence of cholesterol 

gallstones.78 The administration of estrogen to postmenopausal women and estrogen therapy 

to men with prostatic carcinoma display similar lithogenic effects, leading to hepatic 

cholesterol hypersecretion and biliary lithogenicity.79–83 Animal studies found that hepatic 

estrogen receptor α (ERα) activated by estrogen interferes with the negative feedback 

regulation of cholesterol biosynthesis by stimulating sterol-regulatory element binding 

protein-2 (SREBP-2), which activates the SREBP-2 responsive genes for the cholesterol 

biosynthetic pathway.84 Thus, under conditions of high levels of estrogen, mice continue to 

synthesize cholesterol in the face of its excess availability from the high-cholesterol diet, 

suggesting that there is a loss in the negative feedback regulation of cholesterol biosynthesis 

that results in excess secretion of newly synthesized cholesterol and supersaturation of bile.
84 These abnormalities lead to a predisposition to cholesterol gallstone formation. These 

findings highlight the importance of estrogen in the pathogenesis of gallstones because more 

newly synthesized cholesterol determined by the estrogen-ERα-SREBP-2 pathway is 

secreted into bile, leading to biliary cholesterol hypersecretion and the formation of 

supersaturated bile.47

Under conditions of high cholesterol consumption, an appreciable fraction of cholesterol in 

bile is derived from the diet through the chylomicron pathway to the liver. Dietary 

cholesterol reaches the liver through the intestinal lymphatic routes as of chylomicrons, and 

subsequently, chylomicron remnants after chylomicrons are hydrolyzed by plasma 

lipoprotein lipase and hepatic lipase.85,86 Under the circumstances, newly synthesized 

cholesterol in the liver is reduced, which consists of only approximately 5% of biliary total 

cholesterol.

The small intestine is a unique organ providing dietary and re-absorbed biliary cholesterol to 

the body.85 Clinical studies and epidemiological investigations have found that cholesterol 

cholelithiasis is prevalent in cultures consuming a “Western” diet that consists of high total 

calories, cholesterol, saturated fatty acids, refined carbohydrates, proteins, and salt, as well 

as low fiber. In addition, its incidence in North and South America, as well as in European 

countries, is significantly higher than that in Asian and African populations.87 Several 

clinical studies have found an association between the increased incidence of cholesterol 

gallstones in China and a “westernization” of the traditional Chinese diet. Cholesterol 

cholelithiasis once was rare in Japan, but the incidence is now increased markedly mostly 

because of over the past half a century with the adoption of Western-type dietary habits. 

Because biliary cholesterol hypersecretion is an important prerequisite for cholesterol 

gallstone formation, biliary cholesterol secretion and saturation could be significantly 

reduced by inhibiting cholesterol absorption and hepatic uptake of chylomicron remnants.88 

More importantly, there is a significant and positive correlation between the efficiency of 

intestinal cholesterol absorption and the prevalence of cholesterol gallstone formation in 15 

strains of inbred mice, implying that high efficiency of intestinal cholesterol absorption and 
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high dietary cholesterol are two independent risk factors for cholesterol gallstone formation.
86A new finding showed that the potent cholesterol absorption inhibitor ezetimibe prevents 

the formation of cholesterol gallstones, and facilitates the dissolution of gallstones by 

forming an abundance of unsaturated micelles in gallstone-susceptible C57 L/J mice 

carrying Lith1 and Lith2 genes.89 In addition, ezetimibe significantly reduces biliary 

cholesterol saturation and retards cholesterol crystallization in the bile of patients with 

gallstones,89 suggesting that it may act as a potent biliary cholesterol-desaturating agent in 

patients with gallstones. These findings indicate that ezetimibe is a novel approach to 

reducing biliary cholesterol content and provides a promising strategy for preventing or 

treating cholesterol gallstones by inhibiting intestinal cholesterol absorption.90

6. Disruption of hepatic lipid secretion leading to the formation of 

cholesterol-supersaturated bile

Because bile is an aqueous solution and cholesterol is virtually insoluble in water, the 

mechanisms for cholesterol solubilization in bile are complex. Clinical studies and animal 

investigations have found that hepatic hypersecretion of biliary cholesterol is the primary 

defect in the pathogenesis of cholesterol gallstone disease. Hepatic cholesterol 

hypersecretion into bile may or may not be accompanied by normal, high, or low hepatic 

secretion rates of biliary bile acids and phospholipids. Cholesterol-supersaturated bile is 

often defined as a state in which cholesterol cannot be solubilized in bile by biliary bile acids 

and phospholipids at equilibrium.91 Therefore, the formation of supersaturated bile is often 

caused by (i) hepatic hypersecretion of biliary cholesterol; (ii) reduced hepatic bile acid and 

phospholipid secretion with normal biliary cholesterol secretion; or (iii) a combination of 

hepatic cholesterol hypersecretion with hyposecretion of these solubilizing lipids.

Many animal studies have provided direct evidence showing that bile acids stimulate 

secretion of vesicles by the hepatocytes, and these unilamellar vesicles are always detected 

in freshly collected hepatic bile.92–97 Accumulated evidence from the genetic study of 

sitosterolemia has shown that the efflux of biliary cholesterol from the canalicular 

membrane could be a protein-mediated process.98–109 This led to the discovery of 

ABCG5/G8, which plays a critical role in the cellular efflux of cholesterol, and its 

significance for bile formation has been examined in genetically modified mice.110–114 

Overexpression of ABCG5/G8 in the liver increases the cholesterol content of gallbladder 

bile. In contrast, the hepatic secretion rate of biliary cholesterol is reduced in Abcg5/g8 

double knockout mice and in Abcg5 or Abcg8 knockout mice. In addition, scavenger 

receptor class B type I (SR-BI), the HDL receptor, is localized mainly in the sinusoidal, and 

perhaps, in the canalicular membrane of hepatocytes. In transgenic and knockout mice, 

biliary secretion of cholesterol varies in proportion to the hepatic expression of SR-BI, and 

the established contribution of SR-BI to the sinusoidal uptake of HDL cholesterol is destined 

for secretion into bile.115–117

Of special note, Abcg5/g8 has been identified as Lith9 by QTL studies in mice.9,10,118 As 

shown in Fig. 4, Lith9 is localized on mouse chromosome 17 and is co-localized with a 

genetic biomarker D17Mit155 at approximately 55 centimorgans (cM). In the Lith9 QTL 
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region, Abcg5/g8 is a strong candidate for this gallstone gene. Subsequently, ABCG5/G8 is 

found to be associated with gallstones in patients (human LITH9). Furthermore, many 

research groups reported that two gallstone-associated variants in ABCG5/G8, specifically 

ABCG5-R50C and ABCG8-D19H, are involved in the pathogenesis of gallstones not only in 

Germans and Chileans, but also in Chinese and Indians.12–19 These studies strongly suggest 

that ABCG5-R50C and ABCG8-D19H may play a crucial role in hepatic cholesterol 

hypersecretion, thus leading to the formation of cholesterol-supersaturated bile in humans.

Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but 

not in both simultaneously, and hepatic cholesterol secretion is reduced, but not completely 

eliminated in these patients.105,119–121 To explore the mechanism underlying the effect of 

ABCG5/G8 on biliary sterol secretion, biliary cholesterol and sitostanol secretion is 

quantified for 6 h in Abcg8 knockout mice. Mass transport rate of [3H]sitostanol from 

plasma HDL into bile is significantly faster than that of [14C]cholesterol in wild-type mice; 

however, reduced amounts of [14C]cholesterol and no [3H] sitostanol are detected in bile of 

Abcg8 knockout mice.113 These results clearly demonstrate that the deletion of the Abcg8 
gene alone significantly reduces, but does not eliminate hepatic cholesterol secretion. In 

addition, biliary cholesterol studies found that hepatic cholesterol output is significantly 

reduced, but cholesterol is still secreted into bile in mice with the deletion of either Abcg5 or 

Abcg8 alone, or both.111–113,122,123 Consistent with the human results, these mouse data 

strongly suggest that an ABCG5/G8-independent pathway could also be involved in 

regulating hepatic cholesterol secretion in humans and mice.

Thus, it needs to be further investigated whether disruption of the Abcg5/g8 genes or the 

Abcg8 gene alone protects against the formation of cholesterol gallstones in gallstone-

susceptible C57BL/6J mice fed a lithogenic diet for 8 weeks.124 It is surprising to find that 

although the prevalence of gallstones is significantly reduced in Abag5/g8 double knockout 

and Abag8 knockout mice, classical parallelogram-shaped cholesterol monohydrate crystals 

and gallstones are still found in these mice during the 8-week period of the lithogenic diet 

feeding. In addition, these studies124 provided clear evidence showing that (i) the 

ABCG5/G8-independent pathway accounts for 30%–40% of hepatic cholesterol output in 

the lithogenic state and has an effect on regulating biliary secretion of cholesterol in 

response to high dietary cholesterol; (ii) in the absence of ABCG5/G8, it plays a pivotal role 

in biliary cholesterol secretion and the pathogenesis of cholesterol gallstones; (iii) it is able 

to regulate hepatic secretion of HDL-derived cholesterol, but not sitostanol; and (iv) its 

activity in the liver is not regulated by the LXR agonist through the LXR signaling pathway. 

These results support a novel concept that the ABCG5/G8-independent pathway is essential 

for regulating hepatic cholesterol secretion in the absence of ABCG5/G8 and also plays a 

determinant role in gallstone formation in mice.

Although biliary phospholipids are possibly derived from the cell membranes of 

hepatocytes, their compositions differ significantly. The cell membranes of hepatocytes 

contain high levels of phosphatidylcholine (such as lecithin), phosphatidylethanolamine, 

phosphatidylinositol, phosphatidylserine, and sphingomyelin. The major source of 

phosphatidylcholine molecules destined for secretion into bile is hepatic synthesis. However, 

a fraction of biliary phosphatidylcholines may also originate from the surface phospholipid 
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coat of HDL particles. A P-glycoprotein member of the multi-drug resistance gene family, 

ABCB4 plays an important role in regulating hepatic secretion of biliary phospholipids 

because the deletion of the Abcb4 gene results in a complete inhibition of biliary 

phospholipid secretion in mice.125 ABCB4 may be responsible for the translocation or “flip” 

of phosphatidylcholines from the endoplasmic (inner) to ectoplasmic (outer) leaflet of the 

canalicular membrane bilayer, and the action of ABCB4 may form phosphatidylcholine-rich 

microdomains within the outer membrane leaflet.126–130 Furthermore, the mutation of the 

ABCB4 gene in humans is the molecular defect underlying progressive familial intrahepatic 

cholestasis, type 3 (PFIC3).127,131–135 Biliary phospholipids also play a key role in 

solubilizing excess cholesterol in vesicles. Low phospholipid-associated cholelithiasis 

(LPAC) is characterized mainly by the occurrence of intrahepatic and gallbladder 

microlithiasis in young adults associated with ABCB4 mutations.136–138 The Abcb4 

knockout mouse is an excellent model for studying the pathogenesis of LPAC. Even on a 

chow diet, Abcb4 knockout mice spontaneously develop gallstones that are composed 

mainly of needle-shaped anhydrous cholesterol crystals, which form in phospholipid-

deficient gallbladder bile with its relative biliary lipid composition that is in the far-left 

crystallization region of the phase diagram.130 These studies support the concept that this 

gene is a monogenic risk factor for this “peculiar” form of cholesterol gallstones and a target 

for novel therapeutic strategies.

After being secreted into bile and entering the intestine, ~95% of the bile acids are returned 

to the liver through the enterohepatic circulation via an active transport and absorption by a 

specific bile acid transporter, apical sodium-dependent bile acid transporter predominantly in 

the distal ileum.139–141 As a result, newly synthesized bile acids in the liver contribute only a 

small fraction (less than 5%) to biliary secretion, which compensate for bile acids that 

escape intestinal absorption and are lost in the feces. Therefore, biliary bile acids consist of 

those that are newly synthesized in the liver and those undergoing enterohepatic cycling.
139,142,143 The hepatic secretion of biliary bile acids is determined by ABCB11, a bile acid 

export pump on the canalicular membrane of hepatocytes.144–148 Hepatic secretion of bile 

acids could directly affect phospholipid vesicle secretion,49,149–151 although the molecular 

mechanism by which bile acid secretion is coupled to cholesterol and phospholipid secretion 

is still unclear. The relationship between bile acid secretion and cholesterol secretion has 

been found to be curvilinear. At low bile acid secretion rates (less than 10 μmol/h/kg), more 

cholesterol is secreted per molecule of bile acid than at higher rates. Although bile acid 

secretion rates are not usually low in normal subjects, they could diminish during prolonged 

fasting, during the overnight period, and with substantial bile acid losses, such as with a 

biliary fistula or ileal resection when the liver cannot sufficiently compensate with increased 

bile acid synthesis. In contrast, at high bile acid secretion rates—for example, during and 

after eating—biliary saturation is less than during the interprandial period.

Recently, genetic analysis in mice supports the candidacy of the G protein-coupled receptor 

30 (GPR30), a novel estrogen receptor, for a new gallstone gene Lith18.8,67,152,153 Of 

special note is that ~50% of cholesterol is converted to bile acids in the liver each day in 

humans and in mice. Because GPR30 is localized in the endoplasmic reticulum, but not the 

nucleus, of hepatocytes, GPR30 activation by estrogen possibly through the epidermal 

growth factor receptor signaling cascade inhibits hepatic cholesterol 7α-hydroxylase and the 
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classical pathway of bile acid synthesis, thereby leading to the availability of excess 

cholesterol for hepatic hypersecretion and bile lithogenesis.154

7. Cholesterol nucleation and crystallization in supersaturated bile

To systematically study the sequences of cholesterol crystallization, solid cholesterol crystal 

growth, and gallstone formation, gallbladder bile is carefully investigated at various time 

points using phase contrast and polarizing light microscopy in mice during the 8-week 

period of lithogenic diet feeding.155 Representative photomicrographs of cholesterol 

crystallization and gallstone formation in mice are shown in Fig. 5. After gallbladder bile 

becomes supersaturated with cholesterol, i.e., CSI values are greater than 1.0, large amounts 

of non-birefringent amorphous mucin gel are accumulated in the gallbladder lumen, 

followed by the formation of numerous liquid crystals. In general, minimally sized, non-

birefringent, and scattered small liquid crystals appear first. Non-birefringent aggregated 

liquid crystals with 1–5 μm of particles in diameter are found subsequently. If CSI values 

continue to increase in bile, fused liquid crystals are formed, which are birefringent with 

focal conic Maltese-cross textures and greater than 0.5–1.0 μm in size. In addition, some 

anhydrous cholesterol crystals are infrequently found. They are denoted as arc-like crystals 

that are short curved rods and rarely are filamentous, and tubular crystals that often appear to 

fracture at their ends producing classical cholesterol monohydrate crystals. Typical solid 

plate-like cholesterol monohydrate crystals are 79.2° and 100.8° angled parallelograms, 

often with a small notched corner. Mucin gel, a potent pro-nucleating agent, often promotes 

the growth and agglomeration of solid cholesterol crystals. Amorphous masses of 

cholesterol monohydrate crystal are defined loosely as agglomerated sheets. Sandy stones 

are encircled by mucin gel, and individual cholesterol monohydrate crystals are often found 

to project from the edges of sandy stones. Finally, true gallstones are exhibited with typical 

round contours and black centers under polarizing light microscopy.

It is well-known that the precipitation of solid cholesterol monohydrate crystals from 

supersaturated bile is the first irreversible physical-chemical step in gallstone formation. To 

study the characteristics, metastable intermediates, and kinetics in the phase transitions of 

bile, a series of phase diagrams that consist of cholesterol, phospholipids, and bile acids are 

generated for investigating the regions wherein different sequences of metastable 

intermediates, such as cholesterol crystallization sequences, occur. Five distinct 

crystallization pathways A to E have been identified in cholesterol-phospholipid-mixed bile 

acid model bile systems,156 with each of these cholesterol crystallization pathways 

illustrating a different sequence of phase transitions. These phase transitions include an 

anhydrous cholesterol pathway and a liquid crystalline pathway to the formation of classical 

solid plate-like cholesterol monohydrate crystals.156,157 Furthermore, five crystallization 

pathways in model bile systems are carefully investigated as a function of total lipid 

concentration, CSI value, bile acid composition (hydrophilic-hydrophobic index), 

cholesterol to phospholipid ratio, cholesterol to bile acid ratio, bile acid to phospholipid 

ratio, and temperature.156 These cholesterol crystallization pathways found in model bile 

systems have been confirmed in native human and mouse gallbladder bile.155,158–160
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The growth of solid cholesterol crystals starts as soon as cholesterol nucleation and 

crystallization occurs and this process is greatly accelerated by mucin gel, a potent pro-

nucleating agent. Fig. 6 shows three modes of solid cholesterol crystal growth habits as 

observed by phase contrast and polarizing light microscopy in supersaturated gallbladder 

bile during the early stage of cholesterol gallstone formation in mice fed the lithogenic diet.
154,161 The first mode of solid cholesterol crystal growth habits is the proportional 

enlargement patterns that lead to solid cholesterol crystals larger in one direction, length, or 

width. The second mode is the spiral dislocation growth in which the pyramidal surface 

contains numerous growth spirals nucleated and crystallized by a screw dislocation. The 

third mode is the twin crystal growth in which the crystals grow upright and perpendicular to 

the surface. These solid cholesterol crystal growth habits are found not only in native mouse 

gallbladder bile, but also in model bile systems.162 Obviously, these crystal growth modes 

enlarge solid cholesterol crystals in size and promote the development and evolution of solid 

cholesterol crystals to microlithiasis and eventually to macroscopic stones. More 

importantly, in the presence of a heterogeneous pro-nucleating agent, such as mucin gel, 

higher CSI values promotes more rapid precipitation of solid plate-like cholesterol 

monohydrate crystals from a phase-separated liquid-crystalline phase in gallbladder bile, 

followed by growth and agglomeration of these solid cholesterol crystals into mature and 

macroscopic stones. When CSI values are higher in bile, this process is faster. These 

findings in mice provide clear evidence showing that these three modes of solid cholesterol 

crystal growth habits closely recapitulate the early events of cholesterol gallstone formation 

in humans.

8. Conclusion and future research

Many new findings from physical-chemical, biochemical, genetic, and molecular biological 

studies of gallstones in humans and animals have clearly demonstrated that interactions of 

five primary defects lead to the formation of cholesterol gallstones. A novel concept has 

been established that cholesterol gallstone disease is determined by multiple Lith genes, 

which is a dominant trait. However, no mode of inheritance fitting to the Mendelian pattern 

is found in most cases. Although hepatic hypersecretion of biliary cholesterol is the primary 

pathogenic defect, other defects also play a critical role in the pathogenesis of cholesterol 

gallstone formation, which include unphysiological supersaturation with cholesterol (such as 

high CSI values in gallbladder bile), accelerated cholesterol nucleation and crystallization, 

rapid solid cholesterol crystal growth, impaired gallbladder motility, and increased amounts 

of the absorbed cholesterol delivered to the liver from the small intestine. Obviously, rapid 

growth and agglomeration of solid cholesterol crystals to form microlithiasis and 

macroscopic stones is a consequence of both gallbladder mucin hypersecretion and gel 

formation with impaired gallbladder emptying, leading to the formation of biliary sludge, 

the precursor of gallstones.

The gallstone (Lith) gene map has been updated, which lists all known genetic loci that 

confer gallstone susceptibility, as well as candidate genes in inbred strains of mice.87 

Understanding molecular genetics of gallstone disease in mice will push for the 

identification of human Lith genes. In addition, genetic analysis of Lith genes in mouse 

models will open the avenue for searching for the orthologous human Lith genes and for 
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exploring their cholelithogenic effects in humans. These studies should lead to the discovery 

of lithogenic actions of each of the Lith genes, providing novel insights into the molecular 

and cellular mechanisms that determine the formation of cholesterol gallstones. More 

importantly, the ABCG5/G8-dependent and the ABCG5/G8-independent pathways play 

critical roles in the regulation of hepatic cholesterol secretion, suggesting that both pathways 

are potential therapeutic targets for gallstones. Determining the molecular and cellular 

mechanisms on the formation of cholesterol-supersaturated bile may lead to novel 

therapeutic approaches through modulating both the ABCG5/G8-dependent and the 

ABCG5/G8-independent pathways for the prevention and the treatment of cholesterol 

gallstone disease that affects millions in westernized societies.
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Fig. 1. 
From left to right are the molecular structures, the standard chemical formulae, the 

perspective formulae, and the space-filling models of cholesterol (top panel) and cholic acid 

(bottom panel), respectively.
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Fig. 2. Venn diagram of five defects that work together to promote cholesterol crystallization and 
gallstone formation.
Although many candidate Lith genes have been identified in mouse models, the 

identification of human LITH genes and their contributions to gallstones are being 

extensively investigated. Hepatic cholesterol hypersecretion into bile is the primary defect 

and is the outcome in part of a complex genetic predisposition, thereby leading to the 

formation of cholesterol-supersaturated bile. Reproduced with slightly modifications and 

with permission from.8
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Fig. 3. This diagram shows uptake, biosynthesis, catabolism, and biliary secretion of cholesterol 
at the hepatocyte level, as well as the formation of supersaturated bile.
Hepatic secretion of biliary cholesterol (CH), bile acids (BA), and phospholipids (PL) across 

the canalicular membrane is determined by three lipid transporters, ABCG5/G8, ABCB11, 

and ABCB4, respectively. The Niemann-Pick C1-Like 1 (NPC1L1) protein may play a weak 

role in taking cholesterol back from hepatic bile into the hepatocyte. Abbreviations: ABC, 

ATP-binding cassette (transporter); ACAT acyl- coenzyme A: cholesterol acyltransferase; 

CMR, chylomicron remnants; CMRR, CMR receptor; CYP27A1, sterol 27-hydroxylase; 

CYP7A1, cholesterol 7α-hydroxylase; HDL, high-density lipoprotein; HMGCR, 3-

hydroxy-3-methylglutaryl-coenzyme A reductase; LDL, low-density lipoprotein; LDLR, 

LDL receptor; SR-BI, scavenger receptor class B type I; VLDL, very-low-density 

lipoprotein.
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Fig. 4. Composite map of quantitative trait locus (QTL) for Lith9 gene that is localized on mouse 
chromosome 17.
A vertical line represents chromosome 17, with the centromere at the top; genetic distances 

from the centromere (horizontal white lines) are indicated to the left of the chromosomes in 

centimorgans (cM). Chromosomes are drawn to scale, based on the estimated cM position of 

the most distally mapped locus taken from Mouse Genome Database. The gallstone QTL 

(Lith9 gene) is represented by a horizontal yellow line, as well as the Abcg5/g8 gene 

location is indicated by a horizontal orange line. A genetic biomarker, D17Mit155, which is 

co-localized with Lith9, is indicated by a horizontal green line with the marker symbol to the 

right.
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Fig. 5. Representative photomicrographs of cholesterol crystallization and gallstone formation 
found in gallbladder bile by phase contrast and polarizing light microscopy.
(A) Non-Birefringent amorphous mucin gel; (B) arc-like (possible anhydrous cholesterol) 

crystal; (C) tubular crystal; (D) tubular crystal fracturing at the end to produce plate-like 

cholesterol monohydrate crystals; (E) numerous aggregated non-birefringent liquid crystals 

and few fused liquid crystals; (F) agglomerates of typical cholesterol monohydrate crystals, 

with 79.2° and 100.8° angles, and often a notched corner; (G) disintegrable amorphous 

sandy stones surrounded by mucin gel, with individual plate-like cholesterol monohydrate 

crystals projecting from the edges; (H) true gallstones displaying rounded contours and 

black centers from light scattering/absorption. All magnifications are × 800, except F and G 

× 400 and H × 200, by polarizing light microscopy. Reproduced with slightly modifications 

and with permission.161
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Fig. 6. Three modes of cholesterol crystal growth habits in mice during the 15-day period of 
lithogenic diet feeding:
(A and B) proportional enlargement patterns, (C and D) spiral dislocation growth patterns, 

and (E and F) twin crystal growth patterns. The twin crystals grow upright and 

perpendicular to the surface. These three modes of cholesterol crystal growth habits 

significantly increase solid cholesterol crystals in size. All magnifications are × 800 using 

polarizing light microscopy. Reproduced with slight modifications and with permission.161
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