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Chemotherapy has substantially improved gastric cancer (GC) patient outcomes in the

past decades. However, the development of chemotherapy resistance has become the

major cause of treatment failure. Although numerous molecules have been implicated

in GC chemoresistance, its pathological mechanisms are still unclear. Here, we found

that integrin subunit alpha 2 (ITGA2) is upregulated in chemoresistant GC cells and

that increased ITGA2 levels correlated with the poor prognosis of GC patients who

received chemotherapy. ITGA2 overexpression led to elevated chemotherapy resistance

and drug-induced apoptosis inhibition in GC cells. ITGA2 knockdown resulted in

restored chemosensitivity and increased apoptosis in chemoresistant GC cells both

in vitro and in vivo. NanoString analysis revealed a unique signature of deregulated

pathway expression in GC cells after ITGA2 silencing. The MAPK/ERK pathway and

epithelial-mesenchymal transition (EMT) were found to be downregulated after ITGA2

knockdown. miR-135b-5p was identified as a direct upstream regulator of ITGA2.

miR-135b-5p overexpression reduced chemoresistance and induced apoptosis in GC

cells and attenuated ITGA2-induced chemoresistance and antiapoptotic effects by

inhibiting MAPK signaling and EMT. In conclusion, this study underscored the role and

mechanism of ITGA2 in GC and suggested the novel miR-135b-5p/ITGA2 axis as an

epigenetic cause of chemoresistance with diagnostic and therapeutic implications.
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INTRODUCTION

Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide and is responsible
for over a million new cases and estimated 783,000 deaths globally in 2018 (1). Chemotherapy is the
recommended treatment for unresectable or recurrent GC (2). The effectiveness of chemotherapy
largely depends on the resistance to chemotherapy, and chemoresistance has therefore become the
main cause of treatment failure (3). Based on previous studies, many factors are associated with
the development of chemoresistance, including changes in the activity of membrane transporters,
increased drug metabolism, alteration of drug targets, epithelial-mesenchymal transition (EMT),
and tumor heterogeneity, all of which can affect the sensitivity of cancer cells to chemotherapeutic
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drugs (4, 5). Furthermore, drug resistance-related genes (such
as MDR and LRP) and various signaling pathways (such as
MAPK, Wnt, and Notch) are reported to be significant causes
of chemoresistance (6). However, the molecular mechanisms of
chemoresistance are still not fully understood, and more research
is needed to discover and develop effective biomarkers and
targets for GC chemoresistance.

Integrins are cell surface receptors and play multifaceted
roles as signaling molecules, mechanotransducers and key
components of the cell migration machinery (7). They are
transmembrane αβ heterodimers and include at least 18 α and
8 β subunits in humans (8). In cancer, integrins trigger and are
involved in the regulation of diverse cellular functions crucial to
tumor initiation, progression, and metastasis (9). More recently,
integrins have been reported to be involved in drug resistance,
which may be due to the selection for tumor cells already
expressing certain integrins or to the regulation of integrin
gene expression (10). For instance, increased integrin subunit
alpha 1 (ITGA1) actuated gemcitabine resistance by cooperating
with TGF-β in pancreatic cancer (11). Depletion of integrin
subunit beta 1 (ITGB1) enhanced the sensitivity of tumor cells
to docetaxel in esophageal squamous cell carcinoma (12). In
addition, integrin subunit beta 3 (ITGB3) was identified as a
target to overcome chemoresistance inmesenchymal lung cancer,
and inhibition of ITGB3 sensitizes cancer cells to chemotherapy
by regulating the NF-κB pathway (13). Integrin subunit alpha
2 (ITGA2) encodes a member of the integrin α chain family,
which forms a heterodimer with the β1 subunit and regulates the
adhesion of platelets and other kinds of cells to the extracellular
matrix (ECM) (14, 15). Recently, studies showed that aberrant
expression of ITGA2 was associated with metastatic behavior
in breast cancer, liver cancer, and colorectal cancer (16–19).
In GC, blocking ITGA2 with specific antibodies was reported
to inhibit cell migration and induce apoptosis (20). However,
the specific role and underlying mechanisms of ITGA2 in GC
chemoresistance are largely unknown.

The initiation and progression of cancer is thought to be
driven by combinations of genetic and epigenetic alterations
(21). MicroRNAs (miRNAs) are non-coding RNAs of 18–24
nucleotides in length and directly modulate gene expression at
the posttranscriptional level by binding to the 3′-untranslated
region (3′-UTR) of target mRNAs (22). Genome-wide analysis
has demonstrated that miRNA expression is dysregulated in
most cancer types, which may contribute to dysregulate critical
genes involved in the development and evolution of cancer
(23). More recently, a variety of mechanisms have been
postulated for the roles that miRNAs play in resistance to cancer
treatments, and miRNA-based gene therapy may provide a novel
approach for drug resistance (24–26). For example, miR-27a was
decreased in bladder cancer and restored miR-27a re-sensitized
cisplatin resistance by targeting the cystine/glutamate exchanger
SLC7A11 (27). miR-340-5p was reduced in breast cancer, and
its overexpression inhibited drug resistance to docetaxel by
targeting LRG5 via the Wnt/β-catenin pathway (28, 29). We
previously found that low expression of miR-15b andmiR-16 was
detected in drug-resistant GC cells, which medicated sensitivity
to vincristine (VCR) by directly regulating Bcl-2 (30). In addition,

we found that miR-100 and miR-125b were often overexpressed
and participated in cetuximab resistance through the Wnt/beta-
catenin signaling pathway in colorectal cancer (31). However,
whether ITGA2 is regulated by miRNA in GC chemoresistance
remains to be elucidated.

In this study, we found that ITGA2 is often increased in
GC cells and tissues, especially in chemoresistant GC cells. The
upregulation of ITGA2 correlated with the poor prognosis of GC
patients who received chemotherapy. ITGA2 silencing induced
apoptosis and restored GC cell chemotherapy responsiveness
both in vitro and in vivo. Mechanistically, repression of ITGA2
inhibited the MAPK/ERK pathway as well as the EMT process.
miR-135b-5p was identified as a direct regulator of ITGA2, and
the restoration of miR-135b-5p resulted in anti-chemoresistance
effects, which were similar to the effects of ITGA2 inhibition.
Our results showed a pro-chemoresistance effect of ITGA2 and
identified its miRNA regulatory mechanism. Identification of
this novel miR-135b-5p/ITGA2 axis sheds new light on the
understanding of chemoresistance in GC and may provide
therapeutic targets for GC treatment.

MATERIALS AND METHODS

Cell Culture and Treatment
Human normal gastric mucosal cell lines GES-1 and GC cell
lines AGS, MKN45, MKN28, SNU1, SNU16, BGC823, and
SGC7901 were preserved in the State Key Laboratory of Cancer
Biology (CBSKL) inventory. All cell lines were authenticated
by cellular morphology and short tandem repeat analysis. The
multidrug resistant cell lines SGC7901/VCR and SGC7901/ADR
were screened stepwise with VCR and ADR in our laboratory
previously (32). All cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, USA) supplemented with 10%
fetal bovine serum (FBS, Gibco, USA) and 100 U/mL penicillin
and 100 mg/mL streptomycin at a 37◦C humidified incubator
with 5% CO2. To maintain the MDR phenotype, VCR and
ADR (MCE, USA) were added at final concentrations of 1µg/ml
and 0.5µg/ml to the culture media of SGC7901/VCR and
SGC7901/ADR cells.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
Total RNA was extracted using the RNeasy Mini Kit (Qiagen
GmbH, Germany) and reverse transcribed into cDNA using
the Prime Script RT Reagent Kit (TaKaRa, Japan). The RT-
PCR primers for miR-135b-5p, miR-181b-5p, and U6 were
purchased from RiboBio (China). The PCR primers for ITGA2
were 5′-GAGAACAACAGGTGACTT-3′ (forward) and 5′-
CTCTCCTGTATGATGCTG-3′ (reverse). The PCR primers for
GAPDH were 5′-AGAAGGCTGGGGCTCATTTG-3′ (forward)
and 5′-GAAGACTGTGGATGGCCCCT-3′ (reverse). Real-time
quantitative PCR assays were performed with SYBR Premix Ex
Taq II (TaKaRa, Japan) at 95◦C for 30 s, followed by 39 cycles of
95◦C for 5 s and 60◦C for 30 s. The expression levels of GAPDH
and U6 were used as internal controls.
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Western Blotting Analysis
Total proteins are extracted by RIPA lysis (Beyotime, China)
containing protease and phosphatase inhibitors. The BCA
Protein Assay Kit (Thermo, USA) was used to detect the protein
concentration. Thirty micrograms of denatured protein were
separated via SDS-PAGE followed by transfer to nitrocellulose
filter membranes (Millipore, USA). The protein bands were
exposed in a Bio-Rad Imaging System (Bio-Rad, USA) after
incubation with the primary and secondary antibodies. The
antibodies used were against ITGA2 (Abcam, UK, #133557),
β-actin (Cell Signaling Technology, USA, #4970), ERK (Cell
Signaling Technology, USA, #4695), p-ERK (Cell Signaling
Technology, USA, #4370), MEK (Cell Signaling Technology,
USA, #8727), p-MEK (Cell Signaling Technology, USA,
#9154), MDR1 (Cell Signaling Technology, USA, #12683),
E-cadherin (Proteintech, USA, 20874-1-AP), N-cadherin (Cell
Signaling Technology, USA, #13116), Vimentin (Cell Signaling
Technology, USA, #5741), PCNA (Cell Signaling Technology,
USA, #13110), Bax (Cell Signaling Technology, USA, #5023),
and Bcl-2 (Cell Signaling Technology, USA, #4223). Original
images of blots are presented in Figure S3.

Constructs, Oligonucleotides, Infection,
and Transfection
ITGA2 lentiviral vectors (overexpression and shRNA) were
purchased fromGeneChem (China). Target cells were transfected
with 1 × 107 lentivirus-transducing units using polybrene as
recommended. Empty lentiviral vectors were also transfected
as a negative control. Puromycin (MCE, China) was employed
to screen cells with antibiotic labels. The cells were collected
for future study. The pENTER-ITGA2-expressing plasmid was
obtained from Addgene (USA), and its 3′-UTR was subcloned
between the MluI and XhoI sites. The miR-135b-5p mimic and
miRNA mimic negative control were chemically synthesized and
purified by RiboBio (China). We transfected miRNAmimics and
plasmids with Transfect-mate (GenePharma, China) according
to the manufacturer’s recommendations.

Cell Proliferation and IC50 Assay
For the IC50 assay, 4,000 cells were seeded into a well of a 96-well
plate. The culture medium was changed, and 5-FU was added by
multiple proportion dilution 12 h later. Then, 60 h later, CCK-8
(DOJINDO, Japan) was added according to the manufacturer’s
protocol, followed by incubation at 37◦C for 2 h. The absorbance
was read by a chemiluminescence measuring instrument (Bio-
Rad, USA). For the cell proliferation assay, 3,000 cells were
seeded, and the absorbance values were measured every 24 h for
a total of 4 times.

Cell Viability Analysis
The LIVE/DEAD viability/cytotoxicity kit (Thermo, USA) was
used to perform cell viability analysis. Cells were seeded into
24-well plates, followed by chemotherapy drug treatment on the
second day. Cell samples were stained following the directions on
the fourth day and analyzed with a fluorescence microscope.

In vivo Drug Resistance Assay
A total of 5 × 106 SGC7901/ADR-shITGA2 cells or negative
control cells were inoculated subcutaneously into two sides of
the thigh in nude mice (obtained from the Fourth Military
Medical University Animal Care). The ADR and 5-FU treatments
were given intraperitoneally three times a week after the
inoculations. These mice were sacrificed 3 weeks later, and the
subcutaneous tumor tissues were removed; the tissues were then
fixed, embedded, and sliced. All animal studies complied with
the Fourth Military Medical University animal use guidelines,
and the protocol was approved by the Fourth Military Medical
University Animal Care Committee.

Tissue Microarrays and
Immunohistochemistry
The tissue microarrays were ST722, ST1004a (Alenabio, China),
and HStmA050Me01 (Outdo Biotech, China). The tissue
microarray staining was performed with an anti-ITGA2 antibody
according to the instructions of the immunohistochemical kit
(ZSGB-BIO, China). The tissues from subcutaneous tumors were
stained with anti-Ki67 (Abcam, UK, #15580) and anti-Cleaved
Caspase-3 (Cell Signaling Technology, USA, #9661) antibodies.
Immunohistochemical (IHC) results were graded according to
staining intensity and proportion of positive cells. Staining
intensity was divided into 4 grades: 0, negative; 1, weak; 2,
moderate; and 3, strong. Staining proportion included 0, <1%;
1, 1–25%; 2, 26–50%; 3, 51–75%; and 4, 76–100%. IHC scores,
equaling the proportion of staining intensity times, were divided
into negative (–, score: 0), weak (+, score: 1–4), moderate (++,
score: 5–8), and strong (+++, score: 9–12). Negative and weak
are considered low expression, while moderate and strong are
considered high expression.

NanoString PanCancer Pathways Analysis
For signaling pathway analysis, mRNA extracted from cell
lysates was treated with nCounter Human PanCancer Pathways
Panel (NanoString, USA). We used 100 ng of total RNA
as an input for the sample preparation according to the
manufacturer’s recommendations. Samples and probes were
hybridized overnight at 65◦C, processed automatically at the
pretreatment station, and transmitted to the digital analyzer
for high-density scanning for data collection. Normalization
and pairwise comparisons were performed using NanoString
nSolver software. The data were analyzed by nSolver 4.0 software
(NanoString, USA).

Luciferase Reporter Assay
Wild-type andmutant ITGA2 promoter sequences were obtained
by PCR amplification and connected to the psiCHECK-2 vectors.
Plasmids with the wild-type ITGA2 promoter and mutant
ITGA2 promoter were cotransfected with miR-135b-5p into
293T cells. The Dual-luciferase Reporter System Kit (Promega,
USA) was employed to detect the luciferase activity, which was
calculated with the following formula: relative activity = sample
activity/control activity. GloMaxTM 20/20 (Promega, USA) was
used for data analysis.
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Statistical Analysis
All analyses were performed using SPSS 22.0 (SPSS, USA).
Statistical significance was assessed by Student’s t-test, ANOVA,
or χ2 tests. P < 0.05 were considered statistically significant, and
all data are presented as the mean± standard deviation (SD).

RESULTS

ITGA2 Is Upregulated in GC Cells and
Tissues
To determine the expression pattern of ITGA2 in GC, we
detected the ITGA2 protein andmRNA levels in an immortalized
gastric epithelial cell line GES and in a panel of GC cell
lines. Compared to that in GES cells, ITGA2 expression was
significantly elevated in 5 out of 7 GC cells at both the protein
and mRNA levels. We further found that ITGA2 was distinctly
increased in SGC7901/VCR and SGC7901/ADR cells, which are
chemoresistant GC cells derived from SGC7901 by stepwise
screening with chemotherapy drug VCR and Adriamycin (ADR),
respectively (Figure 1A) (32). Furthermore, a tissue microarray
containing 81 pairs of GC tissues and matched adjacent normal
tissues was used to detect the ITGA2 levels, and the results
showed that ITGA2, mainly located in the cytoplasm and
plasma membrane, was overexpressed in GC tissues compared
to its expression in adjacent tissues (Figures 1B,C). Data from
the GEPIA database (33) also show that ITGA2 expression
was higher in GC tissues than in normal tissues (Figure 1D).
Importantly, ITGA2 was correlated with the prognosis of GC
patients who received 5-fluorouracil (5-FU) treatment, and an
increased level of ITGA2 was correlated with decreased overall
survival, first progression and post-progression survival times
according to the Kaplan-Meier Plotter database (34) (Figure 1E).
Taken together, these results showed that ITGA2 is upregulated
in GC cells and tissues, especially in chemoresistant GC cells,
suggesting its promoting effects on the chemoresistance of GC.

ITGA2 Regulates the Chemosensitivity of
GC Cells to Chemotherapeutic Drugs
To investigate the role of ITGA2 in GC chemoresistance, we
established gain- and loss-of-function cell models by infecting
GC cells with a lentivirus expressing ITGA2 or silencing
ITGA2 (shITGA2) (Figure S1A). CCK-8 assays showed that cell
proliferation was inhibited in SGC7901/ADR-shITGA2 cells, and
this inhibitory effect was enhanced when treated with 5-FU
(Figure 2A). Overexpression of ITGA2 in the parental SGC7901
cells strengthened the proliferation ability in the presence or
absence of 5-FU treatment (Figure 2B). Furthermore, IC50
assays were employed to determine chemoresistance in GC
cells, and the results showed that the IC50 of 5-FU and
ADRwas remarkably decreased in SGC7901/ADR-shITGA2 cells
but significantly increased when ITGA2 was overexpressed in
SGC7901 cells (Figures 2C,D). In addition, LIVE/DEAD viability
analysis showed that downregulation of ITGA2 increased, and
upregulation of ITGA2 reduced, 5-FU- and ADR-induced
apoptosis (Figures 2E, F, Figure S1B). To further determine

whether ITGA2 confers chemoresistance in vivo, SGC7901/ADR-
shITGA2 or control cells were injected subcutaneously into
each flank of nude mice. Then, 5-FU or ADR was injected
intraperitoneally after the tumor volume reached approximately
100 mm3. Tumor size and weight were significantly reduced
by 5-FU or ADR treatment in mice implanted with ITGA2-
silenced GC cells (Figure 2G). Immunohistochemical (IHC)
staining showed that xenografts from the ITGA2-silenced group
presented lower Ki-67 staining and higher Cleaved Caspase-3
staining than those from the control group upon 5-FU or ADR
treatment (Figure S1C). Taken together, these results indicate
that ITGA2 promoted the chemoresistance of GC cells both in
vitro and in vivo.

ITGA2 Activates the MAPK Pathway and
Induces EMT in GC Cells
To explore the underlying mechanism of ITGA2-induced
GC chemoresistance, we performed gene expression profiling
using the NanoString PanCancer Panel. NanoString analysis
showed that ITGA2-silenced SGC7901/ADR cells displayed a
different pathway expression profile than the control cells,
and the MAPK pathway was distinguished as the one of
the most downregulated pathways after ITGA2 knockdown
(Figure 3A). Furthermore, pathway measurements identified
positive correlations between the MAPK pathway and other
pathways associated with drug resistance (Figure 3B). Next,
we validated MAPK downstream kinases and found that MEK
and ERK phosphorylation were significantly increased when
ITGA2 was overexpressed and remarkably reduced after ITGA2
knockdown, whereas MDR1, an important protein of the cell
membrane that pumps foreign substances out of cells, had
no visible change (Figure 3C). The MAPK pathway also has
profound effects on the regulation of apoptosis (35); we then
tested the effects of ITGA2 on apoptotic regulatorymolecules and
found that ectopic expression of ITGA2 increased antiapoptotic
protein Bcl-2 expression and decreased proapoptotic protein Bax
expression. Conversely, knockdown of ITGA2 reduced Bcl-2 and
increased Bax expression (Figure 3D). Accumulating evidence
reveals that EMT contributes importantly to chemoresistance
(36, 37). Since aberrant expression of integrins is involved
in EMT, we speculate that ITGA2 mediates chemoresistance
by affecting EMT in GC cells. We found that the epithelial
marker E-cadherin was downregulated, while the mesenchymal
marker Vimentin andN-cadherin were upregulated when ITGA2
was overexpressed. In contrast, silencing ITGA2 restored E-
cadherin and suppressed Vimentin and N-cadherin expression
(Figure 3D). Taken together, these results suggest that ITGA2
induces chemoresistance by activating the MAPK pathway and
promotes EMT in GC cells.

miR-135b-5p Directly Targets ITGA2 in GC
Cells
To investigate the regulatory mechanism of ITGA2 at the miRNA
level, a bioinformatics strategy was employed to identify potential
miRNAs targeting ITGA2 (Figure 4A). Briefly, we selected 1602
miRNAs that were downregulated in both SGC7901/ADR and
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FIGURE 1 | ITGA2 expression in GC cell lines, GC tissues and adjacent normal tissues. (A) Western blotting analysis and qRT-PCR analysis of ITGA2 expression in

the GES and GC cell lines SUN-1, SUN-16, MKN28, MKN45, AGS, BGC823, SGC7901, SGC7901/VCR, and SGC7901/ADR. (B,C) ITGA2 expression in GC tissues

was elevated compared to that in adjacent normal tissues by immunohistochemistry analysis. (D,E) Survival databases revealed that ITGA2 was increased in GC

tissues and was related to poor prognosis after 5-FU treatment. Data represent mean ± SD, from three replicates. *P < 0.05, **P < 0.01.

SGC7901/VCR cells compared with that in SGC7901 cells
according to our previous genomic profiling (38). Among them,
45 miRNAs were predicted to target the 3′-UTR of ITGA2
by using at least 5 different algorithms. We found that 3 out

of 45 miRNAs (miR-15b-5p, miR-135b-5p, and miR-181b-5p)
were significantly downregulated in chemoresistant cells (P <

0.05 and fold change>2) and were reported to be involved in
drug resistance (39–41). We previously revealed the role and
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FIGURE 2 | ITGA2 regulated chemoresistance in SGC7901 and SGC7901/ADR cells. (A) Cell proliferation analysis of SGC7901 cells when treated without or with

5-FU. (B) Cell proliferation analysis of SGC7901/ADR cells when treated without or with 5-FU. (C,D) IC50 of ADR and 5-FU when ITGA2 was overexpressed in

SGC7901 cells and inhibited in SGC7901/ADR cells. (E,F) LIVE/DEAD viability analysis in response to 5-FU when overexpressed ITGA2 in SGC7901 cells and

inhibited ITGA2 expression in SGC7901/ADR cells. (G) SGC7901/ADR cells with shITGA2 or vector control were injected into nude mice. Photos of xenograft tumors

are shown on the right. Tumor weight and tumor growth curves are shown on the left. Data represent mean ± SD, from three replicates. *P < 0.05, **P < 0.01.
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FIGURE 3 | The effect of ITGA2 on the MAPK pathway in GC cells. (A,B) Heatmap and pathway panel plots summarizing the changed pathways when ITGA2 was

inhibited in SGC7901/ADR cells. (C) Protein levels of MDR1 and the MAPK pathway markers were measured in SGC7901 cells with ITGA2 overexpression and in

SGC7901/ADR and SGC7901/VCR cells with inhibited ITGA2 expression. (D) Protein levels of EMT biomarkers and apoptosis biomarkers in SGC7901 cells with

ITGA2 overexpression and in SGC7901/ADR and SGC7901/VCR cells with inhibited ITGA2 expression.

mechanism of miR-15b in GC multidrug resistance by targeting
Bcl-2 (30). miR-181b-5p was excluded because its expression
pattern contradicted the microarray data (Figure S1D). We
thus focused on miR-135b-5p for further investigation and
validated that its expression was reduced in both SGC7901/ADR
and SGC7901/VCR cells, which was in contrast with the
expression of ITGA2 (Figure 4B). Furthermore, qRT-PCR and
Western blot analyses showed that overexpression of miR-135b-
5p suppressed ITGA2 expression (Figures 4C,D, Figure S1E).
To verify whether miR-135b-5p directly binds to the 3′-UTRs
of ITGA2, we performed dual-luciferase reporter assays in
293T cells. miR-135b-5p overexpression suppressed the luciferase
activities of the ITGA2 3′-UTR reporter wild-type constructs,
whereas this effect was abolished when two mutations were
introduced into the miR-135b-5p binding sequences in the
mutant constructs (Figures 4E,F). Taken together, these results
indicate that miR-135b-5p downregulates ITGA2 expression by
directly targeting its 3′-UTR.

miR-135b-5p Represses GC Cell
Chemoresistance by Targeting ITGA2
To investigate the functions of miR-135b-5p on GC
chemoresistance, we transfected miR-135b-5p mimics into
SGC7901/ADR and SGC7901/VCR cells. Upon miR-135b-5p
overexpression, the IC50 of SGC7901/ADR cells to 5-FU and
ADR was significantly decreased (Figure 5A). Consistently,
LIVE/DEAD viability analysis showed that miR-135b-5p
overexpression promoted apoptosis induced by 5-FU and ADR
treatment (Figure 5B). Moreover, we cotransfected ITGA2-
expressing plasmids with its 3′-UTR and miR-135b-5p into
SGC7901 cells. As expected, the chemoresistance conferred by
ITGA2 overexpression was partially antagonized by the ectopic
expression of miR-135b-5p (Figures 5C,D, Figure S2A). In
contrast to the effects of ITGA2, miR-135b-5p overexpression
blocked MAPK signaling by decreasing the phosphorylation
of MEK and ERK (Figure 5E). In addition, antiapoptotic Bcl-2
levels were reduced, whereas proapoptotic Bax levels were
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FIGURE 4 | Mir-135b-5p inhibits ITGA2 expression by targeting its 3′-UTR. (A) Workflow for the identification of miR-135b-5p. (B) qRT-PCR analysis revealed that

miR-135b-5p was downregulated in drug-resistant GC cells. (C,D) qRT-PCR analysis and Western blotting analysis showed that ITGA2 expression was inhibited when

miR-135b-5p was overexpressed in drug-resistant GC cells. (E) Sequences of ITGA2 3′-UTR and miR-135b-5p. The binding sites miR-135b-5p and ITGA2 3′-UTR

are shown in the bold portions. The mutant miR-135b-5p binding sites in the ITGA2 3′-UTR are shown in the red and bold portions. (F) Luciferase activity in 293T

cells cotransfected with wild-type or mutated reporter plasmids, miR-ctrl, and miR-135b-5p. Data represent mean ± SD, from three replicates. *P < 0.05, **P < 0.01.

increased in miR-135b-5p-overexpressing cells (Figure 5F).
Furthermore, miR-135b-5p also affected the characteristics of
EMT in chemoresistant cells as the E-cadherin level increased,
while Vimentin and N-cadherin expression decreased whenmiR-
135b-5p was overexpressed (Figure 5F). Taken together, these
results suggest that miR-135b-5p inhibits the chemoresistance
of GC cells by regulating ITGA2 by blocking MAPK signaling
and EMT.

DISCUSSION

Integrins trigger and play key roles in nearly all the malignant
features that were described as the hallmarks of cancer (42, 43).
Their roles in cell migration and invasion are one of the most
studied functions in cancer biology. In head and neck cancer,
knockdown of ITGA3markedly suppressed cancer cell migration
and invasion (44). In ovarian cancer, increased ITGB1 enhanced
metastasis by mediating ECM remodeling (45). In GC, ITGAV
overexpression was responsible for cell migration and invasion

and was associated with poor prognosis (46). Recently, extensive
studies have suggested that metastasis and drug resistance are
intrinsically linked (47). For instance, EMT is amajormechanism
of metastasis, but accumulating evidence indicates that EMT also
contributes to chemoresistance (36, 48). Previous studies have
underscored the importance of ITGA2 in metastasis. In liver
cancer, upregulation of ITGA2 by ADAR1 enhanced metastasis
by increasing adhesion to the ECM (16). In colorectal cancer,
antibodies specifically blocking ITGA2 inhibited focal adhesion
kinase activation and cell motility (18). However, the potential
roles of ITGA2 in chemoresistance have not yet been determined.
In the present study, we found that ITGA2 was increased in
chemoresistant GC cells and high expression of ITGA2 correlated
with poor prognosis of GC patients who received chemotherapy.
Functional validation demonstrated that knockdown of ITGA2
restored the chemosensitivity of chemoresistant GC cells to
5-FU and ADR and that overexpression of ITGA2 induced
chemoresistance to those drugs. Importantly, manipulation of
ITGA2 triggered EMT marker alterations, as E-cadherin was
dramatically reduced in GC cells overexpressing ITGA2, whereas
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FIGURE 5 | MiR-135b-5p overexpression-mediated chemoresistance. (A) IC50 of 5-FU and ADR when overexpressed miR-135b-5p in SGC7901/ADR cells.

(B) LIVE/DEAD viability analysis in response to 5-FU and ADR when overexpressed miR-135b-5p in SGC7901/ADR cells. (C,D) IC50 and LIVE/DEAD viability analysis

in response to 5-FU and ADR in SGC7901 cells infected with ITGA2 plasmids or vector and cotransfected ITGA2 plasmids and miR-135b-5p mimic. (E) Protein levels

of the MAPK pathway markers were measured in SGC7901/ADR and SGC7901/VCR cells with miR-135b-5p overexpression. (F) Protein levels of apoptosis

biomarkers and EMT biomarkers in SGC7901/ADR and SGC7901/VCR cells with miR-135b-5p overexpression. Data represent mean ± SD, from three replicates.

*P < 0.05, **P < 0.01.

silencing ITGA2 restored E-cadherin and repressed N-cadherin
and Vimentin in the chemoresistant GC cells, implying
that EMT and chemoresistance may intrinsically be linked
via ITGA2.

Anticancer drug resistance can be divided into two categories:
intrinsic resistance derived from genetic or environmental
factors pre-existing in the tumor or acquired resistance resulting
from adaptive responses, alternative pathway activation, and
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resistant subpopulation selection (10). Interaction between
integrins and ECM contributes to both intrinsic and acquired
resistance because it could be seen as a combined strategy
that screens tumor cells with pre-existing integrin expression
using a prosurvival and antiapoptotic method (49). MAPK
signaling, leading to MEK/ERK activation, is a key regulator
of cell proliferation and apoptosis and confers a survival
advantage to cells (50). In leukemic Jurkat T cells, integrin
α2β1 inhibited Fas-induced apoptosis though the collagen-
mediated activation of the MAPK pathway (51). In breast cancer,
ligation of integrin α3β1 with laminins protected tumor cells
from anti-ErbB-2 agents via activation of the MAPK pathway
(52). In the present study, we found ITGA2-mediated GC
chemoresistance though the MAPK/ERK pathway. NanoString
PanCancer Panel analysis identified that the MAPK pathway
was one of the most deactivated signaling pathways and
was associated with other drug resistance-related pathways
after ITGA2 knockdown. The subsequent protein expression
validation showed that ITGA2 affected the activation of the
MAPK downstream kinase MEK and ERK. Activation of
MAPK/ERK signaling has been shown to inhibit apoptosis.
Consistently, we observed that ITGA2 influenced the apoptotic
regulatory molecules Bcl-2/Bax in GC cells. However, it is
noteworthy that othermolecules or pathwaysmay also contribute
to the effect of ITGA2 on GC chemoresistance, which remains to
be further investigated.

miRNAs are important regulators of gene expression and
are frequently dysregulated in cancer. A single miRNA could
affect the translation of multiple genes and may lead to
profound phenotypic responses within a cell (53). Aberrant
expression of miR-135b has been reported in various cancers
and has been shown to regulate multiple malignant phenotypes.
In pancreatic cancer, miR-135b-5p inhibited cell migration
and invasion by regulating NR3C2 (54). In breast cancer,
overexpression of miR-135b-5p facilitated apoptosis and reduced
chemoresistance to doxorubicin by targeting pro-oncogenic
AGR2 (41). In non-small cell lung cancer, amplification of
miR-135b suppressed the chemoresistance of cancer cells to
cisplatin treatment by downregulating Frizzled-1 (55). However,
opposite effects of miR-135b-5p in certain cancers have also
been reported (56, 57). This could be partially explained
by the mechanism by which miRNA binding to mRNAs
is often achieved with imperfect complementarity, and its
targets varied in different cellular contexts and tumor types.
In the present study, we provided several lines of evidence
that support miR-135b-5p function as a tumor suppressor of
chemoresistance by targeting ITGA2 in GC. First, miR-135b-5p
is reduced in chemoresistant GC cells, and its overexpression
induced apoptosis and restored the sensitivity of chemoresistant
GC cells to chemotherapeutic drugs. Second, dual-luciferase
reporter assays confirmed the direct interaction between miR-
135b-5p and ITGA2, and the chemoresistance conferred by
ITGA2 overexpression was partially antagonized by miR-135b-
5p ectopic expression. Third, miR-135b-5p also influences the
MAPK/ERK pathway, apoptotic regulatory molecules and EMT-
related markers. These observations suggest that miR-135b-5b

might be a potential therapeutic agent to target ITGA2 for GC
chemoresistance treatment.

In summary, our study investigated the potential role
and mechanisms of ITGA2 in GC chemoresistance. Based
on our findings, the ability of ITGA2 to control the MAPK
pathway and EMT may lead to GC chemoresistance.
Our findings revealed a novel miR-135b-5p/ITGA2
axis, implying that this axis may represent a new
mechanism of chemoresistance and that this axis holds
promise for the development of potential therapeutics
against GC.
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cells. (C) IHC of Ki-67 staining and Cleaved Caspase-3 staining in nude mice

tissues upon 5-FU or ADR treatment. (D) qRT-PCR analysis of miR-181b-5p

expression in SGC7901, SGC7901/VCR, and SGC7901/ADR cells. (E)

Transfection efficiency of miR-135b-5p mimic in SGC7901/ADR and

SGC7901/VCR cells.
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Figure S2 | miR-135b-5p reversed ITGA2 overexpression induced

chemoresistance. A LIVE/DEAD viability analysis in response to 5-FU and ADR in

SGC7901 cells infected with ITGA2 plasmids or vector and cotransfected ITGA2

plasmids and miR-135b-5p mimic.

Figure S3 | Original images of western blots. (A) Original images of Figure 1A,

(B) Figure 3C, (C) Figure 3D, (D) Figure 4D, (E,F) Figures 5E,F,

(G) Figure S1A.
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