
Systems biology

Heat*seq: an interactive web tool for

high-throughput sequencing experiment

comparison with public data

Guillaume Devailly*, Anna Mantsoki and Anagha Joshi*

Department of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush Campus,

Midlothian EH25 9RG, UK

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on April 18, 2016; revised on June 6, 2016; accepted on June 20, 2016

Abstract

Summary: Better protocols and decreasing costs have made high-throughput sequencing experi-

ments now accessible even to small experimental laboratories. However, comparing one or few ex-

periments generated by an individual lab to the vast amount of relevant data freely available in the

public domain might be limited due to lack of bioinformatics expertise. Though several tools,

including genome browsers, allow such comparison at a single gene level, they do not provide a

genome-wide view. We developed Heat*seq, a web-tool that allows genome scale comparison of

high throughput experiments chromatin immuno-precipitation followed by sequencing, RNA-

sequencing and Cap Analysis of Gene Expression) provided by a user, to the data in the public do-

main. Heat*seq currently contains over 12 000 experiments across diverse tissues and cell types in

human, mouse and drosophila. Heat*seq displays interactive correlation heatmaps, with an ability

to dynamically subset datasets to contextualize user experiments. High quality figures and tables

are produced and can be downloaded in multiple formats.

Availability and Implementation: Web application: http://www.heatstarseq.roslin.ed.ac.uk/. Source

code: https://github.com/gdevailly.

Contact: Guillaume.Devailly@roslin.ed.ac.uk or Anagha.Joshi@roslin.ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High throughput sequencing is now becoming routine for many bio-

logical assays including transcriptome analysis through RNA-

sequencing (RNA-seq), or transcription factor (TF) binding sites

identification through chromatin immuno-precipitation followed by

sequencing (ChIP-seq). Additionally, collaborative projects such as

Bgee (Bastian et al.), ENCODE (Bernstein et al., 2012) and

Roadmap Epigenomics (Kundaje et al., 2015) have generated

genome-wide datasets across hundreds of cell types or tissues.

Despite this large data being freely available in the public domain,

the lack of computational tools accessible to experimental scientists

with no or elementary computational skills prohibits the use of this

data to its full potential for discovery.

Though genome browsers, including summary tracks provided by

many consortia, are extremely useful to study a few genes, promoters

or single nucleotide polymorphisms, they lack the genome-wide over-

view. Only a few public resources such as the CODEX database

(S�anchez-Castillo et al., 2015a) and the BLUEPRINT GenomeStats

tool (Zerbino et al., 2014) allow a genome-wide comparison with the

user data. We therefore developed Heat*seq, a free, open source, web

application providing fast and interactive comparison against high

throughput sequencing experiments in the public domain. Users can

upload a processed text file containing either gene expression value

(Fragments Per Kilobase of transcript per Million (FPKM) or Tags Per

Million (TPM)), peak coordinates or peak coordinates and corres-

ponding expression value for CAGE(Cap Analysis of Gene
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Expression). The application provides clustered correlation heatmaps,

summarising global similarities between all samples in the dataset and

the user sample. Heat*seq provides over 12 000 publicly available

genome-wide experiments in human, mouse and drosophila for fast

and interactive comparison. In summary, Heat*seq is an interactive

web tool that allows users to contextualize their sequencing data with

respect to vast amounts of public data in a few minutes without

requiring any programming skills.

2 Methods

2.1 Data collection
We collected gene expression data (RNA-seq), TF ChIP-seq data and

CAGE data (over 4000 individual experiments) from Bgee (Bastian

et al., 2008), Blueprint epigenome (Pradel et al., 2015), CODEX

(S�anchez-Castillo et al., 2015b), ENCODE (Bernstein et al., 2012),

FANTOM5 (Forrest et al., 2014), FlyBase (Attrill et al., 2016), GTEx

(Lonsdale et al., 2013), modENCODE (Celniker et al., 2009) and

Roadmap Epigenomics (Bernstein et al., 2010), in human, mouse and

drosophila. Data formatting was done using R (R scripts available on

GitHub). The source for each dataset is listed in Supplementary Table

S1. Heatmaps represent Pearson’s correlation values between experi-

ments calculated using a Gene x Experiment numeric matrix with

gene expression values for expression data (log scaled), a Genomic re-

gions � Experiments binary matrix indicating presence or absence of

a peak for TF ChIP-seq data and a Genomic regions � Experiments

numeric matrix of expression values for CAGE data (log scaled).

Importantly, we constructed a metadata table which provides a web-

link to original data and allows users to sub select each dataset.

2.2 Web-application development
Heat*seq is an R shiny open source interactive tool which computes cor-

relation values between the user file and each experiment in a dataset.

Detailed user instructions are on the application website.

3 Results

3.1 Application description
Heat*seq tool supports three data types: HeatRNAseq,

HeatChIPseq and HeatCAGEseq. Data upload, correlation calcula-

tion and heatmap generation takes about a minute. Importantly,

users can interactively sub select relevant experiments using the

metadata information (e.g. cell type, TF name). The interactive heat-

map also allows selecting different clustering methods as well as

zooming in and out on the heatmap. The high resolution figures and

tables can be downloaded in multiple formats. Thus, Heat*seq pro-

vides global overview of relationships between public experiments

and the user data. Four user scenarios are discussed below.

3.2 User scenarios
3.2.1 User data quality control

We compared a Neocortex, 10 days post-partum (Ray et al., 2015)

RNA-seq sample with Bgee mouse RNA-seq data using

HeatRNAseq. The top five correlation values (Pearson Correlation

Coefficient>0.9) correspond to Bgee brain samples (Supplementary

Table S2). Thus, Heat*seq can be used as a fast data quality check

for next-generation sequencing data.

3.2.2 Cell context identification

An oestrogen receptor (ER) alpha ChIP-seq in MCF7 cells (Zhuang

et al., 2015) comparison to the ENCODE TFBS dataset by sub-

selecting ENCODE ER ChIP-seq experiments revealed that the bind-

ing pattern of ERa in MCF7 cells was more similar to its binding

pattern in T-47D cells than in ECC-1 cells (Fig. 1A). MCF7 and T-

47D were derived from mammary tumours while ECC-1 is an endo-

metrial cell line.

3.2.3 New hypotheses by data integration

CpG islands (CGI) from the UCSC (Karolchik et al., 2004) compari-

son to HeatChIPseq found that RNA polymerase II and TAF1

(Supplementary Table S4) were enriched at CGIs, as �50% of

human gene promoters contain a CGI (Illingworth and Bird, 2009).

Interestingly, we identified factors avoiding CGIs including MAFK,

GATA3 and ZNF274.

Similarly, tRNA promoters were highly correlated with RNA

polymerase III, and its co-factors BDP1, RPC155 and BRF1

(Supplementary Table S4) using HeatChIPseq. Interestingly, com-

parison with BRF family data revealed that BRF1, but not BRF2

was bound at tRNA genes (Supplementary Fig. S1B).

3.2.4 Public data assessment

Heat*seq can be used to assess data in the public domain, high-

lighted by two examples below amongst others:

A MYC ChIP-seq in H1-hESC cells does not cluster with other

ENCODE MYC ChIP-seq experiments (Fig. 1C), including H1-

hESC sample from a different experimental group (Devailly et al.,

2015).

Two out of seven erythroblast RNA-seq samples from the

Blueprint Epigenome consortium are more correlated with endothe-

lial cells than with the rest of the erythroblast samples (Fig. 1D).

4 Conclusion

With Heat*seq, comparing RNA-seq, ChIP-seq or CAGE experi-

ments to hundreds of publicly available datasets becomes a trivial

task. Researchers can now investigate the relationships between
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Fig. 1. Correlations heatmaps from Heat*seq. (A) ERa ChIP-seq in MCF7 cells

from Zhuang et al. is closer to ENCODE ERa ChIP-seq in T-47D than in ECC-1

cells. (B) BRF1 and RNA PolIII bind tRNA genes, but nor BRF2. (C) c-MYC

ChIP-seq in H1-hESC from UT-A and Stanford show low correlation. The col-

our key next to B is for A, B and C. (D) Two erythroblast RNA-seq samples

from BLUEPRINT are closely related to endothelial cells (Color version of this

figure is available at Bioinformatics online.)
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various high-throughput sequencing experiments fast and inter-

actively without requiring any programming skills. Such analysis

can assess data quality, cell variability and generate novel regulatory

hypotheses.
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