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Deep learning identification 
for citizen science surveillance 
of tiger mosquitoes
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Frederic Bartumeus2,3,5 & Istvan Csabai1

Global monitoring of disease vectors is undoubtedly becoming an urgent need as the human 
population rises and becomes increasingly mobile, international commercial exchanges increase, and 
climate change expands the habitats of many vector species. Traditional surveillance of mosquitoes, 
vectors of many diseases, relies on catches, which requires regular manual inspection and reporting, 
and dedicated personnel, making large-scale monitoring difficult and expensive. New approaches 
are solving the problem of scalability by relying on smartphones and the Internet to enable novel 
community-based and digital observatories, where people can upload pictures of mosquitoes 
whenever they encounter them. An example is the Mosquito Alert citizen science system, which 
includes a dedicated mobile phone app through which geotagged images are collected. This system 
provides a viable option for monitoring the spread of various mosquito species across the globe, 
although it is partly limited by the quality of the citizen scientists’ photos. To make the system useful 
for public health agencies, and to give feedback to the volunteering citizens, the submitted images 
are inspected and labeled by entomology experts. Although citizen-based data collection can greatly 
broaden disease-vector monitoring scales, manual inspection of each image is not an easily scalable 
option in the long run, and the system could be improved through automation. Based on Mosquito 
Alert’s curated database of expert-validated mosquito photos, we trained a deep learning model to 
find tiger mosquitoes (Aedes albopictus), a species that is responsible for spreading chikungunya, 
dengue, and Zika among other diseases. The highly accurate 0.96 area under the receiver operating 
characteristic curve score promises not only a helpful pre-selector for the expert validation process 
but also an automated classifier giving quick feedback to the app participants, which may help to keep 
them motivated. In the paper, we also explored the possibilities of using the model to improve future 
data collection quality as a feedback loop.

There are more than 3600 known species of mosquitoes1,2. The majority are harmless to humans but a few dozen 
transmit diseases. Because of these species, mosquitoes are often referred to as the deadliest animals on Earth3. 
Different mosquito species, including the three main genera Aedes, Anopheles, and Culex, are able to transmit a 
variety of pathogens to humans (e.g. virus, parasites) when infected females feed on human hosts. Their ability 
to carry and spread disease to humans is responsible for hundreds of millions of infections and hundreds of 
thousands of deaths annually, imposing a massive global burden on society4–11.

The global transport of disease reservoirs and vectors, climate change, urban growth, ecosystem degradation, 
and habitat fragmentation are among the factors driving the recent emergence and re-emergence of mosquito-
borne diseases (MBDs) worldwide12. In recent decades, for example, a large number of countries have reported 
their first dengue outbreaks, and the worldwide incidence of dengue has risen 30-fold in the past 50 years12. 
Dengue, along with chikungunya, Zika, yellow fever other diseases, are transmitted to humans by Aedes (Stego-
myia) albopictus (Skuse, 1894) and Aedes (Stegomyia) aegypti (Linnaeus, 1762)13. The two species live together 
and share urban environments with more than half of the world’s population14.

In the absence of effective vaccine solutions for most MBDs15, attention has turned to the urgent strengthen-
ing of vector management16 as a fundamental approach to preventing disease and responding to outbreaks. To 
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be successful, however, vector control programs require innovative tools for mosquito population surveillance 
and control, as well as much greater community participatory action and mobilization17,18.

Assessing the current distribution and dynamics of the targeted mosquito species is core to any control 
strategy, with efficiency depending on the early detection of invasive species and the effective monitoring of the 
spread and population dynamics of competent vectors in colonized territories (both invasive and native vectors). 
Obtaining authoritative data through traditional mosquito surveillance, e.g. by trapping adults, dipping for lar-
vae, or ovitrapping, is costly, time-consuming, and labour-intensive, making this a barely scalable approach that 
is generally able to cover only small parts of any given country19. As a result, community-based approaches, in 
which citizens are provided the means to recognize, report, collect, and submit mosquito specimens are becom-
ing increasingly popular, and receiving growing support from the scientific community20,21. This is the case of 
the citizen science platform Mosquito Alert (www.mosqu​itoal​ert.com/en).

Mosquito Alert enables ordinary people to identify and report targeted disease-vector mosquitoes anywhere 
they encounter them worldwide (see Fig. 1). The system targeted tiger mosquitoes (Ae. albopictus) from 2014 and 
both tiger and yellow fever mosquitoes (Ae. aegypti) from 2016. At the end of 2020 it began targeting additional 
species as well (Ae. japonicus, Ae. koreicus, Culex pipiens), but the dataset analyzed in this article ends in 2019 
when only tiger and yellow fever mosquitoes were being targeted.

The citizen scientists’ reports sent through Mosquito Alert are validated by entomologists and shared with 
control services and public health agencies. By also estimating participants’ sampling effort based on background 
geo-positioning, the system is able to make inferences about mosquito risk distribution of comparable quality to 
those generated from traditional ovitrap surveillance methods but in a more scalable and flexible manner22. A 
crucial aspect of this type of system is improving data quality, the so-called fitness of use22,23. One way this is done 
is by providing feedback to citizens through social media and community engagement when they fail to provide 
adequate pictures (blurred images, non-targeted species), and explaining tricks on how to catch mosquitoes and 
make good pictures with their smartphones23.

Figure 1.   Geographical diversity of the submitted images based on the provided geolocation tags. It can be 
clearly seen that while the vast majority of the Mosquito Alert participants are based in Europe (particularly 
Spain), images were taken all over the world. The map was made with Natural Earth public domain map data 
(https​://www.natur​alear​thdat​a.com/) using the rnaturalearth package version 0.1.024 in R version 4.0.225 (https​://
www.R-proje​ct.org/).

http://www.mosquitoalert.com/en
https://www.naturalearthdata.com/
https://www.R-project.org/
https://www.R-project.org/
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In the early 2010s a branch of machine learning models, convolutional neural networks (CNN) gained enor-
mous attention and development. Since then, CNNs have reached and often outperformed human expert-level 
accuracy in various tasks. The recent rise of deep learning techniques is mainly due to the availability of large 
enough image databases and the increase in computing power. In this article, we demonstrate how CNNs can 
help to reduce the labour-intensive labeling process for the Mosquito Alert platform. As Mosquito Alert is an 
active ongoing project, there is a potentially great benefit to improving the data collection guidelines. The col-
lected dataset provides a good opportunity to use CNNs for this purpose.

Results
Between 2014 and 2019, 7686 citizen-made mosquito photos were labeled through Mosquito Alert by entomol-
ogy experts, with labels indicating whether Ae. albopictus appear in the photos. The photos were included in 
reports that Mosquito Alert participants uploaded, and each report could contain several photos, see Fig. 2. The 
entomology experts usually labeled the best photo of the report, but sometimes they labeled two (420 times) or 
three (49 times) for a single report, meaning that the dataset consisted of 7168 reports. For 6699 reports, only one 
image was labeled by the experts; for 420 reports two were labeled; for 49 reports three were labeled. Although 
these reports usually contain several photos, only the ones with expert labels were used in the analysis, as cannot 
be assumed that all of the photos in a report would have been given the same label.

The main goals of Mosquito Alert during this 6 year period were to monitor Ae. albopictus spreading and 
provide early detection of Ae. aegypti in Spain. Although people participate in Mosquito Alert all over the world, 
the majority of the participants and the majority of the photos are in Spain (see Fig. 1). As Ae. aegypti has not 
been reported in Spain in recent times, most Mosquito Alert participants lived in areas where Ae. aegypti is not 
present, so most of the photos are of Ae. albopictus. For the detailed yearly distribution of the photos, see Table 1.

A popular deep learning model, ResNet5026 was trained and evaluated on the collected dataset with yearly 
cross-validation. ResNet50 was used because of its wide popularity and its proven classification power in vari-
ous datasets. As presenting infinitesimal increments of the classification power is not a goal of this paper, we do 
not report various ImageNet state-of-the-art model performances. Yearly cross-validation was used to rule out 
any possibility of information leakage (possibility of a user submitting multiple reports for the same mosquito).

The trained model is not only capable of generating highly accurate predictions, but it can also ease the human 
annotator workload by auto-marking the images where the neural network is confident and more accurate, leav-
ing more uncertain cases for the entomology experts. Moreover, while visualizing the erroneous predictions a 
few re-occurring patterns were identified, which can serve as a proposal for how to make images that can be 
best processed by the model.

Figure 2.   Schematic figure of the labeling process. Participants usually upload several images in a single report. 
The best photo is picked by the validator who first marks the harassing or non-appropriate photos as hidden. 
All the non-best photos are marked as not classified. In some rare events, two or three images are annotated 
from the same report. The mosquito images are classified into four different categories (Aedes albopictus, Aedes 
aegypti, other species or can not tell) and also the confidence of the label is marked as probable or confirmed. In 
this paper we excluded the not classified, the hidden and the can not tell images.

Table 1.   The collected and expert validated dataset for the period 2014–2019. Ae. albopictus are clearly over-
represented, which is expected because the system targeted only this species until 2016, and two species Ae. 
albopictus and Ae. aegypti from 2016 to 2019.

2014 2015 2016 2017 2018 2019 Total

Not Aedes albopictus 1 138 276 249 456 371 1491

Aedes albopictus 91 2156 901 960 1180 907 6195

Total 92 2294 1177 1209 1636 1278 7686
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Several aspects of the dataset were explored as follows.

Classification.  Since Mosquito Alert was centered around Ae. albopictus during the relevant time period 
(2014–2019), the collected dataset is biased towards this species (Table 1). We explored training classifiers on 
the Mosquito Alert dataset alone and also tied training on a balanced dataset, where 3896 negative samples were 
added from the IP10227 dataset of various non-mosquito insects as negative samples. From the IP102 dataset, 
images similar to mosquitoes, and images of striped insects were selected. Although the presented mosquito 
alert dataset is filtered to contain only mosquito images, in later use, non-mosquito images might be uploaded by 
the citizens. Training the CNN on a combination of mosquito and non-mosquito images can improve the model 
to make correct predictions, classifying non-tiger mosquitoes for those cases too. For testing, in each fold, only 
the Mosquito Alert dataset was used.

The trained classifiers achieved an extremely high area under the receiver operating characteristic curve (ROC 
AUC) score of 0.96 (see Fig. 3). The fact that the ROC AUC score for each fold was always over 0.95 proves the 
consistency of our classifier. Inspecting the confusion matrix shows us that the model tends to make more false 
positive predictions (assuming tiger mosquito is defined as the positive outcome) than false negatives, resulting 
in high sensitivity. The augmentation of the Mosquito Alert dataset with various insects from IP102 images to 
make it more balanced resulted in a slight performance boost and narrowed the gap between the number of false 
positive and false negative samples as expected, see Table 2.

How to take a good picture?  Inspection of the weaknesses of a machine learning model is a fruitful way 
to gain a deeper understanding of the underlying problems and mechanisms. In our case, a careful review of 
the mispredicted images led us to useful insights into what makes a photo hard to classify for the deep learning 
model. On Fig. 8, a few selected examples are presented. Unlike humans, deep learning models rely more on 
textures than on shapes28. As a consequence, grid-like background patterns or striped objects may easily confuse 
the machine classifier. A larger rich training set can help to avoid these pitfalls, but we also have the option to 
advise the participants. If participants avoid confusing setups when taking photos, this can improve the accuracy 
of the automated classification. These guidelines can be added to the Mosquito Alert application to help partici-
pants make good images of mosquitoes.

Figure 3.   Left: ROC curve calculated on the prediction of the 7686 images in the Mosquito Alert dataset with 
yearly cross-validation. The blue line shows the case when only the Mosquito Alert dataset was used for training, 
the orange when the training dataset was balanced out with the addition of non-tiger mosquito insect images 
from the IP102 dataset. Also a zoom into the part of the ROC curve, where the two methods differ the most is 
highlighted. Right: the confusion matrix was calculated on the same predictions when only the Mosquito Alert 
dataset was used for training. For both, a positive label means tiger mosquito is present.

Table 2.   Yearly cross-validation results with using the Mosquito Alert dataset alone and its IP102 augmented 
version. The additional non-tiger mosquito insect images were used only to balance out the train dataset, they 
were not used in the validation dataset. The area under the receiver operating characteristic curve (ROC AUC), 
true positive (TP), true negative (TN), false positive (FP), false negative (FN) is shown.

Used data ROC AUC​ TP TN FP FN

Mosquito Alert dataset 0.9577 6041 1129 362 154

Augmented dataset 0.9663 5992 1190 301 203
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•	 Do not use striped structure (e.g. mosquito net or fly-flap) as a background.
•	 Avoid complex backgrounds when possible. A few examples: patterned carpet, different nets, reflecting/shiny 

background, bumpy wallpaper.
•	 Use clear, white background (e.g. a sheet of plain paper is perfect if possible) or hold the mosquito with finger 

pads.
•	 Make sure that as much as possible the mosquito is in focus and covers a large area of the photo.

In general, it is desirable to have a clean white background with the mosquito centered, and with the image 
containing as little background as possible.

Dataset size impact on model performance.  Modern deep CNNs tend to generate better predictions 
when trained on larger datasets. In this experiment, we trained a ResNet50 model on 10–20–· · ·–90–100% of 
6686 images and evaluated the model on the remaining 1000 images. The 1000 images were selected from the 
same year (2019) and all of them came from reports with only one photo. There were 709 tiger mosquitoes out 
of the 1000 test images. ROC AUC and accuracy were calculated with a 500 round bootstrapping of the 1000 
test images.

The mean and the standard deviation of the 500 rounds are shown in Fig. 4 for each training data size. From 
the figure, we can conclude that the predictive power of the model increases as more data are used. The shape 
of the curves also suggests that the dataset did not reach its plateau. In the upcoming years, as the dataset size 
increases, ROC AUC and accuracy enhancement is expected.

On measuring image quality.  Through the examined period, Mosquito Alert outreach was promoting 
a mosquito-targeted data collection strategy. Participants were expected to report two mosquito species (Ae. 
aegypti and Ae. albopictus). By defining these species as positive samples and all the other potential species of 
mosquito as negative, the submission decision by participants becomes a binary classification problem. In the 
majority of cases, when participants submit an image we should expect them to think of having a positive sam-
ple. Later, based on entomological expert validation, the true label for the image was obtained.

The main goal of such a surveillance system is to keep the sensitivity of the users as high as possible while 
keeping their specificity at an acceptable level. Therefore, measuring the sensitivity and specificity of the users 
would be a plausible quality measure. Unfortunately, there is no available information regarding the non-sub-
mitted mosquitoes (the true negative and false negative ones), meaning it is impossible to measure sensitivity. 
The specificity can be measured only in a special case, when there are no false positive images submitted by the 
user, resulting in a specificity of 1. Based on the latter argument, focusing on metrics derived from the ratio 
of the submitted tiger mosquito images vs. all submitted images is not meaningful. Instead, the quality can be 
measured by the usefulness of the photos from the viewpoint of the expert validator or a CNN, as presented in 
the next chapter.

Quality evolution of the images through time and space.  The Mosquito Alert dataset is a unique 
collection of mosquito images, because, among other things, it is built from 5 consecutive years (not counting 
2014, where less than 100 reports were submitted) and it also provides geolocation tags. This uniqueness of the 
dataset provides potential identification of time and spatial evolution and dependence of the citizen-based mos-
quito image quality. To explore such an evolution, we performed two different experiments. Geolocation tags 
were converted to country, region, and city-level information via the geopy Python package. It was found, that 
the vast majority (95% of all) of the reports were coming from Spain so we performed the analysis only for the 
Spanish data.

Figure 4.   Training a ResNet50 model on a subsampled training dataset. The model was tested against the same 
1000 test images for all the steps and statistics of the test metric was calculated with a 500 round bootstrapping. 
The curve proves the diversity of the Mosquito Alert dataset and also suggests that in the future when the dataset 
will be even larger, the classification performance will increase.
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First, we explored the fraction of the photos, where the entomology expert marked “can not tell”, because the 
photo was not descriptive enough to decide which species were presented. Figure 5 shows the ratio of the useful 
mosquito reports, when mosquito decision was possible, compared to all the mosquito reports. The chart shows 
the above-mentioned ratio for four Spanish cities, which have the most reports submitted (the same informa-
tion is showed on Supplementary Fig. S1 as a heatmap over Spain). The Mann–Kendall test on the fraction of 
useful reports shows p-values of 0.09, 0.09, 0.81, 0.22 for Barcelona, Valencia, Málaga, and Girona, which does 
not justify the presence of a significant trend in image quality, although any conclusions drawn from five data 
points must be handled with a pinch of salt. It does not mean anything about the individual participants’ quality 
progression, because Mosquito Alert is highly open and dynamic, and active participants can constantly change. 
Of note, through these years, the tiger mosquitoes have widely spread from the east coast to the southern and 
western regions of Spain29. New (and naive) citizen scientists living in the newly colonized regions have been 
systematically called to action and participation, thus, limiting the overall learning rate of the Mosquito Alert 
participants’ population. Our results suggest, that either a dynamic balance exists between naive and experienced 
participants over the period of data recollection, or mosquito photographing skills are independent of the user 
experience level. The expectation would be that as the population in Spain became more aware of the presence 
of tiger mosquitoes and their associated public health risks, the system should experience an increase in the 
useful report ratio, at least for tiger mosquitoes, and most tiger mosquito photos maybe classified automatically.

Second, we subsampled randomly 1000 images from all years between 2015 and 2019. Then we trained a 
different ResNet50 on data from the different years and generated predictions for the rest of the data, for each 
year separately. This way we can explore if data from any year is a “better training material” than the others. The 
results see Fig. 6, shows that 2015 is the worst training material, providing 0.83–0.84 ROC AUC score for the 
test period, while the rest (period 2016–2019) is similar, ROC AUC varies between 0.90 and 0.93. The reason 
why the 2015 data found to be the least favourable for training is its class imbalance, meaning that data from 
2015 is extremely biased towards tiger mosquitoes (94%), so when training on 2015 data, the model does not 
see enough non-tiger mosquito samples, while for the other years lower class imbalance was found (70–80%), 
see Table 1. In general, machine learning models for classification require a substantial amount of examples for 
each possible class, in our case tiger and non-tiger mosquitoes, therefore worse performance is expected when 
training on the 2015 data.

Other than the varying class imbalance, we can conclude that the Mosquito Alert dataset quality is con-
sistent, we did not find any concerning difference between training and testing our model for any of the 
2016–2017–2018–2019 data pairs.

Pre‑filtering the images before expert validation.  Generating human annotations for an image clas-
sification task is a labour-intensive and expensive part of any project especially if the annotation requires expert 
knowledge. Therefore, having a model that generates accurate predictions for a well-defined subset of the data 
saves a lot of time and cost. We assume that the trained classifier is more accurate when the prediction prob-
ability is whether high or low and more inaccurate when it is close to 0.5. With this assumption in mind one 
can tune the plow and phigh probabilities, in a way that images with a prediction probability plow < p < phigh are 
discarded and sent to human validation.

Figure 5.   Number of submitted reports and the fraction of their ratio where the entomology expert annotator 
could tell if tiger mosquito was presented on the photo or not. The charts are shown for the four cities, where 
Mosquito Alert was the most popular.
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Varying plow and phigh provides a trade-off between prediction accuracy and the portion of images sent to 
human validation. Based on Fig. 7 sending 20% of the images to human validation while having an almost 98% 
accurate prediction for 80% of the dataset is a fruitful way to combine human labour-power and machine learn-
ing together.

Discussion
Citizen science methodologies have been sharpened in the last decade, leading to greater acceptance among the 
scientific community, which was initially concerned about data quality and sampling biases. Successful citizen 
science projects can be found across a wide range of disciplines, from the life sciences, where they help assess 
biodiversity at a global scale (e.g. iNaturalist, iSpot), to astronomy, where they solve the morphological classifica-
tion of galaxies (e.g. Galaxy Zoo)30, to many more. For example, iNaturalist enables citizen scientists to upload 
pictures of any species, powering a big data approach to biodiversity quantification and worldwide conservation. 
In iNaturalist, automated species identification is now a key feature and an active research question31.

The citizen science approach is an excellent way to collect information (whether raw data or labeling) on 
any topic when automation is not yet possible. The collected information can be orders of magnitudes larger 
and much more diverse compared to traditional data collection methods. Despite the fact that data quality is 
less guaranteed, it can be adjusted to specific needs by means of statistical methods and community engage-
ment techniques. Next-generation citizen science methodologies should combine expert-wise classification with 

Figure 6.   1000 random samples were selected for each years data. Separated ResNet50 models were trained 
on each of the years and each model was tested on the rest of the years data. Metrics were calculated with a 
500 round random sampling with replacement from the test data. Left: mean of the 500 round bootstrapped 
accuracy calculations. Right: mean of the 500 round bootstrapped ROC AUC calculations.

Figure 7.   Randomly selecting 100,000 plow and phigh thresholds on the predictions which were created via 
yearly cross-validation. Each time only samples were kept where the predicted probability were out of the 
[plow; phigh] interval. Each point shows the kept data fraction and the prediction accuracy. Varying the lower 
and upper predicted probability almost 98% of the images are correctly predicted while keeping 80% of all the 
images.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4718  | https://doi.org/10.1038/s41598-021-83657-4

www.nature.com/scientificreports/

machine learning classifiers. The bottleneck is to generate good enough supervised datasets for the machine 
learning model to be able to learn from them.

Many states around the world are required to implement a nationwide plan for disease vector mosquito 
surveillance. National plans for mosquito surveillance often follow guidelines produced at institutions like the 
European Centre for Disease Prevention and Control (ECDC)32 or the World Health Organization (WHO)16. 
The WHO has been pushing for programs that bring together multiple vector control strategies in cost-effective, 
flexible, and sustainable ways. Recently, these plans have been augmented or complemented with citizen science20. 
As a next step, citizen science observation maps need to be standardized and coupled with disease data for the 
best utilization.

Citizen science has been used to track insects more generally in the Monitoring of Insects with Public Partici-
pation (MIPP)33 project, and other specific groups like butterflies in the Catalan Butterfly Monitoring Scheme34. 
In the context of public health, citizen science has also been implemented in crisis scenarios, as for example in 
the Safecast project35 in the Fukushima earthquake in 2011 that followed the nuclear energy catastrophe. Indeed, 
citizen science based surveillance of vector mosquitoes may be operative for both public health preparedness and 
crisis scenarios (epidemic bursts). Mosquito Alert, for example, is used as a surveillance system at the national 
scale (note the detection with this system of a new mosquito vector in 2018 in Spain36), and also as a control 
system in the city of Barcelona23,37, where the public health agency of Barcelona (ASPB) treats the reporting activ-
ity of citizens as an incidence map that it uses in combination with available data to plan weekly cost-effective 
control measures over the whole mosquito season. In addition, in the case of epidemic bursts, novel technologies 
in the hands of prepared citizens can easily spread the word on risk minimization behaviours, increase social 
awareness, and produce a flexible and scalable data collection system (mosquito pictures, breeding sites or biting 
patterns) for decision-making and management. In line with the next-decade’s vector control road-map, and in 
most of the above-mentioned context, it is crucial to combine the benefits of community-driven citizen science 
with cutting-edge machine learning tools from the ongoing revolution in big data. Not only can they these tools 
improve scalability by reducing the number of images that require an expert human eye, but these systems will 
also be refined. Some limits exist in that not all taxonomic characters are observable without a microscope and 
some species are too similar. Nonetheless, the improvement in machine learning methods, together with the 
refinement of future human-in-the-loop interactions, and the inclusion of other big data sources (environment, 
mosquito behaviour, participant activity and profiling) might make machines better at discriminating species 
than an untrained human eye, and in some cases better than a trained eye. The presented work is the first step 
toward this goal and shows that deep-learning tools can be implemented to leverage and improve the scalability 
of community, and smartphone-based mosquito reporting.

Convolutional neural networks were used to classify mosquito species by images in the literature. While these 
research reports exceptionally high accuracy38–41, their method is usually based on consistently high-quality 
images, which are relatively rare in systems where images are taken by non-experts randomly selected. Others 
have created an automated way of taking photos of live mosquitoes and trained CNNs on the collected data42,43. 
This is a promising way to achieve automated mosquito surveillance.

Nonetheless, one can already acknowledge some strong methodological limits when using mosquito images. 
Among the few (order of dozens) disease-carrying mosquitoes of concern, not all of them can be identified on 
the basis of a photograph. Key taxonomical characters are often hidden from the human eye and require animal 
dissection and material preparation for observation through a binocular lens or microscope. In this context it 
is important to mention that there has been substantial effort put into automated mosquito classification from 
other sourced data, that is, targeting the problem from other angles. As an example, some works have attempted 
to predict the presence of a mosquito or a given mosquito species from its buzz44–47. The wingbeat sound can 
be recorded via a standard microphone, or else recording the air pressure change or the movement of the wing 
that is converted into soundtracks by an optical sensor. While recording the buzz of mosquitoes attracted by 
lures on the field might be a viable option, it is much more difficult in urban areas due to noise pollution. Wing 
interference patterns (WIP) are also a promising data source to classify mosquitoes48, but its usage by citizens is 
complicated because it requires much more practice and effort to manipulate the specimen to create high-quality 
WIP images compared to a traditional photo.

The presented work focuses on Ae. albopictus because that is the main targeted species for the period 
2014–2019 in the Mosquito Alert project, but the targeted species were extended recently49. Machine learning 
classification of other mosquito species could be done but may require some time, as citizens need to learn how 
to make good pictures of them, and also large enough sample size is required for training a model. One of the 
advantages of the Mosquito Alert citizen science program is the ability to be able to communicate with citizens 
directly (through smartphone notifications) and indirectly (through the web or social media). Part of this com-
munication has to do with providing feedback and tricks in order to improve image quality, highlighting what 
body parts of the mosquito are the key from a taxonomic perspective. In this regard, both the improvement of 
deep learning techniques and expertise by citizens may facilitate mosquito classification.

In the future, it is likely that different sources of data could be combined in order to improve automated 
mosquito classification together with technical and deep learning methods refinement.

Methods
Data collection.  The photos were made and submitted by participants of the Mosquito Alert citizen science 
platform. Through the Mosquito Alert smartphone application, participants can upload several images within 
a single report belonging to the same mosquito. The application is freely available both in the App Store and 
Google Play. While creating the report the app obtains high-resolution location information from the mobile 
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phone sensors and incorporates this into the report too. The photos are stored at medium resolution, usually 
varies between 150 and 500 pixels in both dimensions.

Expert validation.  Uploaded mosquito images are classified by entomology experts. Each image is vali-
dated by one expert and the mosquito images are classified into one of the following categories:

•	 Ae.albopictus
•	 Ae.aegypti
•	 other species
•	 can not tell

For each category, the validator can mark whether the prediction is confirmed or just probable. In the application 
photos of breeding sites are also collected, but we do not use that data in the presented research. Figure 2 shows 
the labeling process in a schematic view.

Data filtering.  The inappropriate images, marked as hidden, see Fig. 2 were excluded from this study. Also, 
we did not use the not classified and the can not tell mosquito images. From the mosquito and breeding site 
images, only the mosquito images were used in the research.

Collected dataset.  The collected dataset is publicly available, the link is provided in the Additional infor-
mation section.

All non-mosquito images were discarded, but both confirmed and probable labels were kept resulting in a 
total of 7686 images, see Table 1. As the dataset is collected through a citizen science project a wide variety of 
backgrounds, blurriness, zoom level, and resolution is experienced as it can be seen on Fig. 8.

Training the neural network.  An ImageNet pre-trained ResNet5026 model was trained with yearly cross-
validation on the dataset via the FastAI API50. ResNet50 was selected because this well-popular architecture 
performs well in general image recognition tasks, and because of its popularity, ResNet50 provides an easy to 
re-implement benchmark for our work.

The training was done with fit one cycle policy for ten epochs, using a maximum learning rate of 10−5 for 
the first five epochs and 5× 10

−5 for the second five epochs using categorical cross-entropy loss. Also, in the 
first five epochs only the fully connected last layer was trained, while in the last five epochs all the layers were 
fine-tuned. Mini-batch size of 32 was used.

First, all images were resized to 256× 256 pixels. During training various image augmentation techniques 
were applied, such as horizontal flipping, random rotation of the image, zooming to the image, changing the 

Figure 8.   Top row: correctly classified images, where the model was confident, thus assigned close to 1 
probability to the correct category. Middle row: examples from the images which were mistakenly predicted by 
the CNN model. Bottom row: selected examples where the entomology expert could not tell if the presented 
mosquito is a tiger mosquito or not. The images were resized to have the same aspect ratio for visualization 
purposes.
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lighting, and perspective warping. The program code that was used for training is accessible at http://githu​b.com/
patba​a/mosqu​itoal​ert_class​ifica​tion.

The training process with ten epochs took 10–15 min on an Nvidia GTX 1070 GPU.

Evaluation.  Evaluation of the deep learning model was performed via yearly cross-validation in order to 
exclude the information leakage between images when several images were taken of a single mosquito.

When the prediction was generated for all the images, the ROC AUC score was calculated. ROC AUC was 
also calculated for all folds separately in order to ensure the consistency of the method. Additionally, the confu-
sion matrix was created, see Fig. 3, from that all the usual metrics (sensitivity, specificity, accuracy, F1 score) 
can be easily calculated.

During the evaluation, no test time augmentation was used.

Metrics.  ROC AUC​.  Area under the receiver operating characteristic curve, which means plotting the 
TP

TP+FN  on the y-axis while FP
TN+FP on the x-axis for various probability cutoff thresholds, where TP is the number 

of the true positive samples, TN, FP, FN are the false negatives, false positives, and false negatives.

Accuracy.  The fraction of the correctly predicted samples. TP+TN
TP+TN+FP+FN  with the notation used for the ROC 

AUC.

Sensitivity.  TP
TP+FN  , using the notation introduced in the “ROC AUC​” section above.

Specificity.  TN
TN+FP , using the notation introduced in the “ROC AUC​” section above.

Bootstrappig.  In some experiments bootstrapping was used. It was performed by resampling the whole test set 
with replacement and calculating the given score for that resampling. The resampling was performed 500 times, 
resulting in 500 estimates of the metric.

Data availability
The collected images are accessible at http://www.mosqu​itoal​ert.com/en/mosqu​ito-image​s-data-base/.

Code availability
The code is accessible at http://githu​b.com/patba​a/mosqu​itoal​ert_class​ifica​tion. The additionally used IP10227 
insect images are available from the authors of the IP102 paper upon request.
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