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Vps54 is an integral subunit of the Golgi-associated retrograde protein (GARP) complex,
which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN).
A destabilizing missense mutation in Vps54 causes the age-progressive motor neuron
(MN) degeneration, muscle weakness, and muscle atrophy observed in the wobbler
mouse, an established animal model for human MN disease. It is currently unclear how the
disruption of Vps54, and thereby the GARP complex, leads to MN and muscle
phenotypes. To develop a new tool to address this question, we have created an
analogous model in Drosophila by generating novel loss-of-function alleles of the fly
Vps54 ortholog (scattered/scat). We find that null scat mutant adults are viable but have a
significantly shortened lifespan. Like phenotypes observed in the wobbler mouse, we
show that scatmutant adults are male sterile and have significantly reduced body size and
muscle area. Moreover, we demonstrate that scat mutant adults have significant age-
progressive defects in locomotor function. Interestingly, we see sexually dimorphic effects,
with scat mutant adult females exhibiting significantly stronger phenotypes. Finally, we
show that scat interacts genetically with rab11 in MNs to control age-progressive muscle
atrophy in adults. Together, these data suggest that scat mutant flies share mutant
phenotypes with the wobbler mouse and may serve as a new genetic model system to
study the cellular and molecular mechanisms underlying MN disease.
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INTRODUCTION

Neurodegenerative diseases are severe and often fatal disorders associated with reduced function, or
loss of function, of neurological components. This degeneration commonly leads to cognitive
impairment and/or motor dysfunction. The primary risk factor associated with neurodegeneration is
aging, and as a great portion of the population continues to age the prevalence of such disorders
continues to increase (Niccoli and Partridge, 2012). The identification of mutations linked to human
neurodegenerative diseases have highlighted several important intracellular pathways that are
involved in disease pathogenesis. Many of these genes can be categorized by their contribution
to critical intracellular processes including RNA and protein metabolism, axonal and cytoskeletal
dynamics, and membrane trafficking (Taylor et al., 2016).

Endocytic trafficking has been implicated in several specialized processes in neurons including
axon guidance and outgrowth, synaptic plasticity, and axonal transport (Wojnacki and Galli, 2016).
Disruption of pathways involved in the function of endocytic trafficking has been linked to
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progressive neurodegenerative disorders such as amyotrophic
lateral sclerosis (ALS), Parkinson’s disease (PD), and
hereditary spastic paraplegias (HSPs) (Schreij et al., 2016). MN
axons appear to be particularly sensitive to mutations in genes
involved inmembrane trafficking, specifically ALS and HSPs. The
membrane trafficking genes that have been implicated in ALS
include Alsin (ALS2), C9ORF72, and Optineurin (OPTN)
(Hadano et al., 2001; Yang et al., 2001; Devon et al., 2006;
Maruyama et al., 2010; Stepto et al., 2014; Waite et al., 2014).
Genes involved in HSPs are Spastin (SPG4), Strumpellin (SPG8),
Spatacsin (SPG11), Spastizin (SPG15), AP5 (SPG48), and Vps37A
(SPG53) (Hazan et al., 1999; Patel et al., 2002; Valdmanis et al.,
2007; Hanein et al., 2008; Slabicki et al., 2010; Zivony-Elboum
et al., 2012).

A destabilizing missense mutation in the gene encoding for the
vacuolar protein sorting-associated protein 54 (Vps54) causes
age-progressive MN degeneration in mice. This mouse model,
known as the “wobbler” mouse, is used to model human MN
disease because it shares many striking phenotypic similarities
with ALS (Moser et al., 2013). Vps54 is a core subunit of the
heterotetrametric Golgi-associated retrograde protein (GARP)
complex and is involved in tethering retrograde transport
carriers, derived from endosomes to the trans-Golgi network
(TGN) (Bonifacino and Hierro, 2011). The subunits that
compose the primary structure of the GARP complex are
Vps51, Vps52, Vps53, and Vps54 (Conibear and Stevens,
2000). Destabilization of Vps54 in the wobbler mouse leads to
a compensatory decrease in levels of Vps53 and disruption of the
assembly of the GARP complex (Perez-Victoria et al., 2010). The
N-terminus of yeast and mammalian Vps54 binds to TGN-
associated soluble N-ethylmaleimide-sensitive fusion protein
attachment protein receptors (t-SNAREs) while the
C-terminus interacts with endosomes (Quenneville et al., 2006;
Perez-Victoria and Bonifacino, 2009). Knockdown of Vps54 and
other GARP complex subunits results in defects in retrograde and
anterograde vesicle transport (Conibear and Stevens, 2000; Perez-
Victoria et al., 2008; Perez-Victoria and Bonifacino, 2009; Hirata
et al., 2015). Additionally, knockdown of GARP complex
subunits causes lysosomal dysfunction (Perez-Victoria et al.,
2008; Perez-Victoria and Bonifacino, 2009). Taken together,
these data strongly suggest that Vps54 (and the GARP
complex) plays a conserved and essential role in
endolysosomal trafficking pathways.

Drosophila melanogaster have a single ortholog of Vps54
called scattered or scat. We have previously shown that
disruption of scat causes defects in the development of the
Drosophila larval neuromuscular junction (NMJ) (Patel et al.,
2020). Moreover, we found that presynaptic scat interacts
genetically with rab7 to regulate the composition of the
postsynaptic density via an unknown trans-synaptic
mechanism (Patel et al., 2020). We hypothesized that these
changes at the larval NMJ may precede neurodegenerative
phenotypes in aging adults. Here we demonstrate that loss of
scat expression leads to a significant reduction in adult lifespan.
We show that scat mutants have sex-specific defects in lifespan,
body size, and muscle mass with females exhibiting a more severe
phenotype. Female scat mutants also exhibit neurological

dysfunction (seizure) and age-progressive defects in locomotor
behavior. Finally, we demonstrate that the simultaneous MN-
specific disruption of scat expression and rab11 function
exacerbates muscle atrophy in adult females, suggesting
phenotypes are due to a trafficking defect. These data suggest
that the scat loss-of-functionmodel shares many phenotypes with
the wobbler mouse, making it a useful tool to study the
mechanisms underlying MN disease.

MATERIALS AND METHODS

Drosophila Lines and Genetics
The following fly lines were obtained from the Bloomington
Drosophila Stock Center: scat1cn1, C380-Gal4, UAS-ScatTRiP

(HMS01910), UAS-LUC.VALIUM10, UAS-YFP:Rab5, UAS-
YFP:Rab5 (S43N), UAS-YFP:Rab7, UAS-YFP:Rab7(T22N),
UAS-YFP:Rab11, UAS-YFP:Rab11(S25N). In our hands, the cn1

allele caused significant differences in locomotor assays relative to
controls (our unpublished observations). Therefore, cn1 was
recombined away from new scat alleles. Three new fly lines
were generated by mobilizing the transposable element
insertion in the scat1 allele by introducing the Δ2-3
transposase into the genome following standard procedures.
The two resulting deletion lines (scatΔ244 and scatΔ312) and one
precise excision line (scat329PE) were screened by PCR and DNA
sequencing. All fly crosses were maintained on standard
Bloomington media at 25°C, 65% humidity, and a 12:12 h
light-dark cycle. Unless otherwise noted, scat329PE was used as
the control for comparisons. For overexpression and short
hairpin RNAi studies, the UAS/GAL4 system was used (Brand
and Perrimon, 1993). To co-overexpress transgenes in MNs,
single copies of all indicated elements were crossed into a
background containing one copy of the GAL4 transgene. The
GAL4 line used in this work was the MN-specific driver, C380-
GAL4 (Budnik et al., 1996).

Longevity Assay
Male and female flies from each genotype were collected within
24 h of eclosion and segregated by sex. Populations of 300 flies
were used in each cohort. All flies were transferred onto fresh
food every 2 days and scored for survival at transfer.

Determination of Gender Ratios, Eclosion,
and Quantification of Body Size
For the quantification of gender ratios, 100 adult flies from each
genotype were collected at random over a 24-h period post-
eclosion and then sexed. For the determination of eclosion
percentages, 50 wandering third instar larvae of each genotype
were collected, allowed to pupate, and adult flies collected and
sexed. For the analysis of adult body size, 5 adults of each sex and
genotype were collected within 24 of eclosion and allowed to age
for 24 h. Flies were anesthetized with CO2 and the ventral side of
the abdomen was imaged using Leica S9i stereo microscope with
10MP CMOS-camera. Length was determined by drawing and
measuring a line from the rostral to caudal ends using the
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measurement tools in open-source Fiji/ImageJ2. Size was
determined by drawing a line around the thorax and abdomen
and calculating area.

Paraffin Embedding, Sectioning, and Image
Analysis
Flies were collected within 24 h of eclosion and allowed to age
until the desired time point. Flies were anesthetized using CO2

and oriented in a custom 3D printed embedding collar so that
the thorax was oriented towards the blades. Flies in the collar
were then incubated overnight at 4°C with Carnoy’s fixative.
Flies were then dehydrated by sequentially incubating for
20 min each in room temperature 40, 70, and 100% ethanol.
Flies were then transferred to a 1:1 solution of methyl benzoate:
paraffin wax and incubated for 1 h at 65°C. For embedding, flies
in the collar were transferred to a foil pocket which was then
filled with melted paraffin wax and incubated at 65°C for 2 h.
Following incubation, the pocket was stored overnight at room
temperature to allow the wax to harden. Paraffin embedded
tissue was sectioned into 10 μm sections using a Leica RM2125
microtome and floated on cold water. Sections were collected
using charged glass microscope slides and allowed to dry for 2 h
at room temperature. Slides were deparaffinized by incubation
in room temperature xylene for 15 min. Tissue was rehydrated
prior to staining by sequentially incubating for 10 min each in
100, 95, 80% ethanol and ddH2O. Tissue was stained by
incubating slides with hematoxylin for 5 min followed by
eosin for 30 s with to washes in between treatments (diH2O
followed by 95% ethanol). Tissue was then dehydrated by
treating incubating slides for 15 min each in 95% then 100%
ethanol and stored in xylene overnight at room temperature.
Permount, a xylene based mounting media, was used to mount
and store stained sections. Sections were imaged using a Laxco
SeBa 2 series digital microscope system with a 10X objective
(N.A. 1.25). Image analysis was done using the measurement
tools in Fiji/ImageJ2. Muscle area was determined by tracing
around the perimeter of all 12 dorsal longitudinal muscles
together excluding any space between individual muscles.
Thoracic area was determined by tracing around the cuticle.
Sections with less than ∼90% intact cuticle were excluded from
analysis.

Spontaneous Flight Assay
The flight assay was modified slightly from a published protocol
(Benzer, 1973). For the analysis of flight behavior, 20 female flies
of each genotype were collected within 24 h of eclosion and
allowed to age until the desired time point and briefly stored
in an empty containment vial. Flies were lightly tapped to the
bottom of the vial and then dropped from a unform height into a
funnel on top of a 500 ml graduated cylinder. The inside of the
cylinder was coated with a thin layer of mineral oil. When flies
enter a free fall, they will attempt to fly to and land on the nearest
surface. When flies land on the side of the cylinder they become
stuck in the mineral oil. Flies with poor locomotor function are
expected to fall farther in the cylinder before landing on the side.
The height of the graduated cylinder was separated into equal

quadrants. The quadrant at which each fly landed and stuck to the
side of the cylinder was recorded for each genotype.

Negative Geotaxis Assay
For the analysis of climbing behavior, 20 female flies of each
genotype were collected within 24 h of eclosion and allowed to
age until the desired time point. Flies tapped to the bottom of a
container exhibit a climbing reflex, where they favor climbing
over flight to regain position at the top of a container. Flies were
transferred to an empty straight walled polystyrene Drosophila
vial (Fisher Scientific #AS515) marked with the target height,
gently tapped down to the bottom, and allowed to climb up the
sides for 90 s. Because scat mutant flies were generally poor
climbers, the target height was set relatively low (1 cm). Data
was recorded using the built-in camera on a MacBook Air and
Photo Booth video recording software. All genotypes were tested
in triplicate. Data was analyzed manually looking at individual
video frames. The number of flies that climbed past the target
mark on the vial after 90 s was recorded.

Bang Sensitivity Assay
To analyze seizure phenotypes, bang-sensitivity assays were
performed essentially as previously described (Song et al.,
2008; Kroll and Tanouye, 2013). 100 female flies per genotype
were collected within 24 h after eclosion under CO2 andmoved to
a fresh vial with media and allowed to recover overnight. For
testing, flies were transferred into an empty vial and vortexed at
maximum speed for 10 s. The bang-sensitive phenotype was
scored as the number of flies that did not experience paralysis
or seizure lasting more than 20 s. Flies for each genotype were
collected and tested over a period of several days and the results of
each experiment pooled.

Statistics
All data was recorded in Microsoft Excel and processed using
Prism 9 (Graphpad). Results were statistically significant at p <
0.05. Results shown throughout the study are mean ± SEM. n.s. �
not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001. Statistical tests used for each experiment are found in
respective figure legends.

RESULTS

Generation of New scat Alleles
To examine scat function in adult Drosophila, we first generated
new alleles by mobilizing the P-element insertion located in the 5′
end of the scat1 allele (Figure 1A). scat1 is thought to be a protein
null that causes male sterility and defects and the larval NMJ
(Castrillon et al., 1993; Fari et al., 2016; Patel et al., 2020). We
isolated two partial deletions of scat (scatΔ244 and scatΔ312). The
scatΔ312 allele starts at the P-element insertion and deletes 1571 bp
of downstream sequence (Figure 1A). The scatΔ244 allele removes
the P-element and a 346 nt fragment upstream of the insertion
site that spans an intron-exon junction (Figure 1A). When
homozygous, both lines produced viable adults and, as with
the original scat1 line, males were sterile (data not shown).
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Finally, a genetic control line was generated by precisely excising
the P-element (scat329PE). This line rescued the male sterility
phenotype observed with the scat1 and mutant alleles.

scat Mutant Adults Have a Shortened
Lifespan and Male-Biased Sex Ratios
Depending on the severity and progression of symptoms, the
lifespan of the wobbler mouse can vary from 120 days to up to
1 year (Duchen and Strich, 1968). To determine if scat mutants
also exhibited longevity defects, we conducted lifespan studies in
adult flies that were homozygous for each scat allele. In contrast to
extensive published work in wild-type Drosophila melanogaster,
scat329PE females did not live longer thanmales suggesting there is
some effect of genetic background on longevity in scat329PE

females (Figure 1B and Table 1) (Lints et al., 1983). Thus,
statistical comparisons in our study have been made to the
more genetically similar scat329PE controls. Importantly, the

median lifespans of both scatΔ244 and scatΔ312 males and
females were significantly reduced (Table 1). As with scat329PE,
only a small (but significant) difference in lifespan was observed
between scatΔ244 and scatΔ312 males and females (Table 1).
Together, these data suggest that disruption of scat results in a
reduced lifespan.

The scat1 allele has been shown to be semi-lethal prior to
eclosion (Castrillon et al., 1993). This contrasts with Vps54 loss-
of-function in mice which causes embryonic lethality (Schmitt-
John et al., 2005). Thus, we next determined whether scatΔ244 and
scatΔ312 caused pupal lethality. As expected, only 50% of scatΔ244

and 46% of scatΔ312 pupae survived to eclosion compared to 96%
for scat329PE (Figure 1C). These data suggest that scat loss-of-
function causes significant lethality at the pupal stage.

During these experiments, we also noticed that there were
more surviving male then female adults (Figure 1C). To analyze
this phenotype more closely, we quantified the proportions of
eclosing adult flies from each genotype. While the proportion of

FIGURE 1 | scatmutant adults have a shortened lifespan and a male-biased sex ratio. (A) Schematic representation of the scat gene showing the insertion site for
the scat1 P-element (arrowhead) and location of the target sequence for the scat shRNA (red box). The location of the deleted sequence in scatΔ244 and scatΔ312 are
indicated by gaps. (B) Lifespan analysis of homozygous flies of the indicated genotype and separated by sex (n � 300). (C) The proportion of homozygous flies of the
indicated genotype that survived pupation by sex (n � 50). (D) Sex ratio of flies homozygous for the indicated genotypes (n � 100). Statistics: Ordinary one-way
ANOVA with Holm-Sidak post-hoc analysis.

TABLE 1 | Lifespan analysis of scat mutants.

Median life (days) Difference vs. sex-matched
scat329PE (%)

Significance vs. sex-matched
scat329PE

Significance between sexes

scat329PE male 47 - - n.s.
scat329PE female 44.5 - -
scatΔ244 male 28 58 p < 0.0001 p < 0.05
scatΔ244 female 25 56 p < 0.0001
scatΔ312 male 28 58 p < 0.0001 p < 0.01
scatΔ312 female 29 65 p < 0.0001

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7620124

Wilkinson et al. Vps54 Function in Adult Drosophila

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


male to female flies scat329PE controls was roughly 1:1, we
observed a statistically significant male bias in scatΔ244 and
scatΔ312 flies (Figure 1D). These results further suggest that
adult female flies may be disproportionally affected by loss of
scat expression.

scatΔ244 Mutant Females Have a
Significantly Reduced Body Size
The wobbler mouse has a significantly reduced body size relative
to unaffected littermates (Duchen and Strich, 1968). To
determine if a similar phenotype was observed in scat
mutants, we imaged young adult flies from each genotype to
examine body area and length (Figure 2A). Quantification of
body area revealed a significant decrease in body size in scatΔ244

females when compared to scat329PE controls (Figure 2B). No
other comparisons were statistically significant. Similarly, the
analysis of body length along the longest line drawn from the
rostral to caudal ends revealed a statistically significant decrease
in scatΔ244 females (Supplementary Figure S1A). Collectively,
these data suggest that disruption of scat in adult females (but not
males) results in decreased in body size.

scatMutant Females HaveNeurological and
Age-Progressive Locomotor Defects
In subsequent experiments, we focused on scat mutant females
because they exhibit the strongest phenotypes in lifespan,
viability, and body size experiments. “Bang sensitive” (bs)
behavioral mutants are a means to study tonic-clonic seizures
in humans (Song and Tanouye, 2008). Bang sensitivity is a
phenotype where affected flies are briefly paralyzed and seize
upon receiving a short mechanical shock or “bang” (Benzer, 1971;
Ganetzky and Wu, 1982). Many bs mutations are in genes
associated with mitochondrial function, shorted lifespan, and
age-related neurodegenerative disease (Reynolds, 2018). Each of
these phenotypes have also been linked to the wobbler mouse
(Duchen and Strich, 1968; Santoro et al., 2004). We conducted
experiments to determine if disruption of scat caused bs
phenotypes. We found that 2-day old scatΔ244 and scatΔ312

mutant females exhibited robust bs phenotypes (Figure 3A).
This suggests that scat mutants are more prone to seizures,
although it does not explain how this mechanistically occurs.

Another phenotype associated with the wobbler mouse is an
age-progressive motor defect caused by MN degeneration and
muscle atrophy (Duchen and Strich, 1968). Therefore, we next
determined whether female scat mutants had analogous
locomotor dysfunction. To identify locomotor defects
associated with primary muscle groups, we performed a
spontaneous flight assay to assess the function of flight
muscles. We observed a significant decrease in flight ability in
both scatΔ244 and scatΔ312 as early as 1 day following eclosion
(Figure 3B). Moreover, while scat329PE showed little change at
2 weeks of age, flight ability in scatΔ244 and scatΔ312 progressively
worsened over time (Figure 3B). To further examine adult
locomotor ability, we performed a climbing assay. One major
benefit of this approach is that it allowed us to examine the same
group of females as they aged. While climbing defects were not
observed in scat mutants at 1 day of age, significant differences
between both scat mutants and controls were observed at 7 days
and this became progressively worse at 14 days post-eclosion
(Figures 3C–E). Together, these data suggest that scat mutants
have age-progressive locomotor defects.

scat Mutant Females Have Reduced Size
and Degeneration of Longitudinal Muscles
Age-related flight and climbing defects observed in scat mutants
suggest that there may be muscle dysfunction or degeneration. To
address this question, we conducted a histological analysis of the
major thoracic muscle in female flies at 1 and 7 days after eclosion.
Lightmicrographs of histological sections revealed that the size and
organization of the six bilaterally paired dorsal longitudinal
muscles were significantly smaller in scat mutants (Figures
4A–C). In scatΔ312 females, muscle degeneration was often
observed in some longitudinal muscles (Figure 4A; arrow). In
contrast, this phenotype was never observed in scat329PE controls.
The reduction in muscle area became significantly more
pronounced in older flies (Figure 4C). Interestingly, this
“compacted muscle” phenotype is most like those observed in

FIGURE 2 | scat mutant females have a reduced body size. (A) Images of representative adult flies of the indicated sex and genotype. Scale bar � 0.5 mm. (B)
Quantification of body area of adult flies of the indicated sex and genotype (n � 5). Statistics: Ordinary one-way ANOVA with Holm-Sidak post-hoc analysis.
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Drosophilamodels for myotonic dystrophy type 1 (DM1) (Garcia-
Lopez et al., 2008; Bargiela et al., 2015).

scat Interacts Genetically with Rab11 to
Control Locomotion and Muscle Atrophy
The GARP complex interacts with and regulates the tethering of
both early and late endosomes at the TGN (Conboy and Cyert,
2000; Conibear and Stevens, 2000; Siniossoglou and Pelham, 2002;

Conibear et al., 2003). Early and late endosomes are defined and
regulated by the small GTPases, Rab5 and Rab7 (respectively). We
have previously shown that scat interacts genetically with rab7 (but
not with rab5 or rab11) in MNs to regulate synaptic integrity and
development at the MNJ in fly larvae (Patel et al., 2020). We
hypothesized that this interaction may persist into adulthood. For
this analysis, we used an inducible transgenic scat short hairpin
RNAi line (UAS-ScatTRiP) and lines that drive the expression of
either wild-type or dominant negative (DN) forms of Rab proteins

FIGURE 3 | scat mutant females have neurological and age-progressive locomotor defects. (A) Quantification of the number of female flies of the indicated
genotypes that recovered within 20 s following vortexing in bang sensitivity assays (n � 100). (B) Quantification of the number of flies that landed in each quadrant in
spontaneous flight assays. Q1 indicates the highest quadrant and Q4 is the lowest (n � 20). (C–F)Quantification of the number of female flies of the indicated genotypes
able to cross the 1 cm threshold after climbing for 30 s (n � 20) at (C) 1 day, (D) 3 days, (E) 7 days, and (F) 14 days after eclosion. Statistics: (A, C–F)Ordinary one-
way ANOVA with Holm-Sidak post-hoc analysis. (B) Chi square analysis compared to 329PE control.

FIGURE 4 | scat mutant females have defects in muscle size and signs of atrophy. (A) Representative H&E stained thoracic muscle sections of female flies of the
indicated age and genotypes. Sections were obtained in the same region of the thorax and oriented so that the dorsal axis is up. Yellow arrows indicate muscle with signs
of atrophy. (B, C) Quantification of the muscle area for female flies of the indicated age and genotype (n � 11–20). Statistics: Ordinary one-way ANOVA with Holm-Sidak
post-hoc analysis.
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(UAS-RabWT and UAS-RabDN). The scat RNAi and rab DN
constructs were used so that we could specifically disrupt
expression (or function) of both genes only in MNs.

We first determined if scat interacted genetically with rab5, rab7,
and rab11 to regulate age-progressive locomotion in climbing assays.
MN-specific overexpression of Rab proteins paired with knockdown
of scat had no effect on climbing (Supplementary Figures S2A, B).
In contrast, disruption of only rab11 paired with scat RNAi
significantly reduced climbing ability of female flies at 7 days
post-eclosion (Figure 5B). This was still significant even though
disruption of rab11 in controls had a negative effect (Figures 5A,B).
Surprisingly, disruption of both scat and rab7 had no effect on
climbing ability after 7 days (Figure 5B). To determine the nature of
the locomotor defects, we also examined the major thoracic muscles
in histological sections. As with climbing, we observed no significant
morphological differences when scat knockdownwas pairedwith the
overexpression of wild-type rab7 or rab11 (Supplementary Figure
S2C). Strikingly, we saw significant muscle atrophy in most females
when both scat and rab11 were disrupted in MNs (Figure 5C).
Together, this suggests that scat interacts genetically with rab11 and
not rab7 in adult MNs.

DISCUSSION

One of the primary objectives of this study was to determine
whether disruption of scat expression in adult flies caused

phenotypes like those observed in the wobbler mouse. While
mutations in Vps54 have not been directly linked to human
disease, the wobbler mouse has been used by many researchers as
a model for the sporadic form of ALS because of striking
similarities to ALS pathology (Ikeda et al., 1998; Dennis and
Citron, 2009; Nieto-Gonzalez et al., 2011; Moser et al., 2013;
Dahlke et al., 2015; Schmitt-John, 2015; Klatt et al., 2019; Rohm
et al., 2019; Cihankaya et al., 2021; De Nicola et al., 2021). It has
previously been shown that scat mutants share spermatogenesis
defects caused by Golgi dysfunction with the wobbler mouse
(Castrillon et al., 1993; Fari et al., 2016). Here, we find that scat
mutants share additional phenotypes including locomotor
defects, decreased body size, muscle atrophy, and a shortened
lifespan (Duchen and Strich, 1968). Importantly, these
phenotypes are also consistent with degenerative human MN
diseases, most notably ALS (Bruijn et al., 2004). While not all
wobbler phenotypes could be examined here, our data suggests
that scat loss- or MN-specific reduction-of-function may serve as
a new model to study progressive MN disease.

There are some notable differences between scat mutant flies
and the wobbler mouse. First, loss-of-function of Vps54 in mice
causes embryonic lethality characterized by the
underdevelopment of cardiac muscle and motor neurons
(Schmitt-John et al., 2005). In contrast, loss of scat expression
in flies causes only partial lethality, primarily in females. Second,
the loss of MNs in the wobbler mouse leads to muscle spasticity
and not seizures, as we observe in flies (Duchen and Strich, 1968).

FIGURE 5 | scat interacts genetically with rab11 to control locomotion and muscle integrity. (A, B) Quantification of the number of female flies of the indicated age
and genotypes able to cross the 1 cm threshold after climbing for 30 s (n � 20). Here, expression of either a control or scat shRNA transgene (UAS-LucshRNA and UAS-
scatshRNA) and dominant negative Rab transgene (UAS-rabDN) was driven in MNs byC380-Gal4. (C)Representative H&E stained thoracic muscle sections of female flies
of the indicated age and genotypes. Sections were obtained in the same region of the thorax and oriented so that the dorsal axis is up. Yellow arrows indicate
muscle with signs of atrophy. Statistics: Ordinary one-way ANOVA with Holm-Sidak post-hoc analysis.
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However, mutations in Vps53 have been linked to the seizure
phenotypes observed in pontocerebellar hypoplasia type 2E
(PCH2E) suggesting that seizures may be associated with
disruption of the GARP complex (Feinstein et al., 2014).
Further work is required to determine if scat mutants exhibit
evidence of defects in the brain like those observed in fly models
for PCH (Morton et al., 2020). Finally, there is no evidence of
phenotypic sexual dimorphism in the wobbler mouse. Moreover,
while sex has been reported to be a significant factor influencing
ALS development, males have been found to be more susceptible
than females (Trojsi et al., 2020). It is likely that our results are
due to differences between Drosophila and mammalian
neurophysiology. For example, there is a significant amount of
evidence suggesting that female-specific steroid hormones like
estrogen, that are lacking in flies, have neuroprotective properties
(Zarate et al., 2017).

While we do not directly show that disruption of scat causes
MN phenotypes, we provide evidence in support of this
hypothesis. We find that knockdown of scat in the pre-
synaptic MN paired with disruption of Rab11 activity
significantly reduces locomotor ability of females and causes
atrophy in the postsynaptic muscle (Figures 5A–C). Similarly,
we have previously shown that presynaptic knockdown of scat
combined with disruption of rab7 in larval MNs disrupts the
integrity of postsynaptic densities at the NMJ via an unknown
mechanism (Patel et al., 2020). We speculate that neuromuscular
dysfunction starts to occur in larvae and begins to manifest as
muscle atrophy during metamorphosis and early adulthood
(Kuleesha et al., 2016). Muscle atrophy is commonly
associated with neurodegenerative disorders involved in the
peripheral nervous system such as ALS, PD, multiple sclerosis
(MS), and Charcot-Marie-Tooth disease (CMT) (Dyck and
Lambert, 1968; Harding and Thomas, 1980; Leger et al., 2006;
Allen et al., 2008; Peker et al., 2018). As MNs progressively
denervate myofibrils, muscle atrophy occurs, preceded by a
decrease in sarcolemma permeability. This most commonly
manifests in neuromuscular disorders as muscle weakness and
loss of muscle mass (Cisterna et al., 2014). Additional work is
required to determine if scat mutants directly cause MN
degeneration.

It has been proposed that wobbler phenotypes are the direct
result of defects in endolysosomal trafficking via the disruption of
the GARP complex (Perez-Victoria et al., 2010). Our published
data showing a genetic interaction between rab7 in larval MNs
and with rab11 in adults suggest this mechanism is conserved in
Drosophila (Patel et al., 2020). Why is there a transition to rab11
in adults? Rab11 mediates endosome recycling to the TGN and
plasma membrane and regulates the function of recycling
endosomes (REs) (Kelly et al., 2012). While Vps54 does not
interact with REs directly, they are important components
involved in vesicular recycling and they a play critical role in
axon development, axon pathfinding, synaptic vesicle recycling,
and synaptic plasticity (Rozes-Salvador et al., 2020). Levels of
rab11 are downregulated in many neurodegenerative diseases
including ALS (Zhang et al., 2020). Finally, Rab11 has
neuroprotective effects. For example, the overexpression of

rab11 in neurons rescues synaptic and locomotor defects in a
Drosophila model for Huntington’s disease (HD) (Steinert et al.,
2012).

In summary, we have provided data suggesting that scat loss-
of-function flies share phenotypes that are characteristic of the
wobbler mouse. Based on this, we propose that this Drosophila
model, or “wobbler fly”, may serve a new tool to study the
mechanisms that underly progressive MN disease in humans.
It would be interesting at this point to determine if scat loss-of-
function causes degeneration in adult MNs. Regardless, we can
now leverage the power ofDrosophila genetics and use this model
to identify novel modifiers of the scat locomotor phenotypes
followed by detailed characterization of genetic interactors. We
have already demonstrated the utility of this model on a focused
scale by our analysis of interaction with the rab genes.
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