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Abstract

Hedgehog is an evolutionarily conserved developmental pathway, widely implicated in controlling various cellular
responses such as cellular proliferation and stem cell renewal in human and other organisms, through external stimuli.
Aberrant activation of this pathway in human adult stem cell line may cause different types of cancers. Hence, targeting this
pathway in cancer therapy has become indispensable, but the non availability of detailed molecular interactions, complex
regulations by extra- and intra-cellular proteins and cross talks with other pathways pose a serious challenge to get a
coherent understanding of this signaling pathway for making therapeutic strategy. This motivated us to perform a
computational study of the pathway and to identify probable drug targets. In this work, from available databases and
literature, we reconstructed a complete hedgehog pathway which reports the largest number of molecules and interactions
to date. Using recently developed computational techniques, we further performed structural and logical analysis of this
pathway. In structural analysis, the connectivity and centrality parameters were calculated to identify the important proteins
from the network. To capture the regulations of the molecules, we developed a master Boolean model of all the interactions
between the proteins and created different cancer scenarios, such as Glioma, Colon and Pancreatic. We performed
perturbation analysis on these cancer conditions to identify the important and minimal combinations of proteins that can
be used as drug targets. From our study we observed the under expressions of various oncoproteins in Hedgehog pathway
while perturbing at a time the combinations of the proteins GLI1, GLI2 and SMO in Glioma; SMO, HFU, ULK3 and RAS in
Colon cancer; SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer. This reconstructed Hedgehog signaling pathway and
the computational analysis for identifying new combinatory drug targets will be useful for future in-vitro and in-vivo analysis
to control different cancers.

Citation: Chowdhury S, Pradhan RN, Sarkar RR (2013) Structural and Logical Analysis of a Comprehensive Hedgehog Signaling Pathway to Identify Alternative
Drug Targets for Glioma, Colon and Pancreatic Cancer. PLoS ONE 8(7): e69132. doi:10.1371/journal.pone.0069132

Editor: Surinder K. Batra, University of Nebraska Medical Center, United States of America

Received March 7, 2013; Accepted June 4, 2013; Published July 23, 2013

Copyright: � 2013 Chowdhury et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work is funded by the Department of Biotechnology, Govt. of India, Grant No. BT/PR13689/BID/07/363/2010 and partly by CSIR-NCL, MLP026226.
The funding agency has no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rr.sarkar@ncl.res.in

Introduction

Signal transduction system represents an elegant circuitry of the

cell that translates external and internal cues into appropriate

cellular responses. These signaling pathways are generally

organized into three main parts: Input, Intermediate and Output

[1], which comprise of several proteins that mediate, signal

reception, transduction, amplification and response generation.

Recent advances in molecular and computational approaches

have shown that a signal upon interaction with a receptor

generates an intricate excitation pattern rather than a ‘‘molecular

one-way path’’ and certain malfunction of this pattern can cause

serious pathological diseases such as cancer, tumorigenesis etc. in

the organisms including human. It is also a well known fact that

few diseases are nothing but perturbations in signaling cascades

that manifest a molecular level interaction into phenotypic

changes. For example, cancer is one such ‘‘systems biology

disease’’, which convert a singular perturbation into a widespread

excitation pattern [2]. These perturbations are not restricted to a

particular cell but also affect surrounding tissues. In order to

design new therapeutic strategies for such diseases, it therefore

appears to be essential to investigate networks of pathways and

systems at different levels of complexity rather than looking into an

individual bio-molecule or chemical component. Hence, there is a

need for a comprehensive study of signaling pathways for

exploring these pathological manifestations, its relation with

various diseases and to identify a single or combination of

individual molecules that govern several different system behaviors

or malfunctions.

Several concerted efforts are being made to dissect different

signaling pathways, such as MAPK, Apoptosis, mTOR etc. and

the related molecular mechanisms that control the cancer

development of a cell or tissue in an organism [2]. Among

different signaling pathways, Hedgehog is of great biological

relevance as it is strongly implicated in cancer development [3–5].

Hedgehog is an evolutionarily conserved developmental pathway

that is widely implicated in controlling various cellular responses.

This pathway has a cardinal role in different cellular processes

such as embryogenesis, maintenance and repairing of tissue, and

homeostasis. Hedgehog signaling pathway also controls develop-

mental processes by the interaction of Hedgehog ligands, Sonic

Hedgehog (SHH), Desert Hedgehog (DHH) and Indian Hedgehog
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(IHH) with Patched receptors (PTCH1/PTCH2), leading to the

release of Smoothened (SMO) from Patched-induced suppression

[6]. SMO activation further activates the downstream components

like STK36, SUFU which inhibit assembly of GLI degradation

complex and thereby stabilizing GLI proteins that ultimately

activate Hedgehog target genes, such as CYCLIN D2, FOXM1,

SFRP, JAG2 etc. [6]. Controlled regulation of this pathway

activates these target genes at certain level and thereby maintains

the proper development of cell or tissue. But deregulation of this

pathway can cause up or down regulation of these target genes and

may cause severe outcomes in tissue or organ development. Since,

this pathway is also strongly implicated in cell-renewal in adult

tissues; system-component malfunctioning of this pathway can

mostly lead to cancer in various cell lines of human [7,8].

Moreover, the role of few important proteins has been identified in

this pathway, such as PTCH1, SMO, GLI etc., which are mainly

responsible for the malfunctioning of this pathway in various types

of cancers [9–12]. Follow-up studies by several research groups

have developed therapeutic strategies to inhibit the actions of these

proteins in various cancers, but none of them achieved complete

success to cure a particular cancer that is caused by abnormal

activation of the Hedgehog pathway [13–15].

The flow of molecular excitation in any signal transduction

pathway follows a complex branching pattern of cascade, therefore

it is worth mentioning that targeting an individual protein in

signaling pathways, such as Hedgehog, would not be fruitful to

prevent its malfunction in a cancer situation. A current review by

Li et al. [15], underscores the importance of combinatorial drug

targets to shut off Hedgehog signaling for cancer treatment. For

example, it is known that activation of cytoplasmic GLI (zinc

finger transcription factor) which initiate the activity of this

pathway could be regulated in two ways: (i) the ligand dependent

way in which extracellular response i.e. hedgehog ligands interact

with receptor proteins PTCH1/PTCH2 and activates G-coupled

protein SMO, and (ii) the malfunction of the other proteins that

are present in the cytoplasm which inhibit or activate its activity in

the absence of hedgehog ligands. Unfortunately, till now most of

the studies have mainly focused to develop a drug that will only

inhibit the GLI activation, caused by the ligand dependent way. In

this case, most of the study is only directed to identify the drug

molecule that could suppress either PTCH1 or SMO in the

membrane [16–19]. These drugs, such as Cyclopamine, Vismo-

degib etc. are only effective when a cancer cell with excessive

Hedgehog pathway activation, is encountering over-expressed

hedgehog ligands (SHH, IHH or DHH) or has mutated PTCH1

or SMO in membrane. Therefore, it is clear that administration of

the above mentioned drugs may not be able to cure the cancers

caused by some other intracellular proteins apart from sole

mutation in PTCH1 and SMO. In order to overcome this

problem, identification of alternative targets or a combination of

drugs may be useful for successful cancer therapy.

Identification of drug targets by experimental approach

sometimes becomes difficult as it requires more time and

resources. Moreover, the complex regulatory networks of gene

expression, entire networks of the metabolic reactions and large-

scale proteomics data are now available to study response of

pathways (modules) to different perturbations. Given the vast

amounts of data at each level, it is a challenge to interpret the

information emanating from individual assays and integrate results

from multiple levels. Recent developments in integrative ap-

proaches, bioinformatics tools, mathematical and computational

methods have become indispensable in understanding and

analyzing such data from experimental studies. Diverse approach-

es for qualitative and quantitative methods and modeling of

signaling pathways have been used to answer several biological

questions in signaling systems [20]. The types of approaches used

primarily depend on the availability of pre-existing data and type

of biological questions to be answered [20,21]. Unfortunately there

are very few computational studies on Hedgehog signaling

pathway [22–25]. All these models explore very specific themes

and do not include the diseased conditions, specifically Glioma,

Colon and Pancreatic cancers, which may be caused due to

malfunction in Hedgehog pathway. Therefore it is necessary to

reconstruct a comprehensive map of Hedgehog pathway and to

study the detail molecular interactions in both normal and cancer

conditions through qualitative analysis.

Moreover, identification of a combination of proteins as a drug

target in Hedgehog pathway for cancer therapy requires the

complete understanding of the entire mechanisms of this pathway

in human cell. In order to achieve this, one needs comprehensive

and most up to date information or a map of Hedgehog pathway

that may help to analyze the pathway more deeply and accurately.

Unfortunately, as far as the literature and biological signaling

database are concerned, there is no comprehensive pathway map

available for studying the Hedgehog pathway. Even, search of

different popular database (See Table S1 of Text S1) revealed that

there are some variations in the number of molecules and

interactions reported for this pathway (See Table S2 of Text S1).

This heterogeneity between database information creates immense

problem for collating information to construct a comprehensive

map. In some cases even there is missing information about

different molecules or interactions, which are already available in

experimental studies but not updated in the database. These pose

a challenging problem for the researchers to get a general structure

of this signaling network.

In this paper, collating the data from different database and

literature, we present a master model of the Hedgehog pathway.

Our extensive data mining and text extraction procedures from

literature sources helped us to identify many proteins and their

interactions that were not included in the existing database. To the

best of our knowledge in this article we have presented a

Hedgehog pathway map that is the largest Hedgehog pathway

map of human till date. In comparison to existing popular

database, the newly reconstructed Hedgehog map consists 57

proteins, 6 cellular or phenotypic expression and 96 hyper-

interactions, which is highest. In Figure S1, a Venn diagram was

constructed to compare between the number of proteins available

in major database models and the proteins considered in our

model. It is clear from this diagram that most of the proteins

included in our model (represented by non-overlapping region),

are not fully available in any of the mentioned databases except

the proteins from KEGG, PATHWAY CENTRAL, BIOCARTA

and PROTEIN LOUNGE. But only a subset of proteins specific

to Hedgehog signaling pathway from NETPATH and GENEGO

is included in our model and the rest are taken from literature and

other database. Using this pathway map we then performed

structural analysis using graph theoretical approach and logical

analysis using Boolean formalism to understand the structure and

topology of the whole network as well as to identify important

proteins. We also showed that a Boolean representation of the

interactions of the pathway provides an overall understanding of

the system behavior by validating the model with experimental

data and performed a systematic perturbation analysis to identify

key drug targets for three types of cancers, such as Glioma, Colon

and Pancreatic. Our main objective was to identify probable drug

targets in-silico that could be used for future in-vitro or in-vivo

analysis. From our model and computational study of the

Hedgehog signaling pathway, we identified few novel combina-

Computational Study of Hedgehog Signaling Pathway
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tions of proteins that could be used as a drug targets for cancer

therapy.

Results

Reconstructed Hedgehog Signaling Pathway (Human
Cell Specific)

In this work, one of our main objectives was to provide an

extensive and up to date Hedgehog signaling map that can serve

both experimental as well as theoretical biology communities. In

Figure 1, we presented a newly reconstructed Hedgehog pathway

map, which to the best of our knowledge is the largest map of

Hedgehog pathway till date. There were total 57 proteins (52 core

proteins and 5 cross talk protein molecules from other pathways)

and 96 hyper-edges included manually in the pathway figure by

using the information from different sources (see the Methods

section and Table S1 & S2 of Text S1).

In Figure 1, the green and red arrows signify the activation/

production and inhibition events respectively. The black arrows

are indicating the nuclear translocation of activated GLI

transcription factors into the nucleus. In order to understand

and distinguish the hedgehog component proteins according to

their cellular locations, we allocated all the proteins according to

four main regions: Extracellular & Membrane, Cytoplasmic,

Nuclear and Output/Produced with four different colors: Blue,

Red, Green and Yellow, respectively. The cross talks and

phenotypic expressions of this pathway were named as ‘‘Cellular

Responses’’ and were connected with output/produced proteins

by dotted black arrow. The following are the descriptions of the

proteins of each region in our reconstructed Hedgehog signaling

network.

Figure 1. Reconstructed Hedgehog Pathway. Total 57 proteins included in this pathway figure. The green and red arrows are indicating
Activation/Production and Inhibition process respectively. The black arrows indicate the nuclear translocation process. All the proteins of this network
are allocated into four main regions with different color codes: Extracellular and Membrane (Blue); Cytoplasm (Red); Nucleus (Green); and Output
(Yellow). The output proteins are linked with various cellular responses (cross talk with other pathways or phenotypic expressions) with black dotted
arrow.
doi:10.1371/journal.pone.0069132.g001
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Extracellular and membrane. In this region, we included

three hedgehog ligands: Sonic Hedgehog (SHH), Indian Hedge-

hog (IHH) and Desert Hedgehog (DHH). These are the ligands

that bind to the receptor proteins Patched1 (PTCH1) and

Patched2 (PTCH2) of a hedgehog target or responsive cell

[26,27]. Previous studies have proven that in the absence of any

of these hedgehog ligands, PTCH1/PTCH2 inhibit another trans-

membrane G-coupled protein ‘‘Smoothened (SMO)’’ within the

cell membrane [26,27]. It has been studied that this inhibition is

withdrawn after the HH ligands bind to the Patched receptors. As

a result of this ligand-receptor interaction SMO gets active and

subsequently activate the Serine/Threonine kinase 36 (STK36) in

its downstream cytoplasmic region of cell. This STK36 kinase

protein is one of the major potential activators of Glioma-

associated protein (GLI) in cytoplasm [6] and is called ‘‘Ligand

dependent GLI activation’’. In this region, the membrane proteins

have been shown as a special hexagonal structure used in

CellDesigner graphical notations [28,29]. There were total 3

ligands, 6 extracellular proteins and 4 membrane proteins

included in Extracellular and Membrane region.

Cytoplasmic proteins. In this region, we included total 16

protein molecules. All the three isoforms of GLI transcription

factors GLI1, GLI2 and GLI3 were included. GLI was found in

Cytoplasm as well as in Nucleus and was the main target

component protein for Hedgehog pathway activation [30]. Also,

there were other proteins in this region that directly or indirectly

influence the three isoforms of GLI protein in the cytoplasm.

These proteins were Human Fused (HFU), Unc-51-like kinase

3(ULK3), ERK1/2, RAS and TWIST [31–34]. It should be

mentioned that ERK12, RAS, TWIST, FAS and NOTCH1 are

not the hedgehog pathway proteins, although we considered these

proteins as they had significant direct interactions with core

proteins GLI1, GLI2 and SMO. Also their role in the ligand

independent hedgehog pathway activation in Glioma, Colon and

Pancreatic cancer scenarios was also an important factor for

considering them in our newly reconstructed Hedgehog model. It

was found that mutation or over expression of these proteins can

activate GLI in cytoplasm without the help of any Hedgehog

ligands. On the other hand, from various literature, we also found

some repressors of GLI proteins in the cytoplasm, like Protein

Kinase A (PKA), Beta-transducin repeat-containing protein

(BTRCP), Casein kinase isoform alpha (CKIa), Glycogen synthase

kinase-3 (GSK3) [35,36] and included them in the network.

Nuclear proteins. In the nuclear region of the Hedgehog

pathway map, we included 13 molecules those were mainly

transcription factor, co-activator or co-repressor. The activated

transcription factors GLI1, GLI2 and GLI3 translocate into the

nucleus as Nuclear GLI1 (NUC_GLI1), Nuclear GLI2 (NUC_-

GLI2) and GLI3 active (GLI3_A) [37] respectively and help to

transcribe various hedgehog target genes with the help of

transcription co-activators Nuclear STK36 (NUC_STK36) and

Dual specificity tyrosine-phosphorylation-regulated kinase 1

(DYRK1) proteins [38]. Also, there were few transcription co-

repressors in the nucleus which were found from various literature

sources and they down regulate the GLI transcription factors.

These proteins, Nuclear SUFU (NUC_SUFU), NUMB, ITCH,

SKI, Nuclear Receptor Co-repressor (NCOR), SNO, HDAC and

SIN3A [39,40], were included in the network. In nucleus

NUC_GLI1 transcription factor transcribes the genes ptch1, hip1,

gli1 along with several other responsive genes of this pathway. In

order to reduce the complexity in the pathway figure, we did not

include any gene or m-RNA in this nuclear region.

Output proteins. This region does not specify any cellular

location. We included this section separately to identify the

proteins produced at the end of Hedgehog pathway. We

considered a signaling network as an input-output system where

the ligands and extracellular proteins were the inputs, the proteins

produced as a response to these inputs at the end of this pathway

could be thought as Output proteins. There were total 15 proteins

including GLI1, PTCH1 and HHIP included in this section. The

total numbers of proteins shown in this region are highest compare

to any other published human specific Hedgehog pathway map to

the best of our knowledge. Besides, all the proteins in this region

were colored as yellow, except PTCH1, HHIP and GLI1. The

reason was, after the production or translation, these three

proteins translocate to their corresponding cellular locations and

perform their activity in the pathway. In order to show this

feedback mechanism, we kept their color similar to the color coded

in their actual cellular location. Production of PTCH1 and HHIP

proteins in this pathway switch ‘‘ON’’ a ‘‘negative feedback’’

mechanism and thus control further hedgehog pathway activation

through ligand dependent way. It was experimentally proved that

the Hedgehog Interacting Protein 1(HHIP) represses the Hedge-

hog ligands by directly binding with them and the higher

concentration of PTCH1 in membrane would help to repress

further SMO activation [41–43]. On the other hand, production

of GLI1 helps to activate the pathway again and thus creates a

‘‘Positive feedback’’ loop in this network.

Cellular responses. In order to show the cross connections

of the output proteins with the other pathway or cellular functions,

we kept this section at the end of our pathway figure. There were 6

cellular responses included which were Cell Proliferation, Cell

cycle progression, Anti-Apoptosis, Epithelial–Mesenchymal Tran-

sition (EMT), Wnt signal and Notch signal. We showed the

connections of produced proteins with these cellular responses by

black dotted arrow in the pathway figure.

To understand the detail activity of these molecules in the

Hedgehog pathway and to perform the structural analysis, we

modeled the reconstructed pathway map by two approaches:

Graph theoretic and Logical (see the Methods section).

Structural Analysis
The reconstructed Hedgehog pathway (Figure 1) helped us to

find out the structure and topological features of this network. We

used ‘Graph theory’ for this purpose. This kind of analysis is also

useful for visual and/or topological interpretation of a very large

complex network [44]. In our study, we considered the whole

signalling pathway as a network where the signal from the

hedgehog ligands traverses from extracellular region to the nucleus

of a target cell via various cytoplasmic intermediate proteins. Our

hedgehog signaling network was like a ‘Bow-Tie’ network and

consist of 57 nodes or proteins (52 core and 5 non-core proteins of

hedgehog pathway) and their 140 directed edges (interactions,

regulations or the direction of flow of signal). As we know that the

flow of signal of an intracellular signaling network maintains a

particular direction, so we considered our graph theoretic model

as a ‘Directed Graph’ or ‘Digraph’. In order to show only the

connections of the proteins within the Hedgehog map, we did not

include the Cellular responses in the graph theoretical model. The

whole network picture is shown in Figure 2.

In Figure 2, the colored circles represent the nodes or the

proteins of the network and the black arrows indicate the

directions of connections or edges between two nodes. The nodes

of this network were colored according to their sub-cellular

location as described in Figure 1. The output proteins GLI1,

PTCH1 and HHIP were not shown in the ‘‘output’’ region but

were presented as reverse connections from NUC_GLI1 to the

GLI1 of cytoplasm and to PTCH1 and HHIP of membrane

Computational Study of Hedgehog Signaling Pathway
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region. The size of the nodes in this network (Figure 2) was

assigned according to their total number of connections or degree

value. GLI1 in cytoplasm had highest number of total degree in

the network; therefore the size of this node in the network was

largest among all the other nodes. It was also clear from this figure

that the hedgehog signals from the inputs (extracellular and

membrane proteins) converged to the particular proteins (GLI1

and GLI2) in cytoplasm to activate it and after its activation these

proteins send the signals (actually translocate into the nucleus) to

activate the production of the various target genes/proteins (like

OPN, BCL2, GLI1, HHIP etc.) at the downstream of hedgehog

pathway. Therefore, we can say that the flow of hedgehog signal

from extracellular-membrane region to the downstream target

proteins of hedgehog pathway mainly depends on the intermediate

cytoplasmic GLI proteins. Due to this reason the canonical

hedgehog pathway is also called as ‘GLI mediated hedgehog

pathway’ [45].

We further analyzed this network from three perspectives: i)

Connectivity ii) Centrality and iii) All pairs shortest path.

Connectivity analysis. We performed this analysis to know

the number of connections of each protein with all other proteins

in the network. Three types of parameters (IN DEGREE, OUT

DEGREE and TOTAL DEGREE) were used in this section (see

the Methods section). We calculated and presented these three

parameters for each protein of the Hedgehog signaling network in

Figure 3A.

The heat map (Figure 3A), representing the values of the

parameters (IN-DEGREE, OUT-DEGREE and TOTAL DE-

GREE), shows the proteins row wise according to their cellular

locations in a cell (top to bottom) and the parameter values column

wise. The average IN and OUT DEGREE (all together) of the

network was calculated as 2.45 and the average total degree was

4.91. In order to identify the important proteins from this heat plot

on the basis of the connectivity parameters, we extracted the

proteins which had the parameter values higher than their

corresponding average values. All the extracted significant proteins

on the basis of this hypothesis were listed in Table 1. We found

that there were total 19, 10 and 23 proteins which had the higher

values than the average IN-DEGREE, OUT-DEGREE and

TOTAL-DEGREE, respectively.

From Table 1, it was clear that receptor protein PTCH1 and

two transcription factors GLI1 & GLI2 had higher IN-DEGREE

Figure 2. Network picture of Hedgehog signaling pathway. The colored circles represent the nodes or proteins of the pathway and the black
arrows indicate an edge or connection between two nodes of the network. The nodes are colored according to their sub cellular locations in the cell
(Figure 1) and are divided into four regions: Extracellular and Membrane (Blue), Cytoplasm (Red), Nuclear (Green) and Output proteins (Yellow)
respectively. The size of the nodes is assigned according to their total number of connections or degree. Total degree of each node is followed by the
name of the proteins. The ‘‘Bow-Tie’’ structure of the Hedgehog signaling network is easily visible, where the signals are converging towards GLI1 or
GLI2 and diverging to its subsequent steps. The size the node GLI1 is biggest as it has highest number of connections or degree among all other
proteins in the network.
doi:10.1371/journal.pone.0069132.g002
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values compared to the other proteins in the entire network, may

be due to their high regulation or interaction with other upstream

proteins in the hedgehog signaling network. PTCH1 was showing

higher IN-DEGREE because most of the extracellular signals pass

through this receptor protein to trigger the activation of SMO

protein in membrane. On the other hand the cytoplasmic GLI1

and GLI2 had high IN-DEGREE value as these proteins are the

most important proteins in the network to activate the pathway.

Also, among the three hedgehog ligands, Sonic hedgehog (SHH)

had the highest IN-DEGREE value as its interaction with PTCH1

and PTCH2 receptors was highly dependent on the proteins

DISPATCHED, HHAT, CDO, BOC and GAS1 at the extracel-

lular region of hedgehog target cell. The proteins in the nucleus

like NUC_GLI1, NUC_GLI2, DYRK1 etc. had highest out-

degree value compared to the other proteins in the network.

Mainly the output proteins were connected to the outgoing

connections or edges of these nuclear proteins in the network

structure. Due to the presence of the higher number of outgoing

Figure 3. Parameter values from Connectivity and Centrality Analysis. Heat map of the values of the parameters used in Connectivity and
Centrality analysis. The names of the proteins or nodes are arranged row wise (Y-axis) according to the position of their corresponding region
(Figure 1). The parameter values are arranged column wise (X-axis) in the heat map. (A) Heat map of the values of the parameters values used in
connectivity analysis: IN-DEGREE, OUT-DEGREE and TOTAL DEGREE of each protein. High IN-DEGREE value of GLI1, PTCH1, HHIP and SHH indicates
their higher number of up-regulation by the other proteins in the network. High OUT-DEGREE value of several nuclear proteins (e.g. DYRK1, NUMB,
NUC_GLI1, NUC_SUFU, NUC_STK36 etc.) refers their ability to regulate other proteins in HH network. In case of total degree, GLI1, GLI2 and NUC_GLI1
have significant highest value. It refers that these two proteins are mostly connected to the other proteins in the network. (B) Heat map of the
individual centrality score of each protein of Hedgehog map. The Centrality measurement parameters used in this analysis were Eigenvector (EC),
Betweenness (BC) and Closeness (CC) centrality. It is observed that GLI1 has the highest value for each parameter score. Subsequently, PTCH1, PTCH2,
HHIP, STK36, NUC_GLI1, NUC_GLI2 etc. are also showing significant value for each individual centrality score.
doi:10.1371/journal.pone.0069132.g003

Computational Study of Hedgehog Signaling Pathway
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connections from the nuclear proteins to the output proteins, the

OUT-DEGREE values of these proteins were increased in

comparison to the other proteins in the whole network. We also

observed that except the nuclear proteins, the proteins from the

other sub cellular locations or regions did not show significant

OUT-DEGREE values.

We also extracted the proteins which had the TOTAL-

DEGREE higher than the average total-degree 4.91. Table 1

shows that in extracellular and ligands region PTCH1, HHIP,

SHH, IHH had significant number (greater than the average total

degree) of connections or total degree in the network. It means, in

order to transmit the hedgehog signal from extracellular to the

intracellular region of a cell, these proteins play most effective role

within the whole network. It was clear from Figure 2, that GLI1

had the highest TOTAL-DEGREE value among all other proteins

in the Hedgehog signaling network. It signified that this was the

most important protein in the hedgehog signaling network. Out of

57 proteins in the network, it was connected to 30 proteins.

Therefore in terms of signaling network, it was the biggest ‘Hub’ in

the entire network, which was actually influenced by more number

Figure 4. Comparison between Normal, Cancer and Perturbed scenarios for Glioma. TS: Treated Scenario; NS: Normal Scenario; GS: Glioma
Scenario. The green arrow heads are indicating the minimal combination of proteins which was inhibited in the drug treated perturbation analysis.
(A) Represents number of Upstream activator proteins (Y-axis) activating the proteins (X-axis) representing significant variations. Compared to the
normal scenario, proteins, SHH, SMO, GLI1, GLI2, and output proteins BMI, SNAI1, BCL2 and Cyclins, are activated by maximum number of upstream
activator proteins. On drug treated perturbation of SMO, GLI1 and GLI2, the number of activators of the output proteins become zero. (B) Represents
number of Upstream inhibitory proteins (Y-axis) inhibiting the proteins (X-axis) representing significant variations. The numbers of upstream inhibitor
proteins in normal versus Glioma scenario remain same. Similar perturbation results are observed as in (A). (C) Represents number of Downstream
proteins (Y-axis) activated by the proteins (X-axis) representing significant variations. The number of downstream proteins activated in normal versus
Glioma remains same. On perturbation of SMO, GLI1 and GLI2, the number of downstream proteins activated by these proteins is reduced to zero. (D)
Represents number of Downstream proteins (Y-axis) inhibited by the proteins (X-axis) representing significant variations. The number of downstream
proteins inhibited in normal versus Glioma remains the same.
doi:10.1371/journal.pone.0069132.g004
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of other proteins as well as influencing more proteins than the

other hubs in the entire network. Similarly, in nuclear region

NUC_GLI1, NUC_SUFU and NUC_STK36 formed the other

larger hubs in the nucleus and thus controlling the production of

various target proteins of Hedgehog pathway.

Centrality measurements. We measured the ‘Centrality

score’ of each node or protein in the network after identifying the

important ‘‘Hub proteins’’ from the network. In the connectivity

analysis, we found some important nodes or proteins which were

forming important ‘Hub’ in the whole network structure. In that

case we gave the highest importance to a node on the basis of its

total number of connections or degree value. Albeit in biological as

well as any real world network the importance of a node or a

protein does not depend only on its number of connections or

neighbors [46,47]. Sometimes the importance or significance of a

node may increase due to its connections with the other important

nodes in the network, though it may have lower number of

neighbors or connections or vice-versa. ‘‘Centrality Values (Eigen-

vector, Closeness and Betweenness)’’, the most useful parameter, were

used to determine the relative importance of a node within a

network (See the Methods section).

In this analysis, at first, we calculated ‘Eigenvector Centrality’ to

identify the proteins according to their importance in our newly

reconstructed hedgehog signaling network [46,47]. The principle

behind this parameter was that a node would be considered as an

important node if it was connected to the other important nodes in

the network. We calculated and presented the eigenvector

centrality score for each protein in the network in Figure 3B (i.e.

first column of the heat plot matrix). We presented the values of

this parameter for each protein in the network and observed that

GLI1and PTCH1 had high Eigenvector centrality score, but GLI2

had very poor score though it had large number of connections or

degree in the network. The reason of showing this interesting

feature was that in our hedgehog network (Figure 2), GLI2 was

connected to NUC_GLI2, FAS, HFU, SUFU, PKA_A, BTRCP

etc. that had lowest number of connections in the network. On the

other hand, GLI1 was connected with another important node or

protein NUC_GLI1 in the network which was regulating the

expression of most of the output proteins in the network and

comparably had higher number of connections than NUC_GLI2.

It signified that GLI1 was connected to another most important

protein NUC_GLI1 in the network. Due to this reason, the

importance of GLI1 was increased significantly as compare to

GLI2 protein. It was also interesting to observe that SMO,

GLI3_Repressor (GLI3_R), GLI3_Active (GLI3_A) belonged to

the highest important node after GLI1 and PTCH1, though they

had lower number of connections or neighbors within the network.

Also, we calculated Betweenness Centrality and Closeness Centrality

scores for each protein and presented these parameters in the

second and third column respectively in the heat map matrix of

Figure 3B [47]. We identified some important proteins of the

network on the basis of these parameter values. As expected, we

observed that GLI1 had the highest Betweenness and Closeness

centrality score among all the other proteins in the hedgehog

signaling network. Both the centrality scores of GLI1 was high

because large numbers of shortest paths between two nodes were

passing through it and it was connected to all other proteins with

the minimum number of connections in the network. We also

found that besides GLI1, there were some other proteins like

NUC_GLI1, SMO, STK36 and PTCH1 had high Betweenness

centrality score. On the other hand NUC_SUFU, NUC_STK36,

DYRK1, NUMB and ITCH showed high Closeness centrality

score after GLI1. Interestingly, all these proteins were found in the

nucleus. As expected, the large numbers of the proteins that

belonged to the extracellular and ligands region had lowest

closeness scores i.e. they were situated more distantly from all the

other nodes in the network and regulating the downstream

proteins of hedgehog signaling network distantly.

Linear shortest paths. This parameter was used to calculate

the shortest paths between every pair of nodes or proteins in the

hedgehog pathway [48]. The matrix shown in Figure S2 is

representing a matrix having the proteins in row and column wise

and each cell represents the value of the shortest path between two

nodes or proteins in the network. We found that it followed a

specific pattern and observed that the shortest paths from the

proteins of extracellular and ligand region to the output proteins

had higher number of shortest paths (either 6 or 7), whereas the

shortest paths between the ligands to cytoplasmic proteins or the

cytoplasmic proteins to the nuclear proteins had lower number of

shortest paths (either 2 or 3). The average shortest path of our

reconstructed hedgehog signaling network was 3.581. We extract-

ed the frequency of the shortest paths of our Hedgehog signaling

network and presented the distribution in Figure S3. The

frequency of the shortest path ‘3 (Three)’ in the network was

highest. This observation signified that most of the proteins in the

hedgehog signaling network were connected with each other on an

average by 3 intermediate steps. We also found from Figure S2

that in order to transmit the signal after the bindings of PTCH1/2

proteins with ligands (SHH, DHH, IHH) to GLI1 or GLI2

proteins in the cytoplasm, it took only 3 (three) intermediate steps

or links (i.e. PTCH1/PTCH2 R SMO R STK36 R GLI1/

GLI2). Similarly, in order to initiate the production of the output

proteins of the hedgehog pathway in the nucleus by the

transcription factors GLI1, GLI2 or GLI3_ACTIVE, it required

Table 1. Significant proteins extracted from Connectivity analysis.

Parameters Extracellular and Ligands Cytoplasm Nucleus Output proteins

In-Degree (.2.45) DHH(3), IHH(4), SHH(6), PTCH1(9),
PTCH2(3), HHIP(6)

GLI1(24), GLI2(8) NOT FOUND [OPN, CYCLIN_D, CYCLIN_E,
CMYC, BMI,SNAI1, JAGGED2,
SFRP,WNT](6) BCL2(7),
CYCLIN_D2[4]

Out-Degree (.2.45) DISPATCHED(3), HHAT(3), HHIP (3) GLI1(6) [DYRK1, NUMB, ITCH, NUC_GLI1]
(13), NUC_STK36 (14), NUC_SUFU
(14)

NOT FOUND

Total-Degree (.4.91) DHH(5), IHH(6), SHH(8), PTCH1(11),
HHIP(9)

GLI1(30), GLI2(10) [DYRK1, NUMB, ITCH](13),
[NUC_GLI1, NUC_SUFU,
NUC_STK36](14)

[OPN, CYCLIN_D, CYCLIN_E,
CMYC, BMI, SNAI1, JAGGED2,
SFRP, WNT](6), BCL2(7)

doi:10.1371/journal.pone.0069132.t001
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only 2 intermediate steps or links i.e.GLI1/GLI2 RNUC_GI1/

NUC_GLI2 R CYCLIN_D/CMYC/BCL2. This observation

also demonstrated the strong and tightly coupled signal transmis-

sion procedure from GLI1/GLI2 to the output proteins of the

hedgehog pathway. Interestingly, we found that the identified

important ‘hubs’ (i.e. GLI1, PTCH1, NUC_GLI1 etc.) from our

connectivity analysis, were also connected by shorter number of

links to each other in the network. Therefore, it was clear that

most of the important or highly connected proteins in hedgehog

signaling network were well connected with each other by lower

number of connections or links, which also signified the robustness

of the network [24].

The Graph theoretic analysis of the hedgehog signaling network

helped us to find out some important proteins in the network on

the basis of some important topological parameters. The

parameters which we used in our network were able to identify

the proteins that played crucial role to operate the hedgehog

pathway normally. Several experimental studies proved that over

or under expression of these identified proteins would cause

abnormal activation or inhibition of hedgehog pathway and lead

to uncontrolled cell proliferation or cancer stage in various types of

cell lines [6,31–34,36,41,42]. The limitation of this analysis was

that it just captured the static picture of the network and was

unable to show any diseased scenario or malfunction caused by the

proteins in the pathway. In order to overcome this problem we

used ‘‘Logical analysis’’, where all the interactions of the network

were modeled into ‘Boolean or Logical equation hyper-graph’ (see

Methods section).

Logical Analysis
We simulated the logical models of the Hedgehog pathway for

normal scenario as well as for three different types of cancer i.e.

Glioma, Colon and Pancreatic cancer in CellNetAnalyzer [49–

51]. Using this technique (see the Methods section), we were able

to identify the proteins that were involved in the abnormal

activation of hedgehog pathway in the development of these three

types of cancers.

Perturbation analysis and model validation. In Figure 4,

5, and 6, we presented the normal Hedgehog scenario along with

three types of cancers Glioma, Colon and Pancreatic cancer as

well as their perturbed scenarios respectively. In each figure, we

presented the proteins along X-axis and three types of scenarios

i.e. Normal Scenario (NS); Cancer Scenario [Glioma (GS); Colon

(CC); Pancreatic (PC)]; Perturbed Scenario (PS) along the Y-axis

and the number of upstream activator/inhibitor proteins (A/B) or

downstream activated/inhibited (C/D) proteins along the Z-axis.

In case of ‘Canonical hedgehog pathway’ (i.e. NS or Normal

Scenario), we found that at time scale 2 Sonic hedgehog (SHH)

was activating overall 26 different proteins (from Figure 4C, 5C

and 6C) in the pathway directly or indirectly after being activated

by the upstream proteins DISPATCHED, HHAT, CDO, BOC

etc. Besides, we also found SMO, STK36 were activating overall

25 and 24 other protein molecules in the pathway respectively.

Similar results have been shown experimentally for SHH, SMO

and STK36 that are required to initiate the normal hedgehog

pathway [6,26] i.e. these are the main and potential activators of a

normal or canonical Hedgehog pathway. Similarly we observed

that in the normal scenario, cytoplasmic proteins such as GLI1

and GLI2 were activating around 21 and 23 proteins respectively.

On the other hand, we found from Figure 4B–6B that the

upstream inhibitors (nearly 20 protein molecules) such as PTCH2,

SUFU, BTRCP, GSK3, PKA, CKI_A, NCOR, HDAC, SNO,

SIN3A, NUMB and ITCH were inhibiting the activation or

production of GLI1 in cytoplasm. This inhibition helps to control

the over expression of GLI1 in a normal cell [35,36,39,40]. The

interactions between these activators and inhibitors in a canonical

hedgehog pathway helped to control their abnormal activation,

and consequently regulated the over production of various

downstream proteins, which further result a cancerous situation

in a normal and healthy cell. We observed that our model of

canonical hedgehog pathway or normal scenario mimicked the

expression scenarios of various proteins in a canonical hedgehog

pathway of a non-malignant, non-cancerous cell line. To identify

the combination of proteins as a probable drug targets, we then

used this scenario as a standard model to compare against three

types of cancers and subsequently perturbed few combinations of

proteins for each of the cancer scenarios.

Glioma scenario. In case of Glioma, we considered the over

expression of hedgehog ligand SHH [52,53], i.e. the input value

for SHH in our model was considered as ‘‘1’’ or ‘‘ON’’ throughout

the simulation. We also considered the interactions between two

kinase proteins HFU and ULK3 with the GLI transcription factors

in cytoplasm and therefore considered their expression as 1 in the

Boolean model. Apart from SHH, experimental evidence also

showed that ERK12, TWIST and RAS proteins were up

regulated during Glioma and these were known to have a direct

effect on the abnormal activation of GLI1 and GLI2 [54–56].

Therefore to simulate the Glioma scenario in our study we

considered the logical states of SHH, HFU, ULK3, ERK12, RAS,

TWIST as ‘‘1’’ or ‘‘ON’’ (See Table S4 of Text S1). As several

experimental studies demonstrate that over activation of GLI

proteins in glial stem cell lines is the main cause of Glioma

formation [52,57], we propose that the over activation of GLI

protein in Glioma happens due to the effect of the higher

concentration of SHH as well as the intracellular activation or

deregulation by HFU, ULK3, RAS, TWIST, ERK12 proteins in

cytoplasm. The effect of the over expression of the GLI

transcription factors in the cytoplasm leads to the over production

of various downstream target proteins of hedgehog pathway. We

also considered the down regulation or loss of function of few

tumor suppressor proteins such as GAS1, SUFU, NUMB, SNO

etc. (See Table S4 of Text S1). Down regulation or loss function of

these proteins can also cause the up regulation of GLI proteins in

cytoplasm as well as in nucleus.

In Figure 4A, we showed that the total numbers of upstream

activators of SHH, STK36, GLI1, GLI2, NUC_GLI1, NUC_-

GLI2 and all the output proteins (OPN, BMI, SNAI1 etc.) of

hedgehog pathway were higher compared to the normal hedgehog

scenario. In case of Glioma, the total numbers of activators on

GLI1 and GLI2 proteins were 16 and 6, whereas in case of normal

scenario there were 11 and 5 proteins activating the expression of

GLI1 and GLI2 proteins, respectively. These simulation results

clearly showed the difference between Normal (NS) and Glioma

scenario (GS). We also found the total numbers of sole activators of

FOXM1 [58], PDGFRA [59], OPN [60], CYCLIN_D [61,62],

CYCLIN_E [63], BMI [64], SNAI1 [65], JAGGED2 [66], SFRP

[67] were increased in Glioma scenario as compared to the

canonical HH pathway. On the other hand the total numbers of

upstream inhibitor proteins on these output proteins remain

unchanged while comparing the Normal and Glioma scenarios

(Figure 4B), the Hedgehog target cell could not nullified the over

activation rate of these output proteins by their upstream activator

proteins in Glioma affected cell and thus Glioma cells produced

more target output proteins as compared to the normal Hedgehog

pathway. Overproduction of the output proteins in a normal cell

cause uncontrolled cellular proliferation and cell division [58–67].

On the other hand, to identify and compare the potential

activators and inhibitor proteins of this pathway, we calculated the
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number of proteins that were activated or inhibited directly or

indirectly by each proteins of the Hedgehog pathway and

presented in Figure 4C and Figure 4D. We found that compared

to GLI1, GLI2 was more potential activator of Glioma scenario as

it was connected with GLI1 which was also an important activator

in the network (See Figure 4C and 4D). Therefore it is worth

mentioning that in order to suppress the GLI1 activation, GLI2

should also be suppressed. On the other hand we also found from

our structural analysis that GLI1 had high eigenvector centrality

compared to GLI2. This result also indicated their relative

dependence in the formation of Glioma, as GLI1 was connected

with NUC_GLI1, which activated most of the output proteins,

whereas GLI2 was connected with NUC_GLI2 which had

relatively lower number of downstream activated or inhibited

molecules in the network of Glioma cell line. We also observed

that HFU, ULK3, RAS, TWIST, ERK12 were functioning as sole

activators on the other proteins in Glioma scenario (GS), but not in

the Normal Scenario (NS). This result signify the effect of cross talk

Figure 5. Comparison between Normal, Cancer and Perturbed scenarios for Colon Cancer. TS: Treated Scenario; NS: Normal Scenario; CC:
Colon Cancer Scenario. The green arrow heads are indicating the minimal combination of proteins which was inhibited in the drug treated
perturbation analysis. (A) Represents number of Upstream activator proteins (Y-axis) activating the proteins (X-axis) representing significant
variations. Compared to the normal scenario, proteins, SHH, IHH, SMO, GLI1, GLI2 and output proteins BMI, SNAI1, BCL2 and Cyclins are activated by
maximum number of upstream activator proteins. On drug treated perturbation of SMO, HFU, ULK3 and RAS, the number of activators of the output
proteins become zero. (B) Represents number of upstream inhibitory proteins (Y-axis) inhibiting the proteins (X-axis) representing significant
variations. The numbers of upstream inhibitor proteins in normal versus Colon cancer scenario remain same. Similar perturbation results are observed
as in (A). (C) Represents number of downstream proteins (Y-axis) activated by the proteins (X-axis) representing significant variations. The number of
downstream proteins activated in normal versus Colon cancer scenario remains same. On perturbation of SMO, HFU, ULK3 and RAS, the number of
downstream proteins activated by these proteins is reduced to zero. (D) Represents number of downstream proteins (Y-axis) inhibited by the proteins
(X-axis) representing significant variations. The numbers of downstream proteins inhibited in normal versus Colon cancer scenario remain same.
doi:10.1371/journal.pone.0069132.g005
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activation between core Hedgehog pathway molecules (GLI1,

GLI2 etc.) with the other pathway molecules in Glioma cell line.

On the other hand SHH, SMO, GLI1, GLI2, GLI3_A (core

Hedgehog pathway molecules) were activating the other proteins

in both normal as well as Glioma scenarios (See Figure 4C).

The above results helped us to identify the key proteins that

could be used as target proteins for our perturbation analysis or

combinatorial drug treatment scenario (TS). At the time of the

perturbation study, we also looked into the biological relevance of

that target key proteins. We identified that SHH, SMO, STK36,

RAS, TWIST, ERK12, HFU, ULK3 were activating the GLI

transcription factors in the cytoplasm of Glioma cell and due to

this activation, the output proteins were over-expressed at the end

of this pathway. It was experimentally proved that SMO plays a

very crucial role to activate STK36 as well as GLI1 in cytoplasm

[6]. Our graph theoretical study also proved that in ‘Extracellular

Figure 6. Comparison between Normal, Cancer and Perturbed scenarios for Pancreatic Cancer. TS: Treated Scenario; NS: Normal
Scenario; PC: Pancreatic Cancer Scenario. The green arrow heads are indicating the minimal combination of proteins which was inhibited in the drug
treated perturbation analysis. (A) Represents number of Upstream activator proteins (Y-axis) activating the proteins (X-axis) representing significant
variations. Compared to the normal scenario, proteins, SHH, IHH, SMO, GLI1, GLI2 and output proteins BMI, SNAI1, BCL2 and Cyclins are activated by
maximum number of upstream activator proteins. On drug treated perturbation of SMO, HFU, ULK3, RAS and ERK12, the number of activators of the
output proteins become zero. (B) Represents number of upstream inhibitory proteins (Y-axis) inhibiting the proteins (X-axis) representing significant
variations. The numbers of upstream inhibitor proteins in normal versus Pancreatic cancer scenario remain same. Similar perturbation results are
observed as in (A). (C) Represents number of downstream proteins (Y-axis) activated by the proteins (X-axis) representing significant variations. The
numbers of downstream proteins activated in normal versus Pancreatic Cancer remain same. On perturbation of SMO, HFU, ULK3, RAS and ERK12, the
number of downstream proteins activated by these proteins is reduced to zero. (D) Represents number of downstream proteins (Y-axis) inhibited by
the proteins (X-axis) representing significant variations. The numbers of downstream proteins inhibited in normal versus Pancreatic cancer scenario
remain same.
doi:10.1371/journal.pone.0069132.g006
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and Membrane’ region SMO had significant high Betweenness

centrality score (Figure 3B). Therefore, mutation of this protein in

an adult glial stem cell would cause the abnormal activation of

hedgehog pathway. On the other hand, blocking of this trans-

membrane protein by any external drug in Glioma is helpful to

reduce the activity of hedgehog signal [68]. Although SMO is

important to mediate the hedgehog signal in Glioma cell as well as

the activator of GLI, but still it is worth to mention that only the

inhibition on SMO by external drug to Glioma cell is not sufficient

to shut down the abnormal over expression of GLI proteins

completely, there may be some other intracellular proteins in the

cytoplasm that have the potential to activate or over express the

GLI proteins without the help of SMO. Therefore we propose that

there is a need to analyze the effects of this factor and development

of a combinations of drugs that could suppress SMO as well as the

other proteins causing the over activation of GLI.

In order to determine the other factors, we revisited our graph

theoretical analysis and identified the IN-DEGREE neighbors of

GLI proteins from cytoplasm. We found that the upstream

activators (IN-DEGREE neighbors) of GLI1 and GLI2 proteins in

cytoplasm were HFU, ULK3, ERK12, RAS and TWIST. We

then selectively perturbed the logical states of these activators in

Glioma scenario (GS), but unfortunately, none of the activators

were able to inhibit the activation of GLI proteins alone in the

cytoplasm. Only the perturbation of all these activators at a time

was useful, but this combination of perturbation was not

biologically feasible as several proteins had to be blocked in this

perturbation study. Therefore, in order to suppress the GLI

activation in cytoplasm, we directly blocked the activity of GLI1

and GLI2 in cytoplasm and also SMO in membrane of the

Glioma scenario (GS) by putting ‘0’ or ‘‘OFF’’ as their logical

states. As a result of this perturbation simulation, we observed that

the expressions of the output proteins were blocked in Glioma

scenario (GS).The dependency matrix obtained were used to

extract the total number of proteins that were directly activated or

inhibited by each protein in the pathway in this drug treated

scenario (TS). The result was presented in Figure 4A–4D. In the

treated scenarios (TS) (Figures 4A and 4B), it was clearly shown

that the total number of upstream activator and inhibitor proteins

of all the ‘‘Output proteins’’ of Hedgehog pathway became zero.

Due to this perturbation, we also observed that the potential

activators and inhibitors of hedgehog pathway (like RAS, TWIST,

GSK3, BTRCP etc.) were also activating or inhibiting less number

of proteins in their downstream region of the pathway (See

‘‘Treated Scenarios (TS)’’ of Figure 4C–4D).

Colon cancer. We found that in case of Colon cancer, along

with IHH and SHH ligands, activated RAS/RAK pathway also

up-regulated the activity of the GLI proteins in colorectal cancer

cell [69,70]. Experimental evidences have shown that over

expression of SHH and IHH can cause up regulation of GLI

proteins, or over activation of cytoplasmic protein RAS can also

up regulate GLI proteins in Hedgehog pathway and are

responsible for Colon cancer [71–75]. We found that in our

simulation result of Colon cancer model, hedgehog ligands IHH

and SHH, RAS in cytoplasm were also activating the GLI

transcription factors. We also considered the down regulation or

loss of function of few tumor suppressor proteins such as GAS1,

SUFU, NUMB, SNO etc., while simulating the colon cancer

scenario, which in normal situation inhibited the GLI proteins (See

Table S4 of Text S1). As a result the activation level of GLI1,

GLI2 and GLI3_A proteins by the upstream activators was seen to

be greater than the normal scenario. As a result, the total number

of upstream activators of the output proteins (yellow in Figure 1

and 2) of Hedgehog pathway also increased in colon cancer

scenario (by comparing the normal or ‘‘NS’’ and colon cancer

‘‘CC’’ scenarios of Figure 5A). Therefore, it was clear that the

abnormal activation of GLI proteins in colon cancer cell lines not

only happened due to the abnormal expression of hedgehog

ligands but also due to the effect of the interactions of RAS with

GLI1 and GLI2. Also, HFU and ULK3 will be expressed as these

are the auto-phosphorylated kinase proteins present in cytoplasm

to activate GLI proteins [76,77]. The relative potential of

activating the other molecules between GLI1 and GLI2 was also

measured and we found that GLI2 had higher number of

downstream activated species in the colon cancer scenarios

(Figure 5A–5C), as it had connection with GLI1.

These findings helped us to identify the combination of

potential drug targetable proteins in Hedgehog pathway for Colon

cancer cell lines. We perturbed the activation signal from SHH

and IHH via PATCHED (PTCH1/2) and SMO proteins to GLI

transcription factors and the interactions between HFU, ULK3

and RAS with GLI proteins. In order to do that we put the logical

state of SMO, HFU, ULK3 and RAS as ‘0’ (Zero) and performed

the combinatorial drug perturbation or Treatment simulation

(TS). We found that the total number of the activated proteins by

GLI1, GLI2 and GLI3 were decreased and the expression of the

HFU, ULK3 and RAS proteins were blocked (comparing Colon

cancer and Treated scenario of Figure 5C). In Figures 5A and 5B,

we showed that the activation and inhibition level of GLI

transcription factors in nucleus and cytoplasm by the upstream

proteins were reduced; as a result, the activation of output proteins

were blocked.

Pancreatic cancer. In case of pancreatic cancer, we found

the expression of IHH, PTCH1 and SMO in pancreatic cancer

cell line, which signified their role of hedgehog pathway activation

in this type of cancer formation [78]. Simultaneously, over

expression of cytoplasmic proteins such as RAS and ERK12 in the

pancreatic cancer cell line was also reported in experimental study

[33,79]. Several pathological and biopsy reports on pancreatic

cancer have been found that the mutation or over expression of

these proteins are causing the cancer in Pancreas [68]. We also

included the down regulation or loss of function scenario of few

proteins such as GAS1, SUFU, NUMB, SNO etc. (See Table S4

of Text S1) in pancreatic cancer model. As a result, perturbation of

SMO or PTCH1/PTCH2 receptors was not effective to reduce

the activation of GLI1/GLI2/GLI3_A in pancreatic cancer model

[80]. Therefore, in order to completely repressed the over

expression of GLI proteins in cytoplasm, we also had to perturb

the logical states of RAS and ERK12 in our Boolean model of

pancreatic cancer scenario. We also perturbed the logical state of

HFU (human homologue of Fused protein) and ULK3 as these

were the common and essential auto-phosphorylated kinase

proteins for enhancing the activation of GLI1 and GLI2 in

cytoplasm [76,77]. In-silico treatment of the pancreatic cancer

model by the perturbation of these proteins caused the suppression

of GLI transcription factors in cytoplasm and subsequently the

inhibition of the Hedgehog target or output genes/proteins. We

observed that the SMO, HFU, ULK3, RAS, ERK12 proteins

were repressed and subsequently the expression of GLI transcrip-

tion factors in cytoplasm were down-regulated. Now, down-

regulation of GLI proteins in cytoplasm caused the down

regulated productions or the transcription of various target

oncogenes or oncoproteins of Hedgehog pathway like BMI,

FOXM1 etc. The expression of various output proteins like OPN,

BMI, SNAI1, JAGGED2, PDGFRA was not observed in our drug

treated perturbation scenario (TS). In Figures 6A and 6B, we

compared the total number of upstream activators and Inhibitors

of each protein for Normal, Pancreatic and Treatment scenarios
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respectively. Whereas, Figures 6C and 6D represented the

comparison of total number of downstream activated and

inhibited proteins by each protein of the three scenarios

respectively. In Pancreatic cancer model, we also observed that

GLI2 had higher number of downstream activated proteins

compared to GLI1 (Figure 6C) as it had an activation effect on

GLI1, although the Eigenvector centrality of GLI2 was low

compared to GLI1. Other signaling pathways like Wnt, Notch was

also blocked by this perturbation analysis. Blocking the cross talk

with Wnt and Notch signaling pathway would help to suppress the

growth of cancer cell, as these pathways are also involved in

pancreatic cancer. The entire simulation result of pancreatic

cancer scenario was summarized in Figure 6A–6D.

The experimentally observed expression data of each protein for

all three types of cancer was presented in Figure 7 (A–C). The

model was simulated in two ways to validate with these

experimental observations for three types of cancers. In Simulation

1 (SIM1), we considered the logical states mentioned in Methods

section and in Table S4 of Text S1. In Simulation 2 (SIM2), we

considered the expression of input proteins observed from the

experimental data (EXP) for each of these cancer types. It is to be

noted that in the experimental data, up regulation of IHH,

RUNX3, SMO, STK36, TWIST, ERK12, RAS and down

regulation of tumor suppressor onco proteins SUFU were co-

occurring in Glioma grade IV cell line (See the first column of

Figure 7A). Similarly, in Colon cancer cell line, up regulation of

SHH, GLI1, PDGFRA were co-occurring (See the first column of

Figure 7B). On the other hand up regulation of SHH, STK36,

ERK12, RAS and down regulation of SUFU were co-occurring in

Pancreatic cancer cell line, hence in our second simulation

(Simulation 2), we considered all these co-occurrence as initial

states to provide biologically realistic predictions.

Validation of glioma, colon and pancreatic scenarios. In

case of Glioma Grade IV cell line, we found the expression level

(UP as Red and DOWN as Blue) of 33 proteins out of 57 proteins

(See the first column of Figure 7A). Rest of the proteins showed

undetermined expression level and they were grouped into the

lower portion (Light Blue). Within these 33 determined proteins,

our simulation (SIM1; second column of Figure 7A) had correctly

predicted the expression level of 22 proteins (66.66% accuracy).

This result also signify the effect of co-occurrence of the over

expression of the activator proteins HFU, RAS, TWIST of

hedgehog pathway in Glioma Grade IV cell line. Further using the

experimental expression data, we performed Simulation 2 (See the

third column of Figure 7A) and compared the outcome with both

Experiment (EXP) and Simulation 1 (SIM1) (See Table S6 of Text

S1). Comparing the results of Simulation 2 (SIM2) with

Experimental data (EXP) (See first and third column of

Figure 7A), we found that out of 33 experimentally determined

proteins, we correctly predicted the expression levels of 25 proteins

(75.75% accuracy). On the other hand, while comparing the

simulation result between Simulation 1 and Simulation 2 (See first

and second column of Figure 7A), we found that out of 57

proteins, expression levels of 54 proteins were showing same

expressions levels having accuracy 94.37% (See Table S6 of Text

S1). Therefore, in both the cases our model showed promising

predictions as compared to experimental data of Glioma Grade IV

cell line. Hence the combination of drug targetable proteins

identified from our drug treatment scenario (TS) of Glioma model

could be used as probable drug targets for the treatment of Glioma

Grade IV specific cell line.

In case of Colon cancer scenario, we considered the protein

expression of colon cancer cell line data and the up regulation of

SHH, PTCH1, HHIP, GLI1, GLI3_Active and PDGFRA were

identified from this experiment (See the first column of Figure 7B).

The expression levels of rest of the proteins considered as ‘‘Not

available’’ and were grouped separately (light yellow) in the first

column of Figure 7B. Within these 5 determined proteins, our

simulation (SIM1)) had also correctly predicted their expressions

with 100% accuracy (See the second column of Figure 7B). Using

our simulation we were also able to find out the expressions levels

of the other proteins, whose expression levels were not available in

the experimental data, which we think, was one of the advantages

of our model simulation. Further, using the experimental

expression data, we performed Simulation 2 (See the third column

of Figure 7B) and compared the outcome with both Experiment

(EXP) and Simulation 1 (SIM1) (See Table S6 of Text S1). In both

the cases we observed same expression levels of the proteins (100%

accuracy), which strongly validated our in-silico model on Colon

cancer scenario. Similarly, our model simulation for pancreatic

cancer cell line also showed significant high accuracy while

validating with the experimental data. We were able to extract the

expressions levels of 44 out of 57 proteins of our hedgehog model

in pancreatic cancer cell line from the published microarray

expression data. The rest of the proteins were grouped into

separately (light blue) in the first column of Figure 7C. The up

regulation of HFU, ERK12, RAS were observed in the microarray

expression data (See the first column of Figure 7C). Within these

44 determined proteins, our simulation (SIM1) correctly predicted

the expression levels of 25 proteins with 56.80% accuracy.

Comparing the expressions of the proteins of in microarray

expression data (EXP) and Simulation 2 (SIM2) (See the first and

third columns of Figure 7C), we found that out of 44 determined

proteins of micro array expression data, Simulation 2 correctly

predicted the expressions level of 32 proteins with 72.72%

accuracy (See Table S6 of Text S1). On the other hand while

comparing the simulation results between Simulation 1 and

Simulation 2, we found that out of 57 proteins, our simulation had

correctly predicted the expression levels of 47 proteins with

82.45% accuracy (See Table S6 of Text S1). Therefore, it is worth

mentioning that the expressions levels considered in Table S4 of

Text S1 were sufficient to simulate the pancreatic cancer cell line

more close to reality.

These results clearly signify that the expression values that we

considered from in Table S4 of Text S1 for all the three cancer

scenarios were almost correctly considered and validated our

model simulations. Further it is worthy to note that the target

proteins such as RAS, ERK12, HFU, ULK3, identified from the

treatment scenario, are also been over expressed in the experi-

mental data.

Comparison between SMO inhibition and combinatorial

drug treatment. Earlier we mentioned (Introduction section)

that the currently available SMO protein inhibitor Cyclopamine

or its closed derivative drug Vismodegib were only effective in the

suppression of hedgehog pathway activation in cancer cell, where

the pathway was abnormally activated by mutation in SMO or by

the over expressions of hedgehog ligands SHH, DHH and/or

IHH. The main mechanism of these molecules was to inhibit the

function of SMO, so that it could not activate GLI proteins in

cytoplasm via STK36. Therefore, the effectiveness of these SMO

inhibitor molecules were always questionable if the pathway got

activated by some intracellular activators molecules through cross

talk with other pathways or by the loss of some tumor suppressor

proteins inside the cell. In this article, our main objective was to

find out the effects of those cross talking molecules, such as RAS,

TWIST, ERK12, NOTCH1 or the loss of functions of few tumor

suppressor proteins such as SUFU, GAS1, SUFU, NUMB, SNO

in the three types of cancer scenarios discussed earlier. In order to
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check the effectiveness of SMO inhibition in the treatment of three

types of cancers we performed the model simulation by only

inhibiting the SMO expression levels (in-silico treatment of cancer

cell with SMO inhibitors) and found that SMO inhibition alone

was not able to down regulate the activity of some onco-proteins

such as GLI1, GLI2, GLI3_A and also the output proteins related

to these. In the first columns of Figure 8 A–C, we presented these

simulation results for Glioma, Colon and Pancreatic cancer cell

lines respectively.

In order to identify the alternative pathways or connections

present in the hedgehog pathway, which was activating the GLI

transcription factors after inhibiting SMO, we calculated the

dependency matrices (Figures S4, S5 and S6) for each cancer

scenarios, where only the SMO activations was blocked. Using this

information and from the structural analysis (i.e. the analysis of

Shortest paths) of hedgehog signaling network, we were able to

identify the alternative pathways which were causing the GLI

activations in each type of cancer scenarios. These alternative

pathways (solid green arrows) showed in Figure 8 D–F for Glioma,

Colon and Pancreatic cancer cell line respectively. We observed

that although the activation pathways (broken red arrows)from

SMO to GLI1 and GLI2 via STK36 protein were blocked by the

effect of SMO inhibitor in each cancer scenario, HFU could also

activate GLI1 and GLI2 in each cancer scenario (solid green

arrows). Also, in Glioma scenario, we identified that the activation

pathways (solid green arrows in Figure 8D) from RAS, ERK12,

ULK3 and TWIST to GLI1 could up regulate this protein,

whereas the activation pathways (solid green arrows in Figure 8E)

from RAS, ULK3 to GLI1 in Colon cancer scenario or the

activation pathways (solid green arrows in Figure 8F) from RAS,

ULK3 and ERK12 to GLI1 in pancreatic cancer scenario could

also be the alternative pathways to up regulate the GLI1 protein. It

is also to be noted that in each cancer scenario, there was another

activation link from GLI2 which could up regulate GLI1.

Identification of these alternative pathways clearly showed that

in order to suppress the hedgehog pathway activity completely in

these three types of cancer cell lines, only the SMO inhibition

would not be effective, as there were other molecules/proteins

Figure 7. Comparison of protein expression levels observed in experiment and model simulation for different cancer situations.
EXP: Experimental data observed from published literatures; SIM1: Simulation 1 performed using the expressions data from Table S4 of Text S1; SIM2:
Simulation 2 performed using the expressions levels observed from experimental data. (A) Represents the comparisons of the expressions of
hedgehog pathway proteins found in the experimental data (EXP) of Glioma Grade IV cell line [99] and in the corresponding simulation (SIM1 and
SIM2) data from our logical model. (B) Represents the comparisons of the expressions of hedgehog pathway proteins found in the experimental data
(EXP) of Colon cancer cell line [101] and in the corresponding simulation (SIM1 and SIM2) data from our logical model. (C) Represents the
comparisons of the expressions of hedgehog pathway proteins found in the experimental data (EXP) of Pancreatic cancer cell line [100] and in the
corresponding simulation (SIM1 and SIM2) data from our logical model.
doi:10.1371/journal.pone.0069132.g007
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which were still activating the pathway. Our in-silico combinatorial

treatment (i.e. Treatment scenarios) also accounted this constraint

and as a result we proposed a need for combinatorial drug target

therapy to completely shut down the hedgehog pathway activity.

Figure 8. Protein expression levels observed in SMO inhibition and Treatment Scenarios for different cancers. First columns of (A), (B)
and (C) represent the expressions of the proteins found after inhibiting SMO in Glioma, Colon and Pancreatic cancer models, respectively. Second
columns of (A) represents the expressions of the proteins observed in the treatment scenario by perturbing SMO, GLI1 and GLI2 in combination in the
same Glioma model; (B) represents the expressions of the proteins in the treatment scenario by perturbing SMO, HFU, ULK3, and RAS in combination
in the same Colon cancer model; (C) represents the expressions of the proteins in the treatment scenario by perturbing SMO, HFU, ULK3, ERK12, and
RAS in combination in the same Pancreatic cancer model. (D), (E) and (F) represent the identified alternative pathways (shown by solid green arrows)
that remain active even after the inhibition of SMO in membrane (pathway shown by broken red arrows) by its inhibitor molecule (i.e. Cyclopamine,
Vismodegib etc. ) in Glioma, Colon and Pancreatic cancer scenarios, respectively.
doi:10.1371/journal.pone.0069132.g008
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Using this approach, we were able to down regulate the activity of

GLI proteins as well as the up regulation of the output onco-

proteins (See the treatment scenarios of Figures 4, 5 and 6) by

perturbing the over expressions of few optimal combinations of

proteins (SMO, GLI1, GLI2 in Glioma Grade IV cell line; SMO,

HFU, ULK3 and RAS in Colon cancer cell line; and SMO, HFU,

ULK3, RAS and ERK12 in pancreatic cancer cell line). In order

to compare the SMO inhibition with the proposed combinatorial

treatment, we showed the simulation results in Figure 8 as

expression matrices for these three cancer types. In the second

column of Figure 8A, we showed the combinatorial inhibition of

SMO, GLI1 and GLI2; and found the down regulation of various

onco proteins including GLI transcription factors. We also found

the up regulation of few proteins like the repressor form of GLI3

(i.e. GLI3_R), FAS and CTNNB_TCF4 complex, which were also

important for inhibiting the uncontrolled cellular proliferations.

Similar results were observed in the Treatment scenarios by

inhibiting SMO, HFU, ULK3 and RAS in Colon cancer cell line

and SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer

cell lines (See the second columns of Figure 8B and C).

Discussion

Several attempts have been made so far to study the Hedgehog

signaling pathway from experimental as well as theoretical and

computational perspective. Dillon et al. [22] proposed reaction-

diffusion kinetic models of Hedgehog signaling pathway to study

Patched-Smoothened interaction and function of SHH as a long

range morphogen. A dynamic model based approach to analyze

the signal transduction and transport mechanism of Sonic

Hedgehog to study tissue patterning has also been done

successfully [23]. All these studies are based on either Ordinary

Differential Equation (ODE) or Partial Differential Equations

(PDE), the success of which immensely depends on reliable kinetic

constants and initial concentrations, and hence requires substantial

data availability of which is itself a much bigger challenge in

reality. Since these are also computationally intensive, hence study

of kinetic models for large network becomes challenging and

difficult. In this context, qualitative modeling approach is much

more amenable to model larger biological networks than

quantitative ODE approaches. In contrast to highly specific

ODE based models, logic based models can model interactions

between a large number of species and can be used to train,

validate and generate predictions from a model [20]. This also

enables the understanding of the essence of how a system functions

at a larger scale before proceeding to account for the kinetic

information. Previous attempts used Boolean logic to model

developmental pathways for the topological study of interactions

that enable prediction of patterning in Drosophila melanogaster [24],

and exploration of the effect of transient perturbations on

development of wild type pattern for the segment polarity network

[25]. But all these studies do not include the diseased conditions,

specifically Glioma, Colon and Pancreatic cancers, which may be

caused due to malfunction in Hedgehog pathway. Therefore, it is

important to construct a comprehensive map of Hedgehog

pathway and to study the detail molecular interactions in both

normal and cancer conditions through qualitative analysis.

In our study, at first we reconstructed the Hedgehog signaling

network using the information available from various sources and

tried to include as many as possible target output proteins of this

pathway. We included the connections of the output proteins

JAGGED2, WNT, SFRP, CYCLIN_B, CYCLIN_D, CY-

CLIN_D2, CYCLIN_E, OPN, SNAI1, CMYC, BMI, BCL2,

FOXM1 and PDGFRA with the phenotypic outcomes or cellular

responses (like Cell proliferation, Cell cycle progression and

Endothelial to Mesenchymal Transition etc.) and also with three

other important pathways, WNT, NOTCH and Anti-Apoptosis

[6,60–65,81–85].The inclusion of these output proteins in the

reconstructed pathway map helps to understand how Hedgehog

signaling pathway controls the major developmental procedures of

a cell, such as cell division, cell proliferation and also the cross talks

with other pathways. Also, it is important to note that most of the

output proteins presented in the reconstructed map were also

oncoproteins and thus correlated this pathway with various types

of cancers. Also, we included ERK12, RAS, TWIST, FAS,

NOTCH1, which are not the core hedgehog pathway proteins.

The inclusion of these proteins in our reconstructed map was to

show the regulation or cross talks of hedgehog pathway with other

molecules from different signaling pathways like WNT, NOTCH,

MAPK etc. Including these non-core proteins, as far as the

literature and database are concerned, this reconstructed map of

Hedgehog signaling pathway represents the highest number of

molecules and interactions, and is considered for further compu-

tational analysis.

In this work, we performed two types of computational analysis,

Graph theoretical and Boolean or Logical analysis. In order to

identify the important proteins from the network, the parameters

(like Degree; all pair Shortest paths; Eigenvector, Betweenness and

Closeness centrality) were used in the graph theoretical analysis.

We observed that GLI1 was the most important protein within the

entire network and formed a ‘‘hub’’, as it was showing high values

in all kinds of network parameters measured in this analysis.

Therefore from our analysis it can be easily assumed that

perturbation (i.e. mutation, malfunction, high or low expression

etc.) of this protein or node in Hedgehog signaling network will

affect the normal network function and may cause several types of

cancers, which is also found in experimental observation, as in

Glioma, Colon and Pancreatic cancer cell lines GLI1 shows over

expression [52,72,85]. In our study, the higher number of degree

or connections showed by PTCH1 also implied that it was one of

the most important proteins in the Hedgehog pathway, and this

supports numerous experimental studies where mutation of

PTCH1 protein was shown to affect the flow of normal Hedgehog

signal and cause pancreatic and colon cancer [80,86]. High

concentration of PTCH1 protein in membrane was helpful to

regulate the activated SMO protein in membrane, so that it

cannot further activate GLI in cytoplasm. The high IN-DEGREE

showed by SHH also implied that this ligand was mostly regulated

by some other extracellular proteins at the time of binding with

PTCH1/2. It has been experimentally shown that CDO and BOC

both help to activate SHH ligand, whereas GAS1 inhibits it to

bind with Patched proteins (PTCH1/2) in the membrane [87].

Therefore, over expression of CDO and BOC in extracellular

region enhance the binding activity of SHH to bind with PTCH1/

2. On the other hand higher OUT DEGREE value of nuclear

proteins signified the role of these proteins to process the hedgehog

input signal into the output products. Therefore, mutation or

malfunction of these proteins in nucleus would cause over

production of various target oncoproteins of the Hedgehog

pathway. In our analysis GLI1 had shown highest IN-DEGREE,

OUT-DEGREE and TOTAL DEGREE among all other proteins

and thus forming the largest hub within the whole network. This

result also suggested that inhibition of this protein would

completely disrupt the normal flow of Hedgehog signal and

thereby other cellular functions will be disturbed.

In the case of Eigenvector centrality score, GLI1, SMO,

PTCH1, GLI3_A had shown significant scores. It is implied that

these proteins did not have only high number of connections but
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also connected with other highly prestigious node that had higher

number of connections in the network. It was also interesting to

observe that although GLI1 and GLI2 had higher number of

connections in the network, the eigenvector centrality of GLI2 was

low compare to GLI1. The reason behind this kind of behavior

was the connection of GLI1 with another higher central node

NUC_GLI1 in the network. On the other hand while comparing

the number of down-stream activated proteins of these two

proteins, we found that GLI2 had higher number of down-stream

activated proteins compared to GLI1. This result was also

reflected in our Logical analysis, where we observed that in case

of Glioma, Colon and Pancreatic cancer scenarios the number of

upstream activator/inhibitor species and downstream activated

species of NUC_GLI1 was high compared to the NUC_GLI2

(Figure 4, 5, and 6). Also, GLI1, NUC_GLI1, SMO, STK36 and

PTCH1 had shown high Betweenness centrality score and GLI1,

NUC_SUFU, NUC_STK36, DYRK1, NUMB and ITCH had

shown high Closeness Centrality score in our analysis. It was

clearly seen that GLI1 had significant scores in all three kinds of

centrality parameters and thus we can say that GLI1 was the most

centrally situated protein in our reconstructed Hedgehog signaling

network. Therefore, knock out or mutation of this protein from the

hedgehog signaling network would cause most significant effect in

the normal cell and leads to the cancerous stage [82]. Apart from

GLI1, SMO was also found as another important protein which

featured high Eigenvector and Betweenness centrality scores. In

order to transmit the activation signal after ligand binding to the

PTCH1 and PTCH2 receptors, SMO becomes active. Due to this

reason, this membrane bound receptor protein was showing high

centrality scores and hence it would be the possible potential drug

targetable protein in the cancer caused by Hedgehog pathway

activation. The Closeness centrality score showed by most of the

nuclear proteins implied that these were the proteins that were

connected with lower number connections to the other proteins in

the network and thus regulated by maximum number of proteins

in the network. Therefore, certain disturbance in the other

proteins can perturb the normal activity of these proteins in the

network.

In order to analyze the importance of this signaling pathway as

well as the individual proteins involved in Glioma, Colon and

Pancreatic cancer cell lines, we developed Boolean or Logical

models or scenarios. We found that, if we perturbed the logical

states of SMO, GLI1 and GLI2 proteins from 1 to 0 in Glioma

model, it will be possible to suppress the expression of various

output proteins (e.g. JAGGED2, WNT, SFRP, CYCLIN_B,

CYCLIN_D, CYCLIN_D2, CYCLIN_E, OPN, SNAI1, CMYC,

BMI, BCL2, FOXM1, PDGFRA etc.) as well as the phenotypic

expressions of the Glioma affected cell (Figure 4). Therefore we

propose that inhibition of these proteins would be helpful for the

therapeutic treatment of Glioma. We observed that there were

several proteins which were activating the GLI transcription

factors in cytoplasm and these proteins were connected with other

signalling pathways. Therefore inhibiting those proteins could

affect the normal functioning of other pathways. In order to

prevent such collateral damage, we propose that, in Glioma cell

line, selectively targeting SMO in cell membrane, and the nuclear

translocation of activated GLI1 and GLI2 within cytoplasm would

be more effective to completely shut down the Hedgehog pathway

by suppressing the activity of different proteins responsible for

uncontrolled cellular proliferation (Figure 4) and this was found to

be the minimal combinations of proteins required. Also, inhibition

of the activity of GLI2 protein was necessary to prevent its positive

feedback loop to GLI1 activation.

In case of Colon cancer scenario, we found that inhibition of

SMO, HFU, ULK3 and RAS was useful to suppress the

expressions of various responsive proteins of Hedgehog pathway

(Figure 5). Several experimental studies have already proven the

correlation of the mutation of ras gene with the Colon cancer

[88,89]. As this protein was one of the activator of GLI1 in

cytoplasm, therefore inhibition of RAS may also help to shut down

the Hedgehog pathway. Hence, targeting RAS in cytoplasm would

be effective to reduce the over activation of GLI proteins in

cytoplasm and consequently several oncoproteins like PDGFRA,

BMI, SNAI1 etc. of Hedgehog signaling. Few studies have already

been reported that mutated RAS family proteins could be the

suitable drug targets for treating various types of cancer [90,91],

which also supported our computational findings. On the other

hand, our analysis also revealed that suppression of SMO, HFU

and ULK3 by external drug would be required to completely shut

down the Hedgehog signaling in the colon cancer cell line.

Therefore, we propose that in order to shut down the effect of

Hedgehog signaling in colon cancer cell line for in-vitro or in-vivo

analysis, one could also think a combination of drugs that will

suppress the activity of SMO, HFU, ULK3 and RAS proteins

altogether.

From our analysis, we also suggested a minimal combination of

proteins, SMO, HFU, ULK3, RAS and ERK12, the expressions

of which needed to be inhibited so as to control the effect of

mutated hedgehog signaling pathway in pancreatic cancer by

suppressing the activity of different proteins responsible for

uncontrolled cellular proliferation (Figure 6). Also, suppression of

HFU and ULK3 in cytoplasm would be helpful to block the

enhanced activation of GLI proteins. Experimental studies have

already proven their role to activate and enhance the production

of phosphorylated GLI transcription factors in the Hedgehog

signaling pathway [76,77]. This perturbation would decrease the

concentration of NUC_GLI1, NUC_GLI2 and GLI3_A in

nucleus and consequently bring down the production of various

output proteins of Hedgehog signaling network.

The model was validated with existing microarray data for these

three types of cancer (Figure 7) and also simulated using the

experimental data. In both the cases it shows promising

predictions. Moreover, to determine the alternative pathways

which are still active under drug treatment we refined the model

simulation by only inhibiting SMO in three types of cancer

scenarios and compared the results with the corresponding

Treatment scenarios (Figure 8). Using this analysis we found few

alternative pathways in each cancer scenarios, which have the

ability to up-regulate the GLI proteins without the help of

hedgehog ligands (Non Canonical or ligand independent Hedge-

hog pathway activation).

Like all other in-silico models, our logical model had also some

limitations, as it was unable to present a quantitative measure-

ments of the expression levels, the rate of inhibition required in

combinatorial therapy, or the dose dependent scenarios in the

treatment of cancer cell lines. For that we require a dynamic

model which could resolve these issues. But the model helped to

identify the expression levels of different proteins which were ‘‘not

determined’’ in the experimental data, due to lack of significant

expression levels. Moreover, the proteins identified as probable

drug targets from these simulations were not novel targets, and

individually their efficacy as drug targets was tested experimen-

tally. But the optimal combinations of drug targets used in these

simulations were new and to the best of our knowledge, the

effectiveness of targeting these proteins in combinatorial drug

target therapy was not tested yet. Therefore, our in-silico

simulations identified few ‘‘novel combinations’’ of drug targets
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and may be helpful to the experimental biologists as well as

pharmacologists to experiment on combinatorial drug target

therapy on Hedgehog pathway in different cancer cell lines,

alternative to the ligand dependent way by inhibiting single

molecule.

Conclusion
Hedgehog signaling pathway is widely implicated in controlling

various cellular responses and plays a cardinal role in different

cellular processes including carcinogenesis. Malfunctioning of this

pathway can mostly lead to cancer in various cell line of human.

The role of few important proteins such as PTCH1, SMO, GLI

etc., in this pathway has already been identified to be responsible

for various types of cancers, such as Glioma, Colon and

Pancreatic. Targeting this pathway in these types of cancers

would be helpful, but prior to that, extensive knowledge regarding

this pathway, its interactions and roles with the proteins of other

important signaling pathways is necessary. Hence, there is a need

for an accurate, comprehensive pathway map of Hedgehog,

detailing all the species and interactions involved in the

functioning of the pathway. Moreover, to control the pathway

activity, most of the studies till now have mainly focused to develop

a drug which only inhibit single proteins, such as GLI (ligand

dependent way) or PTCH1 or SMO in the membrane and may

not be able to cure the cancers caused by some other intracellular

proteins apart from sole mutation in GLI or PTCH1 or SMO.

Hence identification of alternative targets (single or combinatory)

for administration of drugs is itself a challenging problem in this

direction.

Through Reconstruction, Graph theoretical and Boolean

analysis of the pathway, our study was aimed in this direction to

get an insight about the signaling proteins in the Hedgehog

pathway along with identification of alternate drug targets for

Glioma, Colon and Pancreatic cancer, where the pathway is

known to become mutated. We reconstructed a new Hedgehog

signaling map by collating the data from various database and

literature sources. The Hedgehog signaling map shown in this

article is a large, extensive and informative network to the best of

our knowledge. This map was also used for structural and logical

analysis in our study. In structural analysis, we analyzed the

network topology, identified few important proteins, and showed

the robustness of the entire Hedgehog signaling network. The

computational results are supported by available experimental

observations from literature. On the other hand, in logical

analysis, we constructed a single master model of the whole

interactions using simple Boolean operators and created the

models for normal and three types of cancer: Glioma, Colon and

Pancreatic cancer. The simulations of this model also lead to

identification of important proteins that can be used as probable

drug targets for these cancers and the result is supported by

experimental findings from literature.

Comparing the cancer scenarios with normal scenario, we

found some important minimal combinations of proteins which

may be used as a probable drug targets for further in-vitro and in-

vivo analysis. Perturbing at a time the combinations of the

cytoplasmic activated proteins GLI1, GLI2 and membrane

protein SMO in Glioma scenario; SMO, HFU, ULK3 and RAS

in Colon cancer scenario; SMO, HFU, ULK3, RAS and ERK12

in Pancreatic cancer scenario; we observed the under expressions

of various oncoproteins in Hedgehog pathway. The effects of

individual perturbations on few proteins like SMO, PTCH1, GLI1

has already been observed in the treatment of various cancers, but

to achieve more accurate therapeutic strategy, the perturbation

effects of these minimal combination of proteins found from our

analysis have not yet been studied. In this paper, we sought for a

new therapeutic strategy to inhibit the Hedgehog pathway by

targeting some novel combination of proteins as a probable future

drug targets. Since, our analysis was based on in-silico logical model

and did not include any kinetic parameters; therefore we were

unable to show any dynamic behaviors of the perturbation effects

on the identified target proteins. But, our reconstructed Hedgehog

signaling pathway and the computational method for identifica-

tion of new combinatorial drug targets or pathway signatures

provide a more sensible strategy for finding therapeutic targets for

cancer and may be useful to the drug industry and experimental

biologists to explore this pathway further. Our findings certainly

pave the way for newer biomarker identification and also for

therapeutic marker identification in different types of cancers.

Methods

Reconstruction of Hedgehog Signaling Networks
Initially we tried to construct a comprehensive map of

Hedgehog pathway map from biological database. We searched

21 different signal transduction and Protein-Protein interaction

database for that purpose (See Table S1 of Text S1), but

unfortunately due to proper maintenance and lack of database

update procedure from time to time, there was no database that

could give us the most up to date and comprehensive pathway

map. As mentioned earlier, the main problem was collation of data

from different database which shows heterogeneity of information.

The number of proteins and their interactions presented in these

databases was not equal and due to poor annotation method used

by different database caused major obstacle to make a compre-

hensive pathway map of Hedgehog. Our comparative analysis of

the Hedgehog pathway data provided in few important existing

databases proves this fact (See Table S2 of Text S1). though the

basic structure of the pathway map were obtained from the data

collated in different database, but in order to make a most up to

date and reliable pathway map with more number of proteins and

interactions, published scientific literatures and experimental

studies were consulted. We mainly used ‘‘Google Scholar’’ and

‘‘Pubmed’’ to search these literatures. The abbreviation and

documentation of the proteins of our newly reconstructed

Hedgehog pathway are provided in Table S3 of Text S1with

proper literature and database references. More than 50 published

papers and 21 databases were studied to collate the relevant

information for Hedgehog pathway.

This reconstructed pathway map (Figure 1) was a master model

that accounts for all the possible proteins and their interactions

reported in different cell types across different experimental

conditions. The maps provided in Figure 1 and Figure 2 are only

based on human cell line specific data, but do not indicate any

particular cell type or disease specific scenario. The reason for the

construction of such global maps was to consolidate up to date

information about the pathway for further analysis and also the

formation of a platform that could be used for further exploration

of this pathway. This map included all the probable proteins and

interactions that govern the flow of the signal, from input to

intermediate to output layer. The map was created using

CellDesigner Ver. 4.2. [29], a software package that allows users

to depict molecular interactions using standard systems biology

notations. Using the GUI based drawing tool of this software, we

attempted to capture or draw most of the significant interactions of

this pathway along with their cross talks. We included only those

proteins and interactions in our reconstructed map that have at

least one human cell specific experimental evidence in any

published research article. On the basis of this criterion we were
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able to include more number of proteins and interactions to the

newly reconstructed map (Figure 1). This extensive data mining

from literature and database sources provided us the sufficient

data to reconstruct a new and more informative hedgehog

signaling map of human.

Graph and Parameters
In order to convert the whole hedgehog signaling pathway into

a graph or network model [92], at first we constructed an

adjacency symmetric matrix ‘A’, where rows and columns were the

proteins of the pathway. In this graph the proteins were the ‘nodes’

and the direct connection (flow of signal or interaction) between

two proteins were considered as an ‘edge’. The graph was a ‘directed

graph’ or ‘digraph’. That means a connection between two nodes

had a specific direction. The following condition was used to

construct the adjacency matrix ‘A’. Let, Aij be the element of ith

row and jth column of the adjacency matrix ‘A’, then Aij= {1: If

species i is interacting or transmitting the signal to j; 0: If i and j

have no connection; 21: If species j is interacting or transmitting

the signal to i}.

The parameters ‘‘In-Degree’’, ‘‘Out-Degree’’, ‘‘Total Degree’’,

‘‘Betweenness Centrality’’, ‘‘Closeness Centrality’’, and ‘‘Eigen-

vector Centrality’’ were calculated on the basis of the adjacency

matrix A. Then we made a network file in ‘.net’ format (default

input format of the network manipulation and visualization

software ‘Pajek’ [93], See the directory ‘‘GRAPH_PROJECT’’

of File S1) for a directed graph from this matrix and used it in

Gephi 0.8.1 [94] to calculate all types of Degree and Eigenvector

centrality. The network figure (Figure 2) was also drawn in Gephi.

We also used the.net file in ‘igraph’ [95] (a software package of ‘R’

[96]) to calculate ‘‘All pairs shortest paths’’ and in Pajek to

calculate the Betweenness and Closeness centrality. In order to

visualize all pairs shortest paths, (Figure S2) we used MatlabH
(R2012b, The MathWorks) sparse matrix function ‘Spy’. We also

used ‘Microsoft Excel (2007)’ for the general plotting purpose.

A brief description of the parameters used in our study is given

below:

In-Degree (Kin). It refers the total number of nodes

(activations or inhibitions) that are directly acting on a particular

node in the network [92].

Out-Degree (Kout). The total number of interactions (acti-

vations or inhibitions) that are acting by a particular node on the

other nodes in the network [92].

Degree (Ki). It refers the total number of in-degree and out-

degree of a particular node [81]. Therefore, total degree (Ki) of a

node ‘i’ is calculated as.

Ki~KinzKout ð1Þ

Eigenvector centrality. It refers that a node in a network

will be more central if it is connected to many central nodes in the

network [46], [47]. According to Newman [97], the centrality xi of

a node i is directly proportional to the cumulative sum of the

centralities of its neighbors’ xj.

xi!
Xn

j~1

Aijxj ð2Þ

Or xi~
1
l

Pn

j~1

Aijxj , where is the proportionality constant: ð3Þ

Now, if we consider the above equation (3) as a vector equation,

then we can write that

lx~Ax, ð4Þ

where, x = (x1, x2, x3……xn) is the Eigenvector of the adjacency

matrix A having highest positive Eigenvalue l.
Betweeness centrality. It is the ratio of the number of

shortest paths that pass through the node to the total number of

shortest paths of all the nodes to all the other nodes. It signifies that

how a node is important in the shortest paths of all the other nodes

of the network [47].

Closeness centrality. The Closeness centrality of a node is

defined as the inverse of sum of the total length of the distances or

shortest paths of that node to the other nodes [47]. Therefore

higher closeness centrality of a node implies the lower length of

shortest paths to the all other nodes in the network and signifies

how close a node is situated from the other nodes in the network

[47].

Shortest path (Lij). It refers the minimum number of

intermediate links or connections that have to traverse from one

node ‘i’ to the another node ‘j’ [48].

Logical Modeling
The entire Hedgehog signaling network was organized into a

three layered system of input, intermediate and output, with input

signals orchestrating cellular responses to output via intermediate

molecules. To visualize and analyze the Hedgehog signal

transduction network, we constructed the Logical or Boolean

Interaction Hyper-graph with large number of nodes and

interactions or hyper-arc [1]. In our Boolean network each node

represented a protein (Ligands, Receptors, kinase or Transcription

factor) or cellular response (Cell Proliferation, Cell cycle progres-

sion, Wnt Pathway etc.) whose state can be either be 0 (OFF) or 1

(ON). Depending on the cellular function and/or location, the

proteins may be active (ON) or inactive (OFF). The entire

simulation of Boolean modeling was performed in CellNetAnaly-

zer [49-51] and the following steps were followed during the

logical simulation.

i) Selection of input and output proteins. In order to

construct a logical model for hedgehog signaling network, at first

we considered the input and output nodes. Mainly the proteins,

which did not have upstream connection in the reconstructed

pathway map (Figures 1 and 2), were considered as input proteins.

Similarly, the proteins, which were the downstream effectors of

input proteins, were considered as output proteins in our model.

Though there were few exceptions in our model while considering

the input proteins for three cancer scenarios (Glioma, Colon and

Pancreatic) with respect to the normal pathway scenario. In that

case, we considered the three ligands SHH, IHH and DHH as

inputs, though they had the upstream connections. In order to

simulate their over expression effects in the cancer scenarios, we

kept their constant active state as 1 or ON throughout the

simulations. But in normal scenario, we considered their

expression or logical state according to the state of their upstream

activators (e.g. BMP_RUNX3, CDO, BOC etc.). The names of

the input and output proteins was provided in Table S3 of Text S1

with proper documentation. The logical states of the input
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proteins were considered from various literature sources (See

Table S4 of Text S1), EBI-ArrayExpress Atlas [98] and also from

various signaling and cancer databases (See Table S1 of Text S1).

ii) Construction of Boolean or logical equations. We

know that the molecular species of a biological signaling network is

highly interconnected and interdependent with each other. Using

this phenomena one can easily construct Boolean or Logical

equations that could show their inter relationship with each other

within the network. We manually formed the Boolean equations

among all the nodes of the hedgehog signaling network using our

biological understanding of the interactions from various literature

sources. The entire list of the Boolean equations is available in

Table S5 of Text S1. In this table we also provided the procedures

that we followed to construct a Boolean equation with few

examples. There were total 96 Boolean equations and 63 nodes

including cellular responses presented in our model that was used

to simulate the hedgehog pathway in CellNetAnalyzer [49–51].

This entire set of Boolean equations was our ‘‘Master Boolean

Model’’ (See the directory ‘‘CNA_PROJECT’’ of File S1), which

we used to simulate different scenarios by varying the logical states

of the input proteins.

iii) Simulation. Using the master model of Boolean equa-

tions, we performed our simulation analysis in CellNetAnalyzer

[49–51]. The entire simulation was done using a logical

framework described extensively in previous studies [49–51]. In

order to create different scenarios, we altered the logical states (‘‘0’’

as ‘‘OFF’’ or ‘‘1’’ as ‘‘ON’’) of the input proteins. We considered

both the ‘gain-of-function’ (‘‘ON’’ or ‘‘1’’) states of the oncogenic

proteins like RAS, ERK12, TWIST etc., and the ‘‘loss of

functions’’ (‘‘OFF’’ or ‘‘0’’) of few tumor suppressor proteins like

GAS1, SUFU, NUMB, SNO while creating different cancer

scenarios in the logical simulation (See Table S4 of Text S1). As it

is known that not only the over expression of some proteins can

cause cancer but several tumor suppressor proteins in the network

are also lost during cancer progression, hence this perturbation

helps to test the model from both perspectives. Also, in order to

simulate the scenarios in temporal space, we accounted the time

scales into the Boolean equations of our master model. As we

know that in a signaling network few reactions happen later than

some other reactions, therefore there was a need to imply ‘‘Time

Scale’’ in this Boolean analysis. In our model there were three

reactions (production of GLI1, PTCH1 and HHIP) that actually

occur as feedback loops in the network. In order to discriminate

these reactions, we kept them in ‘‘time scale 2’’ irrespective of the

rest of the reactions in ‘‘time scale 1’’. Also, the productions of

output proteins from nuclear region were considered in time scale

2. The proteins which presented in different locations (e.g. GLI1)

in the pathway map (Figure 2) were named according to their

cellular location (e.g. NUC_GLI1 where NUC stands for Nuclear)

and considered as two different nodes in the model.

After performing the ‘‘time scale 2’’ simulation for each

scenario, the entire simulation results provided in ‘‘Results’’

section and the logical steady states of the output proteins in Table

S4 of Text S1 were considered. At the time of calculation, the

upstream and downstream effectors from the ‘‘Dependency

matrix’’ of the nodes for each scenario, we excluded the reactions

with given zero values in CellNetAnalyzer [49–51]. These

Dependency matrices for each scenario were then used to

calculate the total number of ‘‘Upstream’’ and ‘‘Downstream’’

effectors of each node in the network.

iv) Identification and perturbation of important

proteins. In order to identify the important proteins which

were responsible for a particular cancer, we compared the total

number of upstream effectors and downstream effected proteins of

each protein of that cancer scenario with each protein of normal

scenario. From these comparisons we identified the proteins that

were showing significant variation in cancer scenarios with respect

to the normal scenario. We then extracted those identified proteins

from each cancer scenarios and this helped us to identify the sole

or combination of target proteins for the perturbation analysis.

Among these identified proteins we selected few minimal

combinations of target proteins in perturbations analysis, based

on the results from Graph theoretical analysis and also biological

feasibility of targeting these proteins in cancer cell. Finally we

choose these minimal combinations of such proteins for each

cancer scenarios that could be perturbed in the in-silico analysis,

where the logical states of these selected target proteins were

altered and the same simulation analysis as discussed in step iii were

performed.

A brief description of a few logical formalisms used in our study

is given below:

i) Hyper-arc & hyper-graph. An interaction hyper-arc is a

set of the arcs which connects more than one node to a particular

single node. Therefore, a hyper-arc may contain more than one

node at its source end (input) but one node at its sink end (output).

A hyper-graph (H) consists of the set of hyper-arcs (A) and the set of

nodes (N) present in the network or graph [49]. In our case the

hyper-graph is directed hyper-graph H= (N, A) as the edges or arcs

of the proteins of hedgehog signaling network have unique

direction.

ii) Feedback loop and time scale. In several network it has

been found that the product of a reaction is actually producing the

reactant or interacting back with one of the reactants of the

reaction. This type of connections or arcs or edge is basically form

a ‘‘loop’’ in the network and as the output comes back again to its

input or source nodes, hence this type of connection is called

feedback loop. Feedback loop may be positive or negative

depending on the nature of its connection. In our hedgehog

signaling model, we have found that GLI1 helps to activate

GLI3_A and as a result GLI3_A produces GLI1. This is an

example of positive feedback loop whereas production of PTCH1

or HHIP from GLI1 or NUC_GLI1 is an example of Negative

feedback loop. It is also worth mentioning that to perform these

kinds feedback analysis one should assign time scale to the

reactions where feedback loop reactions would be in higher time

scale compare to the reactions executed by the inputs.

iii) Logical steady states, synchronous and asynchronous

update. When the logical states of the nodes reach to a certain

constant or steady state value with the state of the associated

logical functions or equations, such that the switching of logical

values of the nodes stop during infinite time scale, then such state

is called logical steady state.

The updates of the logical states of the nodes in a Boolean

network can be updated synchronously or asynchronously. In the

Synchronous model, the logical state Si (t) of a node ‘I’ at time

scale ‘t’ is updated to the next time scale ‘t+1’ by a Boolean

function ‘B’, in such a way that Si (t+1) =B {Si (t)}. On the other

hand, in Asynchronous model the logical state of a node ‘I’ is kept

fixed, so that its current logical state is unequal to its associated

Boolean function, i.e. Si (t+1) ? B {Si (t)} [49].

We simulated our model using both the synchronous and

asynchronous updating approaches in Odefy (software package

used in CellNetAnalyzer [49–51]), but after attaining at the logical

steady state we found that both the simulation results were

showing same dynamics (results not shown), since no further

changes in the states of the nodes can be observed once it reaches

the logical steady state [49]. In our logical model, to create the

cancer scenarios and to observe the effect of over expression of the

Computational Study of Hedgehog Signaling Pathway

PLOS ONE | www.plosone.org 20 July 2013 | Volume 8 | Issue 7 | e69132



ligands in cancer development, we used asynchronous update of

SHH, IHH and DHH by considering their logical input state as

‘‘1’’ or ‘‘ON’’ throughout whole simulation time points (i.e.Time

point 1 and 2).

iv) Dependency matrix. It is a matrix (D) whose rows (i) and

columns (j) are the nodes and each cell (Dij) defines the logical

relationship between a pair of node. This dependency matrix is

helpful to find the activator or inhibitor molecules of a node or the

molecules which are activated or inhibited by a particular node in

the network.

Model validation. The simulation results shown for all three

types of cancer was done through in-silico logical analysis, but in

order to validate our model with cancer cell line specific

experimental data, we considered the microarray expression data

(UP or DOWN regulated) of the proteins for Glioma Grade IV

(accession numbers GSE4290) and Pancreatic cancer cell line

(accession numbers GSE16515) from EBI ArrayExpress Atlas [98–

100]. Unfortunately, we could not found any suitable expression

data of colon cancer cell line as the expression of most of the

proteins were showing not significant or high P-value. In this case,

we considered the expression level of five hedgehog proteins:

SHH, PTCH1, HHIP, GLI3 or GLI3_Active and PDGFRA,

which were detected by using RT-PCR, in-situ hybridization and

immuno-histochemistry experiments by Yue-Hong Bian et al.

[101].

The expression levels of few proteins from both the microarray

data were not found significant as their corresponding P-value was

greater than 0.005. We kept the expression of these proteins as

undetermined. For better biological interpretations of the model

predictions, the model was then simulated in two ways to validate

with these experimental observations for three types of cancers. In

Simulation 1, we considered the logical states mentioned earlier in

‘‘Simulation’’ section and in Table S4 of Text S1. In Simulation 2,

we considered the expression of input proteins observed from the

experimental data for each of these cancer types. Since it is known

that the activity of CKI_A to down regulate GLI proteins in

cytoplasm requires BTRCP, PKA_ALPHA, and GSK3 [35], [36],

hence at the time of Simulation 2, we altered the expression level

of CKI_A and ITCH from UP (1) to Down (0) and obtained the

expression values. This consideration was not available in the

particular experimental data considered to validate our model.

Otherwise we were able to match the down regulation of GLI

proteins as well as some output proteins like BMI, BCL2, SNAI1

etc., which showed up regulation in experimental data. The

expression values of the input proteins used in simulation 1 were

taken from Table S4 of TextS1. We also performed another

simulation (i.e. Simulation 2) by considering the expressions of the

proteins determined in microarray expression data. While doing

this simulation, we altered the expressions of CKI_A in cytoplasm

region and NUMB, ITCH in nuclear region. In microarray

expression data, we found their up regulation but as we had taken

these proteins as repressors of GLI transcription factors in our

model (Table S5 of Text S1), therefore we considered their logical

expressions as ‘0’, so that we can examine their effect of ‘‘loss of

function’’ in pancreatic cancer cell line. By considering the Up

regulation or logical state ‘1’ of these proteins in our model, we

could not see the up regulation of GLI and other output onco-

proteins of our pancreatic cancer model. A comparative statistics

of the percentage of accuracy between experimental and

simulation results of each cancer scenario was presented in Table

S6 of Text S1.

Supporting Information

Figure S1 Venn diagram representing comparison of
number of proteins between other database and our
model. This Venn diagram represents a comparative view of

number of proteins in our model with existing major databases,

KEGG, BIOCARTA, GENE GO, NETPATH and PATHWAY

CENTRAL, considered to reconstruct the Hedgehog pathway

diagram (Figure 1 and Figure 2). The overlapping regions between

two circles (i.e. two databases or anyone of the database and our

model) are representing the same proteins which have mentioned

in both the databases. The large non-overlapping area shown by

OUR MODEL signifies the information of the large number of

proteins which were not found in anyone of the above mentioned

databases and are taken from other literature sources.

(TIF)

Figure S2 All pairs shortest paths of the proteins of
Hedgehog signaling network. The values of shortest path(s)

between two proteins in the Hedgehog signaling network (shown

in Figure 2) is presented with the name of the proteins arranged in

both row and column wise. Different colors are used to distinguish

the different values of shortest path. White cells represent zero

value or no shortest path. The lower part (i.e. from Cyclin_B to

Cyclin_D2) corresponds to the Output proteins of Hedgehog

pathway and hence there are no connections of these proteins with

the remaining proteins in network (Figure 2).

(TIF)

Figure S3 Probability distributions of the Shortest
paths of Hedgehog signaling network. The X-axis repre-

sents the value of the shortest paths from 1 to 8 and Y-axis

represents the probability of getting a particular shortest path in

the network. The shortest path ‘3’ has highest probability in the

distribution and the average shortest path is calculated as 3.581.

(TIF)

Figure S4 Dependency matrix of SMO inhibition sce-
nario in Glioma model. The X and Y axes represent the name

of the proteins of our Hedgehog signaling model. This figure

shows the interdependency between a pair of proteins (Activators

in green and Inhibitors in red) in Glioma model after SMO

inhibition (marked by black arrow). Most of the upstream

activators of GLI1, GLI2, GLI3_A such as HFU, ULK3, RAS,

TWIST, ERK12 and other hedgehog responsive oncoproteins are

still present in the simulation results.

(TIF)

Figure S5 Dependency matrix of SMO inhibition sce-
nario in Colon cancer model. The X and Y axes represent the

name of the proteins of our Hedgehog signaling model. This figure

shows the interdependency between a pair of proteins (Activators

in green and Inhibitors in red) in Colon cancer model after SMO

inhibition (marked as black arrow). Most of the upstream

activators of GLI1, GLI2, GLI3_A such as HFU, ULK3, RAS

and other hedgehog responsive oncoproteins are still present in the

simulation results.

(TIF)

Figure S6 Dependency matrix of SMO inhibition sce-
nario in Pancreatic cancer model. The X and Y axes

represent the name of the proteins of our Hedgehog signaling

model. This figure shows the interdependency between a pair of

proteins (Activators in green and Inhibitors in red) in Pancreatic

cancer model after SMO inhibition (marked as black arrow). Most

of the upstream activators of GLI1, GLI2, GLI3_A such as HFU,
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ULK3, RAS, and ERK12 and also the other hedgehog responsive

oncoproteins are still present in the simulation results.

(TIF)

Text S1 Supplementary text. This supplementary text

contains five supplementary tables (Table S1–S6) referred in the

main article and formulation of the Logical equations.

(DOCX)

File S1 Model files used to simulate the structural and
logical analysis of the normal scenario. This zip file

contains the files which were used to simulate the structural and

logical analysis of Hedgehog signaling pathway in normal

scenario. There are two directories within this zip file: ‘‘CNA_-

PROJECT’’ and ‘‘GRAPH_PROJECT’’. The directory ‘‘CNA_-

PROJECT’’ contains the Cell Net Analyzer project files to

simulate the Normal hedgehog pathway scenario using initial

logical states provided in ‘‘normal.val’’ file. One can also create the

other scenarios by varying the logical states of the proteins. On the

other hand the directory ‘‘GRAPH_PROJECT’’ contains a.net

file which can be used to calculate the graph theoretic parameter

values using Gephi or Pajek software.

(RAR)

Acknowledgments

We thank Ms. Sonia Chothani and Ms. Noopur Sinha for their help in

collating some data for pathway reconstruction. We also thank Mr.

Ravindra S Patake and Mr. Abhishek Subramanian for their careful

reading of the manuscript. We are grateful to The Director, CSIR-

National Chemical Laboratory, Pune for providing the required infra-

structures related to this work.

Author Contributions

Conceived and designed the experiments: RRS. Performed the experi-

ments: SC RNP. Analyzed the data: SC RRS. Wrote the paper: SC RNP

RRS.

References

1. Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Klamt S (2009)

The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of

High-Throughput Data. PLoS Comput Biol 5(8): e1000438; DOI: 10.1371/

journal.pcbi.1000438.

2. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: A

Systems Biology disease. Systems Biology 83: 81–90.

3. Jiang J, Hui C (2008) Hedgehog Signaling in Development and Cancer.

Developmental Cell DOI 10.1016/j.devcel.2008.11.010.

4. Evangelista M, Tian H, de Sauvage FJ (2006) The hedgehog signaling pathway

in cancer. Clin Cancer Res 12: 5924–5928.

5. Rubin LL, de Sauvage FJ (2006) Targeting the Hedgehog pathway in cancer.

Nature Reviews Drug Discovery 5: 1026–1033; DOI: 10.1038/nrd2086.

6. Katoh Y, Katoh M (2006) Hedgehog signaling pathway and gastrointestinal

stem cell signaling network (review). International Journal of Molecular

Medicine 18: 1019–23.

7. Ogdena SK, Ascano M Jr, Stegmana MA, Robbins DJ (2004) Regulation of

Hedgehog signaling: a complex story. Biochemical Pharmacology 67: 805–814;

DOI: 10.1016/j.bcp.2004.01.002.

8. Xie J, Epstein E (2011) Activation of Hedgehog Signaling in Human Cancer.

In: Jingwu Xie, editors. Hedgehog signaling activation in human cancer and its

clinical implications. Springer New York, 85–104; DOI :10.1007/978-1-4419-

8435-7-7.

9. Rohatgi R, Scott MP (2007) Patching the gaps in Hedgehog signalling. Nature

Cell Biology 9: 1005–1009; DOI: 10.1038/ncb435.

10. Beachy PA, Liu J (2012) Hedgehog pathway antagonists to treat cancer.

European Patent Application EP2404602. Available: http://www.

freepatentsonline.com/EP2404602.html via the Internet. Accessed 1st Nov

2012.

11. Xu X, Ding H, Rao G, Arora S, Saclarides CP, et al. (2012) Activation of the

Sonic Hedgehog pathway in thyroid neoplasms and its potential role in tumor

cell proliferation. Endocr Relat Cancer 19: 167–179; DOI: 10.1530/ERC-11-

0305.

12. Galimberti F, Busch AM, Chinyengetere F, Ma T, Sekula D, et al. (2012)

Response to inhibition of smoothened in diverse epithelial cancer cells that lack

smoothened or patched 1 mutations. International Journal of Oncology 41:

1751–1761; DOI: 10.3892/ijo.2012.1599.

13. McMillan R, Matsui W (2012) Molecular Pathways: The Hedgehog Signaling

Pathway in Cancer. Clin Cancer Res 18: 4883–4888; DOI: 10.1158/1078-

0432.CCR-11-2509.

14. Kelleher FC, Cain JE, Healy JM, Watkins DN, Thomas DM (2012) Prevailing

importance of the hedgehog signaling pathway and the potential for treatment

advancement in sarcoma. Pharmacology & Therapeutics 136: 153–168.

15. Li Y, Maitah MY, Ahmad A, Kong D, Bao B (2012) Targeting the Hedgehog

signaling pathway for cancer therapy. Expert Opin. Ther. Targets 16(1): 49–

66.

16. Olive KP, Tuveson D (2012) Hedgehog Pathway Inhibitors. United States

Patent Application Publication. Publication number: US 2012/0020876 A1.

17. Atwood SX, Chang ALS, Oro AE (2012) Hedgehog pathway inhibition and

the race against tumor evolution. J. Cell Biol 199(2): 193–197.

18. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, et al. (2009)

Treatment of Medulloblastoma with Hedgehog Pathway Inhibitor GDC-0449.

The New England Journal Of Medicine 361: 1173–8.

19. Dockendorff C, Nagiec MM, Weı̈wer M, Buhrlage S, Ting A, et al. (2012)

Macrocyclic Hedgehog Pathway Inhibitors: Optimization of Cellular Activity

and Mode of Action Studies. ACS Med. Chem. Lett. 3: 8082813.

20. Sherriff MR, Sarkar RR (2008) Computational approaches and modeling of

signaling processes in the Immune System. Proc Indian Natn Sci Acad 74: 187–

200.

21. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-

Based Models for the Analysis of Cell Signaling Networks. Biochemistry 49:

3216–3224.

22. Dillon R, Gadgil C, Othmer HG (2003) Short- and long-range effects of Sonic

hedgehog in limb development. Proc Natl Acad Sci U S A 100(18): 10152–

10157.

23. Saha K, Schaffer DV (2006) Signal dynamics in Sonic hedgehog tissue

patterning. Development 1411: 889–900.

24. Albert R, Othmer HG (2003) The topology of the regulatory interactions

predicts the expression pattern of the segment polarity genes in Drosophila

melanogaster. Journal of Theoretical Biology 223: 1–18; DOI: 10.1016/S0022-

5193(03)00035-3.

25. Subramanian K, Gadgil C (2009) Robustness of the Drosophila segment

polarity network to transient perturbations. Chemical Engineering 1–13.

26. Lum L, Zhang C, Oh S, Mann RK, von Kessler DP, et al. (2003) Hedgehog

Signal Transduction via Smoothened Association with a Cytoplasmic Complex

Scaffolded by the Atypical Kinesin, Costal-2. Molecular Cell 12: 1261–1274.

27. Varjosalo M, Taipale J (2007) Hedgehog signaling. Journal of Cell Science 120:

3–6; DOI: 10.1242/jcs.03309.

28. Kitano H, Funahashi A, Matsuoka Y, Oda K (2005) Using process diagram for

the graphical representation of biological networks. Nature Biotechnology

23(8): 961–966.

29. Funahashi A, Tanimura N, Morohashi M, Kitano H (2003) CellDesigner: a

process diagram editor for gene-regulatory and biochemical networks.

BIOSILICO 1: 159–162; DOI: 10.1016/S1478-5382(03)02370-9.

30. Murone M, Luoh SM, Stone D, Li W, Gurney A, et al. (2000) Gli regulation by

the opposing activities of Fused and Suppressor of Fused. Nature Cell Biology

2: 310–312; DOI: 10.1038/35010610.

31. Maloverjan A, Piirsoo M, Michelson P, Kogerman P, Østerlund T (2010)

Identification of a novel serine/threonine kinase ULK3 as a positive regulator

of Hedgehog pathway. Experimental Cell Research DOI: 10.1016/

j.yexcr.2009.10.018.

32. Kasper M, Schnidar H, Neill GW, Hanneder M, Klingler S, et al. (2006)

Selective Modulation of Hedgehog/GLI Target Gene Expression by

Epidermal Growth Factor Signaling in Human Keratinocytes. Mol Cell Biol

26(16): 6283–6298; DOI: 10.1128/MCB.02317-05.

33. Ji Z, Mei FC, Xie J, Cheng X (2007) Oncogenic KRAS Activates Hedgehog

Signaling Pathway in Pancreatic Cancer Cells. The Journal of Biological

Chemistry 282: 14048–14055.

34. Villavicencio EH, Yoon JW, Frank DJ, Füchtbauer EM, Walterhouse DO, et
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