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Distribution of Anopheles vectors and
potential malaria transmission stability in
Europe and the Mediterranean area under
future climate change
Elke Hertig

Abstract

Background: In the scope of climate change the possible recurrence and/or expansion of vector-borne diseases poses
a major concern. The occurrence of vector competent Anopheles species as well as favorable climatic conditions may
lead to the re-emergence of autochthonous malaria in Europe and the Mediterranean area. However, high-resolution
assessments of possible changes of Anopheles vector distributions and of potential malaria transmission stability in the
European-Mediterranean area under changing climatic conditions during the course of the 21st century are not
available yet.

Methods: Boosted Regression Trees are applied to relate climate variables and land cover classes to vector occurrences.
Changes in future vector distributions and potential malaria transmission stability due to climate change are assessed
using state-of-the art regional climate model simulations.

Results: Distinct changes in the distributions of the dominant vectors of human malaria are to be expected under
climate change. In general, temperature and precipitation changes will lead to a northward spread of the occurrences
of Anopheles vectors. Yet, for some Mediterranean areas, occurrence probabilities may decline.

Conclusions: Potential malaria transmission stability is increased in areas where the climatic changes favor
vector occurrences as well as significantly impact the vectorial capacity. As a result, vector stability shows the
highest increases between historical and future periods for the southern and south-eastern European areas.
Anopheles atroparvus, the dominant vector in large parts of Europe, might play an important role with respect
to changes of the potential transmission stability.
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Background
In Europe and the Mediterranean area widespread elim-
ination of malaria could be achieved during the 20th
century [1]. The decline of malaria is strongly related to
socio-economic improvements such as wealth, life expect-
ancy and urbanization [2]. However, in recent years an in-
creasing number of imported malaria cases occurs due to
international travel and immigrants from malaria-endemic
countries [3]. Together with the occurrence of vector
competent Anopheles species and favorable climatic

conditions autochthonous malaria cases may re-emerge in
countries where malaria was previously eradicated. Since
the late 1990s locally transmitted cases have been reported
in Germany, the Netherlands, Spain, France, Italy, Greece
and Turkey [4]. In general, malaria transmission in Europe
is highly seasonal owing to temperate climatic conditions.
The Mediterranean area, with mild and wet winters and
hot and dry summers, has been and still is suitable for mal-
aria transmission. The dominant Anopheles vector species
in Europe and the Mediterranean are currently Anopheles
atroparvus, An. labranchiae, An. messeae, An. sacharovi,
An. sergentii and An. superpictus [5]. AutochthonousCorrespondence: elke.hertig@geo.uni-augsburg.de
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malaria in Europe is mainly caused by the human malaria
parasite Plasmodium vivax [6].
Projections of future climate change show that there

will be significant warming rates until the end of the
21st century, strongest over north-eastern Europe in
winter and over Central Europe and the Mediterranean
area in summer. Precipitation is projected to increase
mainly over North Europe in winter, whereas South Eur-
ope and the Mediterranean will likely see decreases the
whole year round [7]. An assessment of possible future
changes of the length of the malaria transmission season
using climate output from General Circulation Models
(GCMs) and different malaria impact models shows that
until the 2080s a northward shift of the malaria epidemic
belt over central-northern Europe might occur [6]. Med-
lock & Leach [8] concluded in a review study for the UK
that under climate change more than two months of P.
vivax transmission by 2030, and four months by 2080
could arise. For Lower Saxony in Germany Schröder &
Schmidt [9] showed that in the second half of the 20th
century the temperature-dependent malaria transmission
rate of An. atroparvus from May to October was two
months and might take values up to five or six months
until the end of the 21st century.
In the context of global climate change GCMs are typ-

ically used to obtain large-scale climate information for
future periods. However, GCMs do not provide reliable
information on regional to local scales. Thus, different
downscaling approaches have been developed. In gen-
eral, they can be divided into statistical downscaling
(establishing a statistical link between large-scale atmos-
pheric predictors and regional to local climate) and dy-
namical downscaling, i.e. nesting a regional climate
model (RCM) into a GCM with higher grid box resolution
[10]. Current RCMs can reproduce the most important
climatic features such as temperature and precipitation at
regional scales, but some important biases still remain.
These refer for instance to local heavy precipitation events
and are related to the convective parameterizations, grid
resolution and other aspects of the model formulation
[10]. Therefore, a correction method such as quantile
mapping (QM) is usually applied to the RCM output [11].
QM adjusts the cumulative distribution function of a sim-
ulated variable to match the cumulative distribution func-
tion of observed values. Gutiérrez et al. [11] found in an
intercomparison of different downscaling techniques for
temperature and precipitation in the European area that
empirical QM including a seasonal component performs
with very small biases.
The present study investigates distribution changes of

dominant Anopheles vectors of human malaria in the
greater European area for the 21st century under climate
change. It builds on previous work of Sinka et al. [5] and
Kuhn et al. [12] who modelled the current distribution

of dominant Anopheles vectors in Europe using environ-
mental and climatic variables. Variables in these studies
included i.a. monthly temperature and precipitation
values, elevation, and land cover classes [12, 13]. The
focus of the present study is to assess future vector distri-
bution changes due to climate change using state-of-the
art RCM simulations. As in Sinka et al. [5, 13] Boosted Re-
gression Trees (BRTs, [14]) are applied to relate climate
variables and land-cover classes to vector occurrences.
Bias-corrected temperature and precipitation from two
different GCM-RCM setups under two emission scenarios
are used to assess regional climate suitability of Anopheles
vectors in Europe and the Mediterranean area under fu-
ture climate change. Only changes of the climatic influ-
ences on the vector distribution are considered in the
regional projections, since environmental effects such as
land use changes are currently not implemented in the
standard RCM generation. Finally, potential malaria trans-
mission stability during the 21st century is assessed, which
builds on the vector stability index of [15].

Methods
Anopheles occurrence data
Occurrence data of the dominant Anopheles vectors
in Europe come from the distribution maps of Sinka
et al. [5]. These authors used the Malaria Atlas Pro-
ject library, a literature research and expert opinion
maps to produce maps of Anopheles occurrences. Oc-
currence data refer basically to the period 1985–2009.
The presence-absence information of the six Anoph-
eles vectors (An. atroparvus, An. labranchiae, An.
messeae, An. sacharovi, An. sergentii and An. super-
pictus), which is provided as Shapefiles in the elec-
tronic supplementary material of Sinka et al. [5], was
rasterized to a 0.25° resolution to match the grid
resolution of the observation-based climate data.

Climate data
Observational data
Mean, minimum and maximum temperature as well
as precipitation data were taken from the daily 0.25°
E-OBS dataset version 17 provided by the European
Climate Assessment & Dataset (ECA&D [16]). A
European-Mediterranean domain was selected, cover-
ing 75.375–25.375°N and 19.875°W49.875°E. Data in
the time period 1950–2009 were selected. The time
period 1985–2009, which is mainly used for subse-
quent analysis, was filtered for missing values for
each month separately. A particular month was con-
sidered complete if there were less than three missing
days per month, and the time series was considered
complete if there were less than four missing months in
the period 1985–2009. Grid boxes which did not meet
these conditions were removed. Monthly temperature
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means (in Kelvin K) as well as monthly precipitation totals
were calculated from the daily data.

Model data
RCM simulations carried out in the framework of
EURO-CORDEX (European branch of the Coordinated
Regional Climate Downscaling Experiment [17]) are
employed. In the present study data with the grid resolution
of about 50 km (0.44° on a rotated grid) are considered and
conservatively regridded to 0.25° in order to match the
E-OBS grid resolution. KNMI-RACMO22E driven by the
GCM EC-EARTH as well as CLMcom-CCLM4-8-17
driven by MPI-ESM-LR were chosen as RCM simulations.
The two RCMs were selected according to their good per-
formance over Europe in the observational period [18].
Historical runs for the period 1950–2005 (KNMI-RAC-
MO22E) and 1960–2005 (CLMcom-CCLM4-8-17) as well
as scenario runs for the period 2006–2100 under RCP4.5
and RCP8.5 scenario assumptions [19] were available for
subsequent analyses.

Land cover data
Land cover information was used in the form of 22 cat-
egories of land cover from the GlobCover project [20].
GlobCover3 2009 V.2.3 land cover map is derived by an
automatic and regionally-tuned classification of a time
series of global ERIS (Medium Resolution Imaging Spec-
trometer Instrument) Fine Resolution mosaics for the
year 2009. The land cover classes, defined with the
United Nations Land Cover Classification System, have a
300 × 300 m resolution. To match the E-OBS grid reso-
lution, land cover information was calculated as percent
coverage of each class in a particular 0.25° grid box.

Correction of model data
Transfer functions were defined to match the RCM out-
put of a variable Pm (temperature, precipitation) in the
historical period with the statistical properties of a variable
Po from the E-OBS observations. The non-parametric em-
pirical quantile method suggested in [21] and imple-
mented in the qmap package in R was used. The transfer
functions were subsequently used to correct the RCM
output of the historical and the future periods. According
to Gudmundsson et al. [21], the transformation is defined
as:

Po ¼ F−1
o Fm Pmð Þð Þ ð1Þ

where Fm is the cumulative distribution function
(CDF) of Pm and F−1

o is the inverse CDF (quantile func-
tion) corresponding to Po.
The empirical CDFs were approximated using empir-

ical percentiles at a fixed interval of 0.01. Values in be-
tween the percentiles were approximated using a linear

interpolation. A threshold for the correction of the num-
ber of wet days was estimated from the empirical prob-
ability of non-zero values in Po. The correction of the
daily values at each grid box was done for each month
separately to account for seasonality.
The performance of QM was assessed by using a

split-sampling validation approach. For KNMI-RACMO22E
the historical model output comprises the years 1950–2005,
which was split into the 30-year calibration periods 1950–
1979 and 1976–2005. Bias correction was done for each of
the two calibration periods and the performance was vali-
dated in the two, from the correction independent, 26-year
periods 1980–2005 and 1950–1975, respectively. For
CLMcom-CCLM4-8-17 historical model output was avail-
able for the period 1960–2005 and the 25-year calibration
periods 1960–1984 and 1981–2005 were used for setting
up the transfer functions between observed and modelled
values. The statistical bias correction was subsequently vali-
dated in the independent 21-year periods 1985–2005 and
1960–1980, respectively. Root mean square error (RMSE)
between observed and modelled values was used as per-
formance measure. RMSE is calculated for the arithmetic
means across all grid cells, assuming an equal weight for
each cell. Thus, it serves as a cumulative measure of the
bias over the considered domain.

Distribution modelling and projection
Climate data (mean, minimum and maximum
temperature and precipitation) of each month separately
in the time period 1985–2009 as well as the land cover
data served as predictors for vector occurrences. In
order to quantify the relationships between vector occur-
rences with climate and land cover variables and to map
and project the occurrences under present and future
climate conditions Boosted Regression Trees (BRTs)
were used. Detailed descriptions of BRT are provided by
Elith et al. [14] and Hastie et al. [22]. BRT combines re-
gression trees and boosting. BRT attempts to minimize a
loss function, which involves jointly optimizing the num-
ber of trees, learning rate, and tree complexity. The
learning rate is used to shrink the contribution of each
tree as it is added to the model. Slowing the learning
rate increases the number of trees required. In general, a
smaller learning rate (and consequently a larger number
of trees) is preferable. Tree complexity (number of nodes
in a tree) relates to the interaction order in the predic-
tand. With increasing tree complexity, learning rate
must be decreased if sufficient trees are to be fitted to
minimize predictive error. The tree complexity should
reflect the correct interaction order in the response vari-
able. However, since an adequate tree complexity is usu-
ally unknown, it is best evaluated using independent
data. As in Elith et al. [14] the optimal number of trees,
learning rate and tree complexity were estimated with a
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cross-validation approach, using deviance reduction as
performance measure. The dismo and gbm packages in
R were used to assess the optimal number of boosting
trees using 10-fold cross-validation. In the present study
models were developed with 50% of the data, and were
validated with the remaining data. Tree complexity of 2
up to 8, and learning rates of 0.005, 0.1 and 0.5 were
evaluated.
The modeling of the vector distributions using BRT

requires both presence and absence data. The lack of
confirmed absences in the occurrence data was ad-
dressed by the production of artificial absence data,
called pseudo-absences. The pseudo-absences are all grid
boxes outside of the suitable area, which is estimated by
a rectilinear surface range envelope [23]. Following the
recommendation of Barbet-Massin et al. [24] the same
number of pseudo-absences as presences was tested (ra-
tio 1:1, with 1000 presences and 1000 pseudo-absences
randomly selected from the available data). Additionally,
ratios of 5:1 (5000 pseudo-absences and 1000 presences)
and 10:1 (5000 pseudo-absences and 500 presences)
were also tested, since Sinka et al. [5], although using dif-
ferent predictor data and BRT setup, found the best over-
all performance for the European and Middle Eastern
Anopheles species with a ratio of 10:1 pseudo-absences to
presence. Model validation was subsequently done using
the remaining independent data not used for model build-
ing. The BRT model was used to predict vector occur-
rences to the independent data and the result was taken
for evaluation of the model. As statistics on predictive per-
formance deviance, correlation, discrimination and Kappa
were estimated and results were also evaluated visually.
Details on cross-validation and performance measures can
be found for instance in [25–27].
Subsequently, the best performing BRT configuration

was used to project vector occurrences under future cli-
mate change. For this purpose, the bias-corrected RCM
data were taken as new predictor data in the BRTs. The
projected occurrences were evaluated for the historical
period 1985–2005, and the two scenario periods 2040–
2060 and 2080–2100.

Potential malaria transmission stability
The vector stability index (VSI) of Kiszewski et al. [15] is
used to generate maps of the future potential malaria
transmission stability under climate change:

VSI ¼
X12

m¼1

a2i;mp
E
i;m=− ln pi;m

� � ð2Þ

where m is month; i is vector; a is the human-biting
proportion (0−1); p is the daily survival rate (0−1); and E
is the length of extrinsic incubation period in days (for
P. vivax E = 105/T-14.5). VSI was calculated for each

vector i. The parameters a and p for each Anopheles spe-
cies were taken from the publication of Kiszewski et al.
[15]. Within the calculation of the length of extrinsic in-
cubation period E, mean temperature (T) of the histor-
ical time slice 1985–2005 as well as of the future time
slices 2040–2060 and 2080–2100, taken from the
bias-corrected RCM data, were used. The vector-specific
VSI results were integrated into an overall information
by multiplying the VSI value with the modelled occur-
rence probability for each vector at each grid box. The
VSI of that vector which has the highest value of com-
bined VSI and occurrence probability at a particular grid
box was subsequently mapped.

Results
Vector and climate data
The filtering procedure (completeness check) of the cli-
mate data resulted in 20,632 grid boxes to be used for
subsequent analyses. Grid boxes with vector presence
but no available climate data were excluded from further
analyses. The rasterization of the Anopheles occurrence
data to the 0.25° grid yielded 7850 grid boxes of presences
for An. atroparvus (38% of the European-Mediterranean
land area with available climate data), 1494 grid boxes for
An. labranchiae (7.2%), 13,490 grid boxes for An. messeae
(65.4%), 2449 grid boxes An. sacharovi (11.9%), 1221 grid
boxes for An. sergentii (5.9%) and 2495 grid boxes for An.
superpictus (12.1%). The rasterized distribution maps are
given in Additional file 1: Figure S1.

Regional climate model bias correction
Correction of the RCM data using empirical quantile
mapping reduced the bias of KNMI-RACMO22E pre-
cipitation by 0.17 mm/day to a bias, averaged across all
months, of 0.43 mm/day. For temperature, the bias was
reduced by 1.35 K to an average bias of 1.14 K for mean
temperature, by 1.62 K to 1.2 K for minimum
temperature, and by 1.66 K to 1.14 K for maximum
temperature. The bias of CLMcom-CCLM4-8-17 pre-
cipitation was0.38 mm/day lower compared to the raw
RCM output and amounted after bias correction to 0.47
mm/day averaged over all months. Mean temperature
bias was reduced by 0.62 K to 0.8 K, minimum
temperature by 0.52 K to 0.84 K, and maximum
temperature by 1.56 K to 0.87 K. The individual monthly
values for all variables of both RCMs are tabulated in
Additional file 1: Table S1.

Vector distribution models
From the different configurations tested the best perform-
ance of the BRTs was achieved with learning rate = 0.005
and bag fraction = 0.5. For An. atroparvus and An. mes-
seae, which have a widespread occurrence in the European
area and thus have a more equal number of grid boxes
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with presence to absence, the ratio 1:1 of pseudo-absence
to presence data and tree complexity of 2 yields the best
BRT model performance. For An. labranchiae, An. sachar-
ovi, An. sergentii and An. superpictus, which have a smaller
geographical range, the ratio 10:1 of pseudo-absence to pres-
ence and tree complexity of 3 gave the best results. Add-
itional file 1: Table S2 and Figure S2 show for each vector
the predictive performance of the best-performing BRT and
maps of the modelled occurrence probabilities, respectively.
The modelled spatial distributions showed a high agreement
with the reference occurrence data (Additional file 1: Figure
S1). The most noticeable discrepancy occurred for An. atro-
parvus over the southern parts of the Iberian Peninsula,
where vector presence is missed in the modelling.
The information about the contribution of each pre-

dictor variable to the model is based on the number of
times a variable is selected for splitting, weighted by the
squared improvement to the model as a result of each
split, and averaged over all trees [14]. For An. atroparvus
the most important temperature predictors (relative im-
portance > 5%) were temperature conditions in early
spring. The fitted functions revealed that the 0 °C thresh-
old is of particular importance in this regard. A similar re-
lationship emerged for An. labranchiae. For An. sacharovi
and An. superpictus, maximum temperatures in early
spring up to approx. 10–15 °C were positively related to
occurrence. For An. messeae, mean temperature in spring
was selected in the BRTs. These results point to the rele-
vance of temperature conditions at the end of the hiberna-
tion period/beginning of the active period. For An.
superpictus, high maximum temperatures in autumn were
favorable as well. For An. messeae, an optimum maximum
temperature range in autumn at the beginning of the hi-
bernation period was also relevant. Overall, vector occur-
rences showed the highest dependence on temperature
conditions in the transitional seasons at the beginning/
end of the active and hibernation periods.
The contribution of precipitation in summer and early

autumn in the BRTs for An. atroparvus indicates the im-
portance of sufficient water during the aquatic life-cycle.
For An. messeae precipitation in spring and early sum-
mer was highly relevant; for An. labranchiae precipita-
tion in spring and early autumn played an important
role. Anopheles sacharovi showed a great dependence on
climate conditions (minimum and mean temperature,
rainfall) in summer, the peak time of the adult activity.
The occurrence of the North African species An. sergen-
tii was almost completely governed by rainfall conditions
in summer. While in general precipitation was positively
connected with Anopheles occurrences, very high
monthly precipitation amounts can also have a reverse
impact on occurrences. This applies to spring precipita-
tion amounts for An. messeae, and to summer precipita-
tion for An. sacharovi and An. sergentii.

Land cover classes with a relative predictor importance
> 5% were only present in the BRTs for An. atroparvus,
An. labranchiae and An. superpictus. Rainfed croplands
(high fractions of this land cover class were positively
related to An. atroparvus occurrence; closed to open
(> 15%) shrubland were negatively related to the oc-
currence of the Mediterranean species An. labran-
chiae and An. superpictus; mosaic cropland (50–70%)/
vegetation (20–50%) were positively related to An.
labranchiae occurrence; and closed (> 40%) broadleaved
deciduous forest were positively related to An. superpictus
occurrence. In summary, climatic predictors clearly domi-
nated as important predictors in the BRTs.

Projections of vector distributions
Figure 1 shows the modelled probabilities of vector occur-
rences for the historical period 1985–2005, and the two
scenario periods 2040–2060 and 2080–2100 under the
RCP8.5 scenario for each vector. Shown is the mean value
from the BRT predictions using bias-corrected temperature
and precipitation of the two RCMs KNMI-RACMO22E
and CLMcom-CCLM4-8-17 as new predictor data. Projec-
tions based on the RCP4.5 scenario yielded similar, al-
though weaker tendencies of distribution changes.
Most noticeable is the northward spread of the vectors

An. atroparvus and An. messeae until the end of the
21st century, with concurrent disappearance of An. mes-
seae over the western parts of Europe. Anopheles labran-
chiae, An. sacherovi and An. superpictus also showed
northward extensions, but often with lower occurrence
probabilities in the newly emerging areas. In contrast,
vector occurrences in the Mediterranean area were gener-
ally mostly declining. Most pronounced was the reduction
of the occurrence area of An. superpictus, An. sacharovi
and An. sergentii over the eastern Mediterranean area and
North Africa under future climate conditions.
The distribution changes were strongly governed by the

general increases of temperature. In particular, the strong
temperature increases over north-eastern Europe and the
Mediterranean area in spring and autumn played a role in
this regard. Furthermore, changes of the precipitation pat-
tern in summer, with increases over north-eastern Europe
and strong decreases over the Mediterranean area as well
as southern and western Europe, accounted for the
changes, specifically for An. messeae and An. sergentii.
Since both, and in particular An. sergentii, heavily rely on
summer rainfall, their occurrence probabilities were no-
ticeably reduced until the end of the 21st century.

Potential malaria transmission stability in the 21st
century
Potential malaria transmission stability during the 21st
century was assessed based on the VSI. The spatial index
includes the most important intrinsic properties of
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anopheline mosquito vectors of malaria that interact
with climate to determine vectorial capacity. The index
examines potential transmission stability, and thus the
index includes “anophelism (with as well as) without
malaria” [15].
Figure 2 depicts the VSI for the historical period

1985–2005 as well as for the period 2080–2100 under
the RCP8.5 scenario assumptions. RCM ensemble mean
temperatures were used as climate data input for the cal-
culation of the length of the extrinsic incubation period.
Under historical climate conditions, there was in general
a low force of transmission throughout Europe. Under
RCP.8.5 conditions, large parts of the southern and
south-eastern European area emerged as regions with a
relatively high stability of potential malaria transmission.

From the belt of high VSI values southwards towards
North Africa as well as northwards towards Scandinavia,
transmission stability declined. The decrease of malaria
transmission stability to the south was mainly related to
the projected rainfall reductions and the resulting decline
of vector occurrences due to the drought-induced inhib-
ition of the aquatic life-cycle of the vectors An. sergentii
and also partly An. labranchiae. In contrast, the general
northward decline from the belt of high stability points to
the limitation of malaria transmission by temperature.
The values of the VSI in central and northern Europe are
controlled primarily by An. atroparvus, in northern Scan-
dinavia by An. messeae. The temperature increases until
the end of the 21st century suffice to have the vectors
spread throughout Europe. However, the climatic changes

Fig. 1 Modelled probabilities of vector occurrences. Shown are the results for the historical period 1985–2005, and the two scenario periods
2040–2060 and 2080–2100 under RCP8.5 scenario for An. atroparvus (a-c), An. labranchiae (d-f), An. messeae (g-i), An. sacharovi (j-l), An. sergentii
(m-o), and An. superpictus (p-r). Shown is the ensemble mean from the two RCMs KNMI-RACMO22E and CLMcom-CCLM4-8-17. Grid boxes with
vector presence in the observational period but no available observational climate data are marked in grey. Also, note the eastern boundary of
the RCM domain at 45°E
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only impacted the transmission stability in southern and
south-eastern Europe, whereas the length of the extrinsic
incubation period was still temperature-limited over
northern Europe.

Discussion
The statistical models showed that occurrences of An.
atroparvus, An. labranchiae, An. messeae, An. sacharovi,
An. sergentii and An. superpictus are highly related to
climate. This confirms the high climate sensitivity of
Anopheles vectors as already identified in previous stud-
ies, e.g. [5, 12]. In this regard, temperature in the transi-
tional seasons as well as rainfall during summer are of
particular importance. The results point to the impact of
climate on specific parts of the vectors life-cycle -
temperature mainly influences the active and hiberna-
tion periods of adult mosquitoes, whereas rainfall is
particularly important for the aquatic life stages. Precipi-
tation was mostly positively connected with Anopheles
occurrences. However, very high monthly precipitation
amounts can also have a reverse impact on occurrences.
Anopheles messeae and An. sergentii prefer freshwater
sites with very slow flowing or stagnant water [28], so
that a prevention of breeding sites by high rainfall
amounts can occur. Anopheles sacharovi is described as
a highly adaptive species, developing in all kinds of
brackish as well as fresh water habitats [28]. However,
the species is sensible to organic pollutants [29]. Thus, it
can be speculated that intense rainfall events may import
pollutants into its habitat yielding a reduced species
occurrence.
Despite the finding that climatic predictors perform

much better in the BRTs compared to land use informa-
tion, it should be investigated how future land use
changes may change vector occurrences. In the past,
drainage of wetlands and new farming techniques sub-
stantially contributed to the eradication of malaria in
Europe [4, 28]. In contrast, ongoing land use changes

such as crop irrigation and urbanization may create new
breeding sites [30]. In the present study An. atroparvus
and An. labranchiae occurrences were found to be posi-
tively related to cropland, whereas An. labranchiae and
An. superpictus occurrences were negatively related to
shrubland. It remains to be investigated how dynamic
land use changes will alter the vector distributions in the
future. A promising approach represents the Flagship
Pilot Study “LUCAS” (Land Use & Climate Across
Scales) for Europe, as a EURO-CORDEX & LUCID ini-
tiative, giving the prospect to consider consistently land
use and climate changes in future studies of vector
distribution.
The present study highlights that distinct changes in

the distributions of the dominant vectors of human mal-
aria are to be expected under the constraints of future
climate change. Temperature and precipitation changes
will lead to a northward spread of the occurrences of
Anopheles vectors. This result is in general agreement
with the findings from the global-scale, multi-model
malaria assessment of Caminade et al. [6]. However,
RCMs provide more detailed spatial patterns compared
to GCMs, which allows for an improved analysis of the
relationships of vector distribution and transmission sta-
bility with climatic changes. Thus, the high-resolution
projections of the present study showed that for some
Mediterranean areas occurrence probabilities may de-
cline, mainly due to projected rainfall decreases.
Furthermore, the modelled expansions of vector distri-

butions in the future do not automatically imply a con-
current increase of the potential malaria transmission
stability. Transmission stability was only increased in
areas where the climatic changes favor vector occur-
rences as well as yield enough temperature rise to
significantly impact the vectorial capacity. As a conse-
quence of this, the VSI showed the highest increases be-
tween historical and future periods for the southern and
south-eastern European areas. Anopheles atroparvus is

Fig. 2 Vector Stability Index. Shown are the values for the historical period 1985–2005 (a) and for the scenario period 2080–2100 under the
RCP8.5 scenario (b). White areas denote regions with no observational and/or RCM data
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the dominant vector in large parts of Europe under
present as well as future climate conditions. In addition,
it has the highest human-biting proportion and daily
survival rate of the European vectors [15]. The increases
of the duration of the transmission season and of the
extrinsic incubation period assigns this vector an im-
portant role with respect to changes of the potential
transmission stability. Countries affected by an increased
malaria risk comprised for instance Spain, southern
France, Italy, Greece, the eastern European countries
Bulgaria, Romania, Macedonia and Serbia as well as
southern Ukraine and Russia (Fig. 2). For Turkey no in-
formation was available due to the widespread lack of re-
liable observational climate data.
This study is one of the first high-resolution assess-

ment of the impact of future climate change on vector
distributions and potential transmission stability in the
European and Mediterranean area using state-of-the-art
climate scenarios. Further improvements may be pos-
sible through the consideration of a more diverse influ-
ence of temperature on the transmission intensity of
malaria. For instance, Shapiro et al. [31] experimentally
showed by means of An. stephensi and P. falciparum
that there are complex relationships of temperature with
adult mosquito longevity, human-biting rate, the devel-
opmental period of the parasite within the mosquito,
and the proportion of mosquitoes that become infectious.
Paajmans et al. [32] illustrated that the extrinsic incuba-
tion period of P. falciparum is modified by including the
diurnal temperature range and day length in comparison
to estimates based on mean temperature values only.
While there is a high climate model agreement with re-
spect to mean temperature and precipitation changes, the
use of extremes and further explanatory variables, like e.g.
wind speed or evapotranspiration will require a careful
evaluation of the projection uncertainties related to these
variables. Appropriate downscaling techniques have to be
applied in this context, which involves the availability of
reliable observational data as reference as well as specific
methods, which preserve the physical consistency between
variables and adequately adjust the extreme parts of the
distributions [33].
Furthermore, important non-climatic factors such as

population growth and urbanization, migration changes,
and economic development should be considered for fu-
ture risk assessments. Malaria declined rapidly in Europe
during the 20th century due to the implementation of na-
tional elimination programs, involving for instance drain-
ing of wetlands, insecticide spraying, and improvements
of health infrastructures [4]. Yet a high number of
imported malaria cases from endemic to non-endemic
countries is reported, e.g. 2169 cases per year in the period
2005–2015 for France, 637 cases for Italy, 374 cases for
Spain [34]. In addition, the local reappearance of malaria

in some parts of southern Europe is observed in recent
years [3]. Migration and economic hardship are consid-
ered as critical variables with respect to the vulnerability
of a region [4]. Moreover, with respect to ongoing
urbanization, novel breeding sites become available. For
instance, special attention has recently been given to An.
plumbeus, which exploits man-made breeding sites, is able
to transmit P. falciparum, and has a high human-biting
proportion [35]. Thus, further investigations should also
consider this vector. In addition, very high-resolution
climate and land-use modeling, which resolves the
sub-urban scale, should be used for risk assessment.

Conclusions
Potential malaria transmission stability is increased in
areas where the climatic changes favor vector occurrences
as well as significantly impact the vectorial capacity. As a
result, vector stability shows the highest increases between
historical and future periods for the southern and
south-eastern European areas. Anopheles atroparvus, the
dominant vector in large parts of Europe, might play an
important role with respect to changes of the potential
transmission stability. Risk assessments of malaria in view
of climate change as well as of other factors like land use
changes and ongoing urbanization are of particular im-
portance on the local scale. The present contribution adds
to the current research by providing high-resolution pro-
jections of climate-induced changes in Europe and the
Mediterranean area.
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Additional file 1: Figure S1. Distribution maps of the dominant Anopheles
vectors in Europe and the Mediterranean area: An. atroparvus (a); An.
labranchiae (b); An. messeae (c); An. sacharovi (d); An. sergentii (e); and An.
superpictus (f). Data taken from Sinka et al. [5]. Figure S2. Modelled
probabilities of vector occurrences in the observational period 1985-2009: An.
atroparvus (a); An. labranchiae (b); An. messeae (c); An. sacharovi (d); An. sergentii
(e); and An. superpictus (f). Grid boxes with vector presence but no available
climate data are marked in grey. Table S1. Performance of Empirical Quantile
Mapping of daily RCM output. Abbreviations: RMSE: root mean square error
(precipitation in mm/day, temperature in K); Raw: raw RCM output; QM:
Quantile Mapping results. Shown is for each month the mean performance
over the two validation periods. Table S2. Performance of Boosted Regression
Trees. Shown are the evaluation statistics based on the model development
independent data. (DOCX 666 kb)
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