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Abstract

storage of memory.

Background: Protein kinase M( (PKM(), the brain-specific, atypical protein kinase C isoform, plays a key role in
long-term maintenance of memory. This molecule is essential for long-term potentiation of the neuron and various
modalities of learning such as spatial memory and fear conditioning. It is unknown, however, how PKMC stores
information for long periods of time despite molecular turnover.

Results: We hypothesized that PKM( forms a bistable switch because it appears to constitute a positive feedback
loop (PKME induces its local synthesis) part of which is ultrasensitive (PKMZ stimulates its synthesis through dual
pathways). To examine this hypothesis, we modeled the biochemical network of PKMC with realistic kinetic
parameters. Bifurcation analyses of the model showed that the system maintains either the up state or the down
state according to previous inputs. Furthermore, the model was able to reproduce a variety of previous
experimental results regarding synaptic plasticity and learning, which suggested that it captures the essential
mechanism for neuronal memory. We proposed in vitro and in vivo experiments that would critically examine the
validity of the model and illuminate the pivotal role of PKM( in synaptic plasticity and learning.

Conclusions: This study revealed bistability of the PKM({ network and supported its pivotal role in long-term

Background

Protein kinase M{ (PKMY) is increasingly drawing atten-
tion as a molecule that maintains neuronal memory for
an extremely long period of time [1]. It is a brain-speci-
fic atypical protein kinase C (PKC) isoform that lacks a
regulatory domain, rendering it constitutively active [2].
PKM{ enhances excitatory postsynaptic currents
(EPSCs) and leads to the long-term potentiation (LTP)
of synapses by stabilizing a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA)-type glutamate
receptors through an N-ethylmaleimide-sensitive factor
(NSF)/GluR2-dependent pathway [3-5]. The messenger
ribonucleic acid (mRNA) for PKM( is found in various
brain areas, including the hippocampus, striatum, neo-
cortex, thalamic nuclei, and cerebellar cortex and loca-
lizes to spiny dendrites of neurons [6]. PKMC is
translated within only ten minutes in response to LTP-
inducing stimuli [2,7], suggesting its local synthesis.
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The use of a specific inhibitor, {-inhibitory protein
(Z1P) [8], has elucidated the pivotal role of PKM( in
synaptic plasticity, learning, and memory. The late phase
of LTP (L-LTP) in a hippocampal slice is reversed by
ZIP administration [9], indicating that LTP maintenance
requires PKM{. PKM( plays crucial roles in various
modalities of learning, including spatial memory of the
hippocampus and fear conditioning of the basal lateral
amygdala, as evidenced by memory erasure following
ZIP microinjection [10]. In rats, consolidated memory is
sensitive to ZIP for at least one month [11].

PKMC( appears to constitute a positive feedback loop
[1,12,13]. ZIP administration prevents hippocampal neu-
rons from expressing PKM( protein when these neurons
are treated with a tetanus that would normally induce
LTP and PKM( expression [12], indicating that PKM(
activity is necessary for PKM( synthesis. We previously
posed the possibility that the PKMC( network is bistable
[13], since biochemical positive feedback loops often
offer bistability [14,15]. Bistable positive feedback loops
of enzymatic reactions may provide a basis for cellular
memory [16,17].
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Our previous model [13,18] conceptually illustrated
that memory plasticity and stability can be both
achieved by a cascade of multiple nonlinear or bistable
dynamics that have various time constants and are con-
nected in tandem in the order of fast to slow. Once the
cascade is stimulated, activity is transmitted from a fast
dynamic to a slower dynamic before the faster dynamic
loses its activity; finally, the slowest dynamic is turned
on. Hippocampal LTP appears to occur in line with this
model. LTP-inducing stimuli trigger a supralinear cal-
cium increase in dendritic spines that lasts for seconds
[19-22]. Then, calcium activates protein kinases such as
Ca**/calmodulin-dependent protein kinase (CaMKII) in
a supralinear manner and maintains their activity for
tens of minutes [23,24]. Finally, CaMKII and other pro-
tein kinases induce longer-lasting PKM( expression [12]
probably in an all-or-none manner [13].

To evaluate our hypothesis that the PKM( network is
bistable and functions as neuronal memory, we per-
formed simulations and bifurcation analyses in the
Results section. Very simple though our model was, it
was able to reproduce various experimental results.
Moreover, in the Discussion section, we proposed yet to
be done experiments that would critically examine our
hypothesis. Although ZIP is regarded as a specific inhi-
bitor of PKMC, it might inhibit other protein kinases as
well. In this paper, therefore, we use the term ‘PKMC to
collectively refer to ZIP-sensitive protein kinases includ-
ing PKMC.

Results

Description of the model

Figure 1 illustrates the molecular pathways of the PKM{
network model. The model is described by three ordin-
ary differential equations (ODEs), Equations 1-3 (see
Methods). A time-dependent variable, Stim(t), repre-
sents the aggregate activity of protein kinases that trig-
ger PKM( expression, such as CaMKII, PKC, and
mitogen-activated protein kinase (MAPK) (Figure 1,
arrow 1) [2,7]. In reality, these protein kinases act
through various pathways to turn on the PKM{ network.
However, since the purpose of the model was to mathe-
matically analyze the dynamics of the network, kinasic
activation of the network was simplified as a single vari-
able. Experiments have shown that the PKM( protein
stimulates translation of its own mRNA into protein
(Figure 1, arrow 2) [25], forming a positive feedback
loop. At the same time, its PKC activity presumably pro-
motes actin polymerization (Figure 1, arrow 3) [26-29],
and F-actin (actin polymer) facilitates general protein
synthesis (Figure 1, arrow 4) [30,31]. This convergence
of the two pathways is likely to make the system more
sensitive to differences in stimulus size than the stan-
dard Michaelis-Menten kinetics (ultrasensitivity). A

Page 2 of 10

PKMC

2

Actin poly-
merization

/

Translation

o

Stim(t)

Figure 1 The PKM{ network model. See text for explanation.

mathematical theory states that a combination of ultra-
sensitivity and positive feedback possibly results in bist-
ability [15], which we examine in the following section.

Bistability of the PKM( network

We stimulated the model with a square wave, Stim(t) =
5, 25 or 125 (0 < t < 30), to observe the time course of
[PKM(] (Figure 2A). EPSC amplitudes (Figure 2B) were
estimated by time-integrating [PKM(] (Equation 4 in
Methods). In this model, the concentrations of mole-
cules, strength of Stim, and EPSC are unitless values,
and EPSC amplitudes of 1 and 2 correspond to the
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Figure 2 Time courses of A) [PKM(] and B) EPSC amplitude. A
weak (Stim = 5, solid line), intermediate (Stim = 25, dashed line) or
strong (Stim = 125, dotted line) stimulus was given for 30 minutes.
Stimulus strength, [PKM{], and EPSC amplitude are unitless values.
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unpotentiated and potentiated states, respectively. When
the stimulus was weak (Stim = 5), [PKM(] rose transi-
ently but ended up at zero, and EPSC was enhanced tran-
siently. When the stimulus was intermediate (Stim = 25),
[PKM(] reached a value of 0.72 asymptotically, and EPSC
amplitude reached a value of 2. When the stimulus was
strong (Stim = 125), [PKM(] overshot before asymptoti-
cally reaching a value of 0.72, and EPSC amplitude
approached a value of 2 asymptotically.

We then varied the duration and strength of Stim(t) to
see whether [PKM(] can reach any steady state other
than [PKM(]; - .. = 0 or 0.72. In the two-dimensional
parameter space (Figure 3A) with respect to the strength
(abscissa) and duration (ordinate), [PKM(]; - .. was either
0 (gray) or 0.72 (white), and not intermediate anywhere.
Stimuli that were longer or shorter in duration required a
weaker or stronger strength, respectively, to turn on the
PKMC( network. As expected, EPSC amplitude reached a
value of only either 1 or 2 (Figure 3B), and the areas for
EPSC; - .. = 1 and EPSC, _ ., = 2 were identical to
the areas for [PKM(]; - .. = 0 and [PKM(]; - .. = 0.72,
respectively. This switch-like behavior indicated high
nonlinearity of the system.

Up to this point, we have shown that the PKM( net-
work responds to stimuli in an all-or-nothing manner
(Figures 2 and 3). Next, we performed a bifurcation ana-
lysis [32-34] to further illuminate the dynamics of the
model and evaluate its parameter dependence. The
model has seven parameters, including the rate para-
meters j;, jo, j3, and j, and three time constants (see
Methods), but we only needed to analyze the model
with respect to the four rate parameters because the
time constants do not affect the model equilibria (see
additional file 1). j; denotes the PKMC( synthesis rate
relative to its decay rate, j, and j; denote the PKM(-
independent and PKM(-dependent actin polymerization
rates relative to the actin depolymerization rate, respec-
tively, and j; denotes the rate at which PKM{ mRNA is
incorporated into the translational machinery relative to
the rate of mRNA detachment from the machinery.
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Figure 3 Steady-state A) [PKM(] and B) EPSC amplitude after
various strengths and durations of Stim were given. The
strength and duration of Stim are shown on the abscissa and the
ordinate, respectively.
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Figure 4 Bifurcation analyses. A) Bifurcation diagram with respect
to the PKMC synthesis rate, j;. B) Bifurcation analysis with respect to
the PKMC-independent actin polymerization rate, j,. Only one (SNT1)
of the two saddle node bifurcations is seen in this plot. C, D) Two-
parameter bifurcation analysis with respect to j,, and the PKMC-
dependent actin polymerization rate, j;. C) A two-dimensional plot
with j, in the X-axis and j; in the Y-axis. D) A three-dimensional plot
with j, in the X-axis, j; in the Y-axis, and steady-state [PKM{] in the
Z-axis (log scale). E) Bifurcation analysis with respect to j, the rate at
which PKMZ mRNA is incorporated into the translational machinery.
In panels A, B, and E, the solid and dashed lines indicate [PKM(] at
stable and unstable steady states, respectively; the circles denote
saddle-node bifurcations. In panels C and D, the solid lines, solid
circles, and open circle (only in panel C) indicate saddle-node
bifurcations (SN1 and SN2), the cusp bifurcation point, and the
default values of j; and j,, respectively.

First, we varied the PKMC( synthesis rate j; and tracked
the equilibrium points of the model (Figure 4A). The
horizontal and vertical axes show j; and steady-state
[PKM(], respectively. The two solid lines denote
stable steady states: the UP state (upper) and the
DOWN state (lower). There were two saddle-node
bifurcations (circles) at j; = 53 and j; = 100. When j; <
53, only the DOWN state was stable; when j; > 100,
only the UP state was stable. When 53 < j; < 100, the
system was bistable at the two stable steady states, the
UP and DOWN states, which were separated by an
unstable steady state (dashed line). The default value of
jz was 80 and within the range of bistability.

Next, we performed a bifurcation analysis with respect
to the PKM(-independent actin polymerization rate j,
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and the PKMC{-dependent polymerization rate j;.
Figure 4B shows j, on the horizontal axis and steady-
state [PKM(] on the vertical axis. There was a saddle-
node bifurcation (SN1) at j, = 0.066, and the system
was bistable when j, < 0.066 and monostable at the UP
state when j, > 0.066. To further characterize the actin
polymerization rates-dependent dynamics of the model,
we performed two-parameter bifurcation analysis with
respect to j, and jz (Figures 4C and 4D). The analysis
revealed that two branches of the saddle node bifurca-
tion curve (solid lines, SN1 and SN2) met tangentially at
a point (solid circle). This type of bifurcation is mathe-
matically termed the “cusp bifurcation” [34]. The para-
meter regions of monostability and bistability are
indicated in Figure 4C. Loss of bistability at small values
of j, and j3 indicates that the F-actin-dependent facilita-
tion of protein synthesis is essential for the bistability of
the PKM( network.

Lastly, we performed a bifurcation analysis in terms of
jo» the rate at which PKMZ mRNA is incorporated into
the translational machinery (Figure 4E). The system was
monostable at the DOWN state when j; < 0.10 and at
the UP state when j, > 0.19. It was bistable when 0.10 <
ja < 0.19. The PKM( network was shown to be bistable
over wide ranges of the parameters j;, j», j3, and j,, indi-
cating its suitability as an engram.

Comparison with previous experiments

Next, we simulated a variety of previous experiments to
examine whether the model was able to explain their
results.

PKM( inhibition

ZIP reverses LTP in hippocampal neurons even when
applied five hours after LTP-inducing stimuli [9], indi-
cating the essential role of PKM( in L-LTP. We simu-
lated this experiment by starting from the UP state and
temporarily clamping [PKM(] at zero for 60 minutes.
The simulated time courses of [PKM(] and EPSC ampli-
tude are plotted in Figures 5A and 5B. When PKM( was
eliminated, EPSC amplitude began to gradually decrease.
When [PKM(] was unclamped at t = 60, it increased
slightly, hit a peak, and decreased again, whereas EPSC
amplitude constantly approached the DOWN state.
Thus, the simulation result is consistent with the experi-
mental result [9].

PKM({ introduction

The introduction of exogenous PKM( has been shown
to be sufficient to induce LTP in CA1l pyramidal neu-
rons [25]. We simulated this finding by fixing [PKM(] at
10 for 5 minutes to mimic exogenous PKMC. The simu-
lated time courses of endogenous [PKM(] and EPSC
amplitude are shown in Figures 5C and 5D. Similar to
the experimental result, transient application of exogen-
ous PKM( activated PKM( production and turned on
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Figure 5 Simulations reproducing previous experimental
results. Time courses of [PKM{] (panels A, C, E, G, ) and EPSC
amplitude (panels B, D, F, H, J) are shown. A, B) ZIP administration
to a potentiated synapse. C, D) PKMC perfusion. E, F) Protein
synthesis inhibitor administration to a potentiated synapse. G, H)
Stimulation in the presence (solid line) or absence (dashed line) of
an actin assembly inhibitor. |, J) Reactivation in the presence (solid
line) or absence (dashed line) of protein synthesis inhibitor. The
dotted line corresponds to protein synthesis inhibition without
reactivation. Arrows and bold bars indicate the onset of an LTP-
inducing stimulus, Stim(t) = 25 (0 < t < 30), and the duration of
drug administration, respectively.

the positive feedback loop, which perpetually maintained
endogenous PKM( expression and enhanced EPSC
amplitude.

Protein synthesis inhibition

Transient inhibition of protein synthesis does not erode
the consolidated memory of a behaving animal unless
the memory is recalled simultaneously with the
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inhibition [35-37]. We simulated protein synthesis inhi-
bition in a potentiated synapse by setting j; to 0 during
0 < t < 540. The duration of inhibition was based on a
report that microinfusion of anisomycin into the hippo-
campus inhibited protein synthesis for 9 hours [38]. The
simulated time courses of [PKM(] and EPSC amplitude
are plotted in Figures 5E and 5F. PKM( was degraded
so slowly that only a small portion was lost while j; = 0
for 540 minutes, and the level returned to that of the
UP state value when j; was recovered. This result is
consistent with the fact that transient protein synthesis
inhibition does not usually affect consolidated memory
[35-37].

Actin assembly inhibition

Actin assembly inhibitors such as cytochalasins and
latrunculins inhibit LTP induction [39]. We simulated
the temporal application of an actin assembly inhibitor
by setting j, and j3 to 0 for 60 minutes. The simulated
time courses are plotted in Figures 5G and 5H. In agree-
ment with experimental results, a stimulus that would
have activated the PKM( positive feedback loop in the
control condition failed to do so when actin assembly
was inhibited temporarily.

Reconsolidation

Upon retrieval, well-consolidated memories become
labile and vulnerable to protein synthesis inhibitors
(reactivation) before they are reconsolidated [35-37].
Reactivation is thought to trigger a consolidation-like
process because reactivated memory and newly acquired
memory have similar time courses of susceptibility to
protein synthesis inhibition: they are intact in the short
term but impaired in the long term when a protein
synthesis inhibitor is administered either upon retrieval
or upon de novo learning [40]. A reconsolidation-like
process is also observable in slice electrophysiology [41];
synapses that are potentiated by tetanus stimulation are
depotentiated when stimulated again in the presence of
a protein synthesis inhibitor.

These findings indicate that carrier proteins of mem-
ory traces are depleted on retrieval and replaced by
newly synthesized proteins to restore memory, as sug-
gested previously [42]. Because PKMC is a carrier of
long-term memory, we, as well as other researchers,
assumed an active mechanism that destroys PKM( and
induces its synthesis upon retrieval [1,13,37]. To exam-
ine whether this assumption is consistent with previous
experimental results, we simulated the time courses of
[PKM(] and EPSC amplitude after reactivation (Figures
5I and 5]J). Reactivation, which we supposed would
destroy PKM( protein, was mimicked by clamping
[PKM(] at zero during 0 < t < 10. j; was set at 0 when
0 < t < 540 and at the default value otherwise to imitate
transient inhibition of protein synthesis. When the
synapse was reactivated by a stimulus in the presence of
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a protein synthesis inhibitor, EPSC amplitude
approached the DOWN state, and [PKM(] did not
recover after treatment (solid lines). By contrast, [PKM(]
and EPSC amplitude recovered and ended up in the UP
state, when the synapse was treated with either a reacti-
vating stimulus (dashed lines) or a protein synthesis
inhibitor alone (dotted lines). These simulated results
are in line with the process of reconsolidation seen in
behaving animals and brain slices [35-37,41]. However,
the consistency between the simulation results and
experimental data does not necessarily prove our
hypothesis that newly synthesized PKM( replaces old
PKM( upon reactivation. Reconsolidation might also be
explained by other plausible mechanisms.

Discussion

Our model was extremely simple and lacked many of
known pathways. Nevertheless, the model reproduced a
variety of previous experimental results, suggesting that
it captures the key characteristics of the PKM( network.
In this section, we go a step further and propose yet to
be done experiments to examine the validity of the
model.

Reconsolidation

We assume that in the neuron, multiple nonlinear
dynamics with various time constants are connected in
tandem to store information stably and flexibly [13,18].
According to this model, memory reactivation switches
off the slowest dynamic, the PKM{ network, and
switches on the upstream dynamics (i.e., supralinear cal-
cium increase and calcium-activated protein kinases) on
the other hand. In Figures 51 and 5], we demonstrated
the consistency between the simulation results and pre-
vious experiments to underpin our hypothesis that upon
memory reactivation, newly synthesized PKMC( replaces
preexisting PKMC. It is possible to take advantage of
LTP reconsolidation in vitro (see Results section) [41]
and verify this hypothesis. To examine whether PKM( is
degraded upon reactivation, hippocampal neurons are
first treated with labeled amino acids, and then LTP is
induced. Several hours later when LTP is consolidated,
the neurons are either reactivated by another tetanus or
left unstimulated (control) in the absence of labeled
amino acids. According to our assumption of reactiva-
tion-triggered degradation, the amount of labeled PKM(
will rapidly decrease in reactivated neurons whereas it
will remain constant in control neurons. To prove
synthesis of PKM{ upon reactivation, LTP is first
induced in hippocampal neurons in the absence of
labeled amino acids. Several hours later, the neurons are
either reactivated or left unstimulated (control) in the
presence of labeled amino acids. Our hypothesis predicts
that reactivated neurons will synthesize a greater
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amount of labeled PKM( than control neurons, in which
PKM(C is produced only to meet its turnover.

It might also be possible to examine our hypothesis in
vivo; in inhibitory avoidance learning, animals are
trained to associate the dark side of an experimental
chamber with foot shocks, and this type of learning is
known to induce LTP in the hippocampus [43]. First,
the mouse PKM( gene is replaced with a PKM{-GFP
chimeric gene. Then, the engineered mice are trained
for an inhibitory avoidance task. Several days later, the
preexisting PKM{-GFP in the hippocampus is photo-
bleached, and the mice are divided into three groups:
the reactivation group, the reactivation-protein synthesis
inhibition group, and the control group. The reactiva-
tion group mice are exposed to the experimental cham-
ber to reactivate the fear memory. Those in the
reactivation-protein synthesis inhibition group are first
administered a protein synthesis inhibitor and then
exposed to the experimental chamber. Control mice are
exposed to another chamber distinct from the one used
in the training sessions. It will be possible to quantify
the newly synthesized PKM{-GFP by using fluorescence
microscopy and the total PKMC-GFP (synthesized either
before or after photobleaching) by an immunological
method.

Based on our hypothesis, a series of predictions can be
made. In the reactivation group, PKM{-GFP fluores-
cence will increase, whereas the total amount of PKM(-
GFP will remain constant. In the reactivation-protein
synthesis inhibition group, both the fluorescence and
total amount of the chimeric protein will decrease. In
the control group, the fluorescence will stay at a low
level, and the total amount of PKM{-GFP will remain
constant.

F-actin stabilizer
An F-actin stabilizer such as phalloidin [44] increases
the actin polymerization rate relatively to the actin
depolymerization rate. To predict the effect of a F-actin
stabilizer on LTP, we omitted the decay term tempora-
rily (0 < t < 60) from the ODE for F-actin (Equation 2)
and simulated the time courses of [PKM(] (Figure 6A)
and EPSC amplitude (Figure 6B). In the presence of the
F-actin stabilizer, the system resulted in the UP state
when treated with a weak stimulus that would be insuf-
ficient to turn on the network in the control condition.
Next, we investigated how the F-actin stabilizer
changes the dynamics of the model. A bifurcation dia-
gram with respect to actin stability (Figure 6C) was
obtained by slicing the two-parameter (j, and j3) bifurca-
tion plot (Figure 4D) with a perpendicular plane j; = aj,,
where “a” is a positive constant (a = 10 in Figure 6C).
The horizontal and vertical axes of the slice show j, and
the steady state [PKMC(], respectively. Solid circles
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Figure 6 Simulations predicting experimental results. Time
courses of A) [PKM{] and B) EPSC amplitude after a weak stimulus,
Stim(t) = 5 (0 < t < 30), in the presence (solid line) or absence
(dashed line) of a F-actin stabilizer. C) Steady-state [PKM(] versus an
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MRNA] and bistability. D) Steady-state [PKM{] versus the bifurcation
parameter, [PKM{ mRNA]. E) The threshold [PKM{ mRNA] to
perpetually activate the system.

indicate saddle-node bifurcations. j, divided the
dynamics of the model into three phases. The system
was bistable when j, was between 0.031 and 0.063 and
monostable when j, was outside of this range. A small
rightward shift of j, from the default value did not
change [PKM(] significantly, but a large shift thrust the
system beyond the right bifurcation point and brought it
to the UP state (arrow 1). Subsequent withdrawal of the
F-actin stabilizer did not restore the DOWN state
(arrow 2) and showed hysteresis, a characteristic feature
of bistable systems. These simulations predict that an
F-actin stabilizer lowers the threshold of stimulation for
LTP induction at low doses and induces LTP without
stimuli at higher doses.

Variation of mRNA concentration

In recent years, remarkable in vivo techniques for gene
transfer and local gene knockdown in the brain have
been developed [45,46]. In our model, we assumed a
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constant level of PKM{ mRNA, but such methods will
enable variation of [PKM{ mRNA]. We predicted its
outcome by extending the model and performing a
bifurcation analysis with respect to [PKM{ mRNA]
(default value of 1) as a bifurcation parameter (Figure
6D). The dynamics of the PKM( network was dependent
on [PKM{ mRNA] and had three distinct phases. The
system was monostable at the DOWN state when
[PKM({ mRNA] < 0.67 and at the UP state when [PKM{
mRNA] > 1.2. The system was bistable when 0.67 <
[PKM{ mRNA] < 1.2.

As [PKM{ mRNA] increased, the saddle point
approached the DOWN state (Figure 6D). One may
assume that when the saddle point is closer to the
DOWN state, the Stim threshold for switching on the
system will be lower. Unfortunately, however, that
assumption is not obvious from a two-dimensional pro-
jection (Figure 6D) of a system with many more dimen-
sions. To obtain a clear view, we varied [PKM{ mRNA]
and found the threshold of Stim (a square wave lasting
for 30 minutes) necessary for turning the system on.
Figure 6E plots the threshold value of Stim against
[PKMC mRNA]. As predicted, the concentration and
input threshold were negatively correlated. It would be
possible to verify this prediction in vitro and in vivo by
introducing a PKMC( gene construct into the hippocam-
pus. Moderate PKM{ overexpression will lower the
threshold for LTP induction and alter learning efficacy
by increasing the sensitivity of the PKM( network to
input, whereas an overdose of the gene will induce LTP
without stimuli and hinder learning ability by destroying
the bistability of the system. Silencing PKMC( expression
by RNA interference will also destroy the bistability of
the system and prevent LTP and learning.

Bistable positive feedback loop models

Bistable networks are ubiquitous in biology. In particu-
lar, combination of positive feedback and nonlinearity is
a very common mechanism for creating bistability. For
instance, the MAPK positive feedback loop makes a bis-
table switch and plays crucial roles in development and
memory [14,47,48]. Theoretical studies have demon-
strated that nonlinearity of the pathway arises from dual
phophorylations of the MAPK cascade; MAPK kinase
kinase dually phosphorylates and activates MAPK
kinase, and dually-phosphorylated MAPK kinase then
dually phosphorylates MAPK [14,49]. CaMKII affords
another example. According to a simulation study, the
activity of CaMKII is bistable because its autophosphor-
ylation provides positive feedback and the rate of autop-
hosphorylation is nonlinearly dependent on the number
of phosphorylated subunits [50]. In contrast to the
MAPK and CaMKII models, our PKMZ model is unique
since bistability arises from combination of positive
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feedback and pathway converge (Figure 4C). Aslam et
al. modeled a bistable positive feedback loop consisting
of CaMKII and a translational regulator, where CaMKII
autophosphorylation activates translation of CaMKII
[51]. Their model is similar to ours in that translation
plays a crucial role in bistability.

Cerebellar long-term depression

Long-term depression of the parallel fiber-Purkinje cell
synapse is thought to be the cellular substrate of cere-
bellar learning [52]. Cerebellar LTD shows remarkable
similarity to hippocampal LTP, although they have dif-
ferent directions of plasticity and involve different recep-
tor subunits; both require large calcium transients and
subsequent activation of CaMKII and PKC, and both
follow AMPAR phosphorylation [52-56]. In the cerebel-
lar Purkinje cell, stimuli induce a supralinear calcium
influx, which activates MAPK and PKC in an all-or-
none manner [48,57-60]. MAPK and PKC are engaged
in cerebellar LTD only in the early phase (approximately
30 minutes) [48,60], and what maintains LTD in the
later phase is not yet known. PKM(, the long-term
memory trace in a variety of brain regions [1,61], is also
found in the cerebellar cortex [61], suggesting its poten-
tial involvement in cerebellar LTD [13,18,62]. This study
mainly focuses on hippocampal L-LTP, but considering
the similarity, it might also explain the mechanism for
cerebellar memory.

Conclusions

We have shown here that the PKMC( network is robustly
bistable, supporting its pivotal role in long-term mem-
ory. Obviously, PKM({ is not the sole mechanism for
long-term memory; expression of various proteins, mor-
phological changes, and synaptogenesis are also very
important [63-69]. Interaction of molecular pathways
that have different time scales is also important for
memory stability [70]. Further experimental and compu-
tational studies will be necessary to address how these
processes interact and cooperate and which process is
the most crucial in retaining memory.

Methods

Simulation of the biochemical reactions

Figure 1 illustrates the pathways of the PKM( network
model. Because qualitative data were not available for
any of the pathways, we presumed the simplest case
where each reaction was a first-order reaction. The fol-
lowing set of reactions describes the molecular interac-
tions of the PKM{ network. PKM( protein stimulates
translation of its own mRNA (Figure 1 arrow 2) [25]
and promotes actin polymerization (Figure 1 arrow 3)
[26-29]. F-actin facilitates PKM(-induced PKM( synth-
esis (Figure 1 arrow 4) [31]. Stim(t) represents the
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collective activity of protein kinases, including PKC,
MAPK, and CaMKII, that induce PKM( expression (Fig-
ure 1 arrow 1) [2,7,12]; its basal value was 0.003, repre-
senting the background activity of the protein kinases.

The three ODEs that describe the reactions are as fol-
lows:

3 % = jl[RNAactive](l _[PKMG])_[PKMQ,] (1)
oy AR _ (4 o [PRME 1) (1 ~[FActin]) - [FActin]  (2)
o W = julFActin] ([PKM) + Stim (1)) (1~ [RNA ] ) = [RNA el (3)

where [PKM(], [FActin], and [RNA,.4ve] denote the
concentrations of PKMC( protein, actin protein mole-
cules assembled into F-actin, and PKM{ mRNA
recruited into the local translational machinery (active’),
respectively.

In the model, concentrations are unitless quantities.
In the future, when quantitative data are available, it
would be simple to convert them into quantities with
units (such as micromolar). Concentrations of total
actin, including F-actin and G-actin (actin monomer),
and total PKM{ mRNA (mRNA in and out of the
translational machinery) are both assumed to be con-
stant and designated values of one since neither actin
or PKM{ mRNA has been shown to increase or
decrease upon LTP induction. Assuming biological
regulation and resource limitation, the upper limit of
[PKM(] was set to one. The system was still bistable
without this constraint (data not shown). Time has a
unit of minutes. The time constants z;, 75, and 73 were
determined so that PKM( turnover, actin polymeriza-
tion, and protein synthesis would take place in realistic
time scales. The parameters j;, j,, j3, and j, denote
reaction rates relative to the exponential decay of each
variable: j; designates the PKM( synthesis rate, j, and
j3 denote the PKM-independent and PKM{-dependent
actin polymerization rates, respectively, and j, is the
rate at which PKM{ mRNA is incorporated into the
translational machinery.

Equation 1 describes the processes in which PKM( is
translated from its active mRNA and degraded (Figure 1
arrow 1). The production rate has a time scale of 10
minutes (depending on [RNA,ivc]), which is compar-
able to experimental results [2]. Protein degradation
was assumed to have a time scale of one day because
the catalytic domain of PKC(, whose amino acid
sequence is identical to that of full-length PKM(, has a
half-life of at least one day [71]. Equation 2 refers to
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the reactions in which G-actin is transformed to
F-actin and vice versa. The forward step is at least
partly dependent on PKC( activity (Figure 1 arrow 3)
[26-29]. Actin turnover in the dendritic spine was
assumed to have a time scale of tens of seconds, based
on previous experiments [72,73]. Equation 3 describes
the process in which PKM{ mRNA is recruited into
translation machinery in a [PKM(]- and [FActin]-
dependent manner (Figure 1 arrows 2, 3) [25].

PKMC( enhances EPSC by stabilizing AMPA receptors
in postsynaptic sites through an NSF/GluR2-dependent
pathway [3-5]. AMPA receptors are composed of four
subunits, including two GluR2 s and two others [74,75],
and NSF is thought to interact with each GluR2 subunit
[76]. Therefore, we presumed that PKM{-dependent
EPSC changes were a second-order reaction. EPSC was
estimated by solving the following ODE:

dEPSC _

[PKMZ
I

js (EPSCyp — EPSC ) -———=2— —EPSC + j; (4)
[PKMS [¢p

EPSC has an amplitude of 1 (arbitrary unit) in the
DOWN state and an amplitude of 2 in the UP state
(EPSCyp). The decay term is based on the findings that
without PKM( activity, EPSC amplitude in potentiated
neurons approaches its baseline level [9,25]. The time
constant 7, was derived from experiments [9,25]. js was
set to meet the initial rate of EPSC increase after postsy-
naptic introduction of exogenous PKM( [9,25]. js deter-
mines the basal level of EPSC.

Default parameters were represented by the following
values: 7; = 1500, 7, = 0.5, 73 = 60, 7, = 100, j; = 80, j, =
0.05, j3 = 0.5, j; = 0.16, js = 14, and j = 0.89. We imple-
mented the model equations into the software package
XPPAUT [32] and performed numerical integrations
and bifurcation analyses.

Additional material

Additional file 1: Time constants do not affect model equilibria. This
text explains that the dynamics of the model is independent of its time
constants.
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